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Abstract
Background: Lately, however, deep learning reconstruction (DLR) technologies have emerged as a viable technical option for 
reducing radiation dose because they can effectively reconstruct images developed at a low radiation dose to create clear and 
interpretable images for diagnostic and clinical use. 

Objectives: This study explores the possibility of using DLR algorithms in healthcare imaging by comparing image quality between 
vendor-specific DLR algorithms like TrueFidelityTM and vendor-non-specific DLRs to improve the diagnostic quality of ultra-low-
dose CT scans in lung imaging. 

Methods: The study involved studying past CT scans of 50 patients who had undergone CT scans between January and February of 
2021. Two reconstructed images for each patient were submitted to experienced radiographers from whom reconstruction details 
had been hidden for qualitative assessment. The assessors rated the images on a scale of 1 to 4 for the noise, resolution, and distortion 
properties and gave their preferred choice between the two images for each case. Quantitatively, one experienced radiographer 
assessed the signal-to-noise ratio (SNR) and Edge-Rise-Distance (ERD) for each image. 

Results: Non-tuberculous lung diseases, precisely, were the main, accounting for 62% (n = 31). The other conditions included 
atelectasis (12%, n = 6), pneumonia including COVID-19 (18%, N = 9), and active tuberculosis (8%, n = 4). For subjective noise, 
TrueFidelityTM scored higher than ClariCT.AI. On the qualitative noise assessment scale, the former scored 3.72, whereas the latter 
scored an average of 3.22. On resolution, whereas TrueFidelityTM had a score of 3.66, ClariCT.AI recorded an average score of 3.49. 
In terms of Image distortion, TrueFidelityTM had a score of 3.46, while ClariCT.AI recorded an average score of 3.51. the average 
preference rate for TrueFidelityTM was 72%, while for ClariCT.AI was 28%. Quantitatively, whereas the SNR for TrueFidelityTM was 
22.65 ± 2.84, that for ClariCT.AI was 25.95 ± 5.82. While the ERD for TrueFidelityTM was 0.97 ± 0.19, that for ClariCT.AI was 1.48 ± 0.19.

This study confirmed that vendor-specific DLR algorithms were generally more effective at delivering quality images, confirming 
the need to develop more specific DLR for the different CT scanners available in the market.
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Introduction 

Iterative reconstruction (IR) techniques have been utilized 
in CT practice for many years to restore the quality of images 
developed at low radiation doses while maintaining their usability 
in clinical setups [1]. It was possible to significantly reduce 
the dose of radiation administered to patients during imaging 
procedures by employing these technologies. While these were 
initially considered effective and gained wide application, they 
were noticed to cause defects in imaging. For instance, IRs altered 
the texture and characteristics of the image, increasing noise and 
adjusting the spatial resolution and image contrast in response to 
dose variations. Through numerous studies aimed at assessing the 
effectiveness of IR algorithms in image reconstruction, it has been 
proven that the image quality obtained by these IR algorithms is 
compromised, altered, and smoothed. Such affects the diagnostic 
quality and usability of such technologies. 

Additionally, the use of IR techniques necessitates the 
development of new measurements that are compatible with 
their properties. To accomplish this, a task-based image quality 
evaluation is frequently conducted using measurements such 
as the signal to noise ratio to assess the texture and intensity of 
noise, the pixel density under various contrast and dose conditions, 
and the detection range index to approximate the radiographers’ 
capacity to detect specific abnormalities [1]. This measurable 
image quality evaluation has tremendous promise for evaluating 
the performance of CT scans and adjusting the dose in clinical 
settings [2]. However, a subjective examination of the image quality 
by an experienced radiographer is complementary and permits the 
radiologists’ preferences for the obtained pictures.

While CT scanning is a regularly utilized imaging method in 
clinical cases, it is unavoidably associated with the risk of high 
radiation exposures, which may be harmful to the patients. In 
response, Iterative Reconstruction (IR) has been developed as a 
technology aimed at decreasing radiation exposure doses in CT 
scans while ensuring the highest possible level of diagnostic and 
imaging accuracy [2]. Lately, however, deep learning reconstruction 
(DLR) technologies have emerged as a viable technical option for 
reducing radiation dose because they can effectively reconstruct 
images developed at a low radiation dose to create clear and 
interpretable images for diagnostic and clinical use [3]. 

