# Applying the "Novosel Formula": Comment on "Studding the Relation Between Sum Cretin Variables of Hemodynamic and Circulatory System After Aerobic Effort for Long Distance Runners" 

Dragutin Novosel ${ }^{1 *}$, Petar Žuljević ${ }^{2}$, M Matija Alanović ${ }^{3}$, Robert Žunac ${ }^{4}$ and Tina Bečićc ${ }^{5}$<br>${ }^{1}$ Glaserbergstrasse 23, CH - 4056 Basel, Switzerland<br>${ }^{2}$ Ulica dr. Franje Tuđmana 8c, HR-21220 Trogir, Croatia<br>${ }^{3}$ SIPAEelektronika d.o.o., Ruđera Boškovića 17, HR - 47000 Karlovac, Croatia<br>${ }^{4}$ Petra Kržića 8, HR - 47000 Karlovac, Croatia<br>${ }^{5}$ University of Split, Faculty of Medicine, Department of Cardiology, Spinčićeva 1, HR-21000 Split, Croatia<br>*Corresponding Author: Dragutin Novosel, Glaserbergstrasse 23, CH - 4056 Basel, Switzerland.

Received: March 18, 2024
Published: April 08, 2024
© All rights are reserved by Dragutin
Novosel., et al.

DOI: 10.31080/ASMS.2024.08.1804

In a recent publication, Mohamed Twfeq Othman Alhusaen and Yaseen Alhajar [1] analyzed various parameters, including the mean electrical axis of the heart (EA). On page 10 of their paper [1], they refer to our earlier publication [2], which addresses the fundamental aspects of calculating the heart's mean electrical axis in the frontal plane. These aspects were independently assessed in other studies [3-5] and further discussed in our subsequent publications [6,7].

In their recent publication [1], the authors report the following equation:
$E A= \pm \arctan \left(\frac{a V F}{(\sqrt{(3)} *(I-a V F))}\right)$
However, our original formula is as follows [2]:
$E A= \pm \arctan \left(\frac{2 * a V F}{(\sqrt{(3)} * I)}\right)$
We were not able to delineate the formula used in the publication by Mohamed Twfeq Othman Alhusaen Aga and Yaseen Alhajar [1] and have concerns that there can be some misunderstandings.

As reported previously [5], the topic of the estimation of the electrical axis of the heart is still a challenging one [7]. Among others, Dahl R and Berg R. [5] analyse our approach and found it grounded what we discussed elsewhere [6].

We believe that this subject requires careful consideration from a methodological perspective. As we recently reported [8], the estimation of the electrical axis in most cases can be easily performed using leads I and aVF. When applying this method [8], let us consider a simple case in which the amplitudes of lead I and aVF are both positive and equal.

As we have previously reported $[2,6,8]$, in this case, the EA is considered to be within the normal range, between $0^{\circ}$ and $90^{\circ}$ [8]. Without applying the correction $[2,5,6]$, the value of the heart's EA would be approximately $45^{\circ}$, which is sufficient for the daily routine work. The exact value of the EA is however $49^{\circ}$ and can be derived from our earlier reports [2,6]. When applying the formula mentioned in the paper by Mohamed Twfeq Othman Alhusaen Aga and Yaseen Alhajar [1], the value of the EA would incorrectly be calculated as $\pm 90^{\circ}$ (arctan of $\infty$ ), a result we consider inaccurate and believe warrants serious consideration.

Summarizing our findings, we conclude that despite extensive and in-depth discussion, as well as accumulated knowledge about calculating the electrical axis of the heart, this subject remains challenging.

## Bibliography

1. Alhusaen Aga., et al. "Studying the Relation Between Sum Cretin Variables of Hemodynamic and Circulatory System After Aerobic Effort for Long Distance Runners". Indonesian Journal of Basic Education 5 (2007).
2. Novosel D., et al. "Corrected formula for the calculation of the electrical heart axis". Croatian Medical Journal 40.1 (1999): 77-79.
3. SH Guo and H K Chiang. "Image electrocardiography based on a cardiac vector projection circle" 2012 5th International Conference on BioMedical Engineering and Informatics, Chongqing, China, (2012): 65-70.
4. Samuel Rajini. "Unlocking the Cardiac Vector Theory and Einthoven Equilateral Triangle Model for an Efficient Teaching Tool in ECG Interpretation". ARC Journal of Cardiology 8 (2023): 12-22.
5. Dahl R and Berg R. "Trigonometry of the ECG. "A formula for the mean electrical axis of the heart". Physiology News 120 (2020): 25-27.
6. Novosel D., et al. "Visualising the Novosel Formula: Comments on Dahl and Berg's A formula for the mean electrical axis of the heart". Physiology News/Autumn 123 (2021): 7-8.
7. Novosel D., et al. "The challengen and pitfalls of limb-leads and heart-axis calculations. The differences between the overall magnitudes of bipolar and augmented unipolar leads cannot be explained with the Ohm's law". PARIPEX 11 (2022): 55-60.
8. Novosel D., et al. "Simple method to determine the normal cardiac axis with I (D1) and aVF". ASMS 7.10 (2023): 86-88.