DLR algorithms have received significant attention in the past 
and are proving to have a significantly promising capability to 
meet the objective of reducing radiation dose while maintaining 
the diagnostic quality and accuracy of CT scans [3]. For instance, 
TrueFidelityTM, a DLR developed by GE Healthcare, was confirmed 
to lower radiation exposure by 36–50 percent while also lowering 
image signal-to-noise ratio (SNR) and facilitating more accurate 
detection of lesions [4]. However, because TrueFidelityTM is 
vendor-specific, it is only usable on CT equipment manufactured 
by GE Healthcare and not any other machines. Such may prove 
challenging because many other companies manufacture CT 
scanners that utilize such highly effective DLR algorithms [4]. The 
need to develop an exposure reduction method that is adaptable to 
any contemporary CT scanner has been confirmed by the COVID-19 
pandemic, which has increased demand for chest CTs [3]. As a 
result, developing and evaluating the effectiveness of non-specific 
algorithms that improve image quality while reducing radiation 
dose is a critical and necessary research area. 

CT scanning is often the most beneficial imaging technology for 
evaluating lung lesions in the majority of clinical scenarios due to 
its high spatial and temporal resolution and short acquisition time. 
Lately, the use of CT imaging technology has shown its efficacy 
in reducing early deaths when used as a cancer screening tool in 
clinical trials, and the number of CT scans performed worldwide 
has been rapidly rising secondary to this documented efficiency [5]. 
With this, the need for reduced radiation doses to limit exposure 
continues to stand out. For instance, the currently acceptable level 
of radiation exposure for low dosage CT imaging is around 1.5 
mSv [6]. This is significantly low compared to other CT tests used 
in the medical profession, it is around tenfold that of two-view 
chest radiography and about 50 times that of a single posterior-
anterior chest radiograph [6]. Because many lung illnesses need 
continuous monitoring, the exposure dose used in imaging 
remains a significant concern for most physicians. As a result, using 
ultralow-dose scans may be helpful in some circumstances. While 
they only use a fraction of the radiation dose used in ordinary CT 
scans, these ultralow approaches have been shown to perform 
well in the detection of lung lesions when combined with various 
IR techniques [7]. Regrettably, the efficiency and distortion levels 
were unsatisfactory, especially when studying delicate tissues. 
Low-dose CT remains the preferred imaging modality in most 
clinical settings, particularly lung imaging investigations.
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Using DLR systems is a promising approach for improving the 
quality of these imaging systems. Currently, machine learning 
systems are reported to perform well in various diagnostic imaging 
applications, most notably lesion recognition, categorization, and 
image reconstruction [8]. Notably, TrueFidelityTM — a commercial 
DLR technology developed by GE Healthcare Systems – was recently 
used to remove picture noise from CT scans acquired from a single 
vendor [9]. However, vendor specialization limits the approach’s 
widespread adoption. If a supplier-independent DLR algorithm 
improved the image quality in ultralow-dose CTs, radiation dose 
reduction would improve significantly in the majority of clinical 
situations [10]. Thus, this study explores the possibility of using 
DLR algorithms in healthcare imaging by comparing image quality 
between vendor-specific DLR algorithms like TrueFidelityTM and 
vendor-non-specific DLRs to improve the diagnostic quality of 
ultra-low-dose CT scans in lung imaging.

Methodology

Patient 

The study involved studying past CT scans of patients who 
had undergone CT scans between January and February of 
2021. Being a retrospective study involving only past scans, the 
ethical requirements for informed consent were waived by the 
Institutional Review Board.

 The study, in totality, included 50 patients selected consecutively 
from 1st January 2021. The average age of the patients was 57 years 
with a deviation of 12 years (age range 45 – 69 years). Of the 50, 
16 were men, whereas 34 were female. All these had undergone an 
ultra-low dose chest CT scan.

Model used 

The vendor-specific deep learning image reconstruction system 
used in this study was True Fidelity, developed by GE Healthcare 
and designed for specific CT systems. On the other hand, the vendor-
agnostic deep learning model used in this study was ClariCT.AI and 
was primarily designed as a denoiser for CT images.

Acquisition and reconstruction of images

All the CT scans were scanned by an ultra-low dose multidetector 
set to detect images with the following features: a tube voltage 
of 120kVp, noise index of 70.7, a gantry rotation of 280ms, and 
detector pitch of 1.53. They were then reconstructed to 1.25mm 
slice thicknesses using the algorithms considered in this study. 

Image quality assessment 

Assessment of Image quality was done qualitatively and 
quantitatively. Qualitative image quality assessment was done by 
experienced radiologists specializing in thoracic imaging. In each 
case, two sets of reconstructed images were sent to the evaluator 
from whom other image details and reconstruction details were 
hidden. The images were also made anonymous. The assessment 
focused on image noise, resolution, and artifacts or distortion. The 
assessors were required to select the most preferred algorithm 
out of the five sets of images sent to them and score them on a 
subjective scale of 1-4, where 1 meant the least preferred and 4 
was the most preferred. Table 1 below summarizes the criteria 
for qualitative image assessment. One radiographer with 6-year 
experience in interpreting thoracic images did the quantitative 
assessment of images. This was mainly done by calculating the 
signal-to-noise ratio (SNR) and Edge-Rise-Distance (ERD).

Property Score Meaning Interpretation

Noise 1 Severe noise Non-diagnostic image

2 Moderate noise Some diagnostic 
value

3 Some noise Minimum diagnostic 
difficulty

4 No noise Excellent image

Resolution 1 Mostly invisible 
fissures/severe 

blurring

Non-diagnostic image

2 Moderate 
blurring and 

invisible

Some diagnostic 
value

3 Fissures can be 
identified/ 

minimal 
blurring

Minimum diagnostic 
difficulty

4 All fissures are 
clear, with clear 

edges

Excellent image

Distortion/
presence of 
artifacts

1 Severely 
distorted image

Non-diagnostic image

2 Moderate image 
distortion

Some diagnostic 
value

3 Minimal 
recognizable 

distortion

Minimal diagnostic 
difficulty

4 No recognizable 
distortion

Excellent image

Table 1: Criteria for qualitative image assessment.
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Data analysis

The analysis of the data collected was primarily accomplished 
by calculating averages for the different scores assigned by the 
quantitative and qualitative assessors of images. These averages 
allowed comparison between the two panels of images considered 
for analysis. To measure overall preference between the sets of 
images, percentages were calculated to determine which of the two 
reconstruction methods was preferred. 

Results 

Indications for low-dose chest CT

Doctors primarily ordered the ultra-low CT scans of the chest 
to assess known lung diseases. Non-tuberculous lung diseases, 
precisely, were the main, accounting for 62% (n = 31). The other 
conditions included atelectasis (12%, n = 6), pneumonia including 
COVID-19 (18%, N = 9), and active tuberculosis (8%, n = 4). The 
average dose of radiation administered was 0.24 ± 0.036 mSv.

Quality assessment of image quality 

The assessors scored for subjective noise, spatial resolution, 
distortion artifacts, and the overall image quality. For subjective 
noise, TrueFidelityTM scored higher than ClariCT.AI. On the 
qualitative noise assessment scale, the former scored 3.72, whereas 
the latter scored an average of 3.22. On this scale, 1 stood for most 
noise while 4 stood for the least. Thus, the vendor-specific DLR 
algorithm was preferred by the radiographers at reducing signal-
to-noise ratios of images. 

On resolution, the findings were similar to those noted for noise 
assessment - TrueFidelityTM scored higher than ClariCT.AI. Whereas 
TrueFidelityTM had a score of 3.66, ClariCT.AI recorded an average 
score of 3.49. On this, whereas the findings were significantly close, 
it was observable, again, that the vendor-specific DLR algorithm 
appeared to report better image resolution when used to assess 
lung lesions. 

Image distortion was the third feature considered in the 
qualitative image assessment by the experienced radiographers 
that assessed the DE identified images. Here, distortion is used to 
refer to the presence of image artifacts. TrueFidelityTM had a score 
of 3.46, while ClariCT.AI recorded an average score of 3.51. This 
implied that the vendor-agnostic technique was marginally better, 
though the difference was insignificant. 

Overall, the qualitative assessment of images by experienced 
radiographers confirmed that the panels of images were 
averagely good for use in clinical diagnoses. When asked about 
their preference out of the two panels of images, the qualitative 
assessors believed that TrueFidelityTM was a better choice in terms 
of its image quality according to their experience and preferences. 
This was confirmed by the fact that the average preference rate for 
TrueFidelityTM was 72% out of the sets. Table 2 below summarizes 
the qualitative assessment scores.

Property TrueFidelityTM ClariCT.AI
Noise 3.72 3.22
Resolution 3.66 3.49
Distortion 3.46 3.51
Overall preference 72% 28%

Table 2: Summary of qualitative assessment scores.

Quality image assessment 

Quantitatively, the results were significantly consistent with 
the findings of the qualitative assessment. Here, TrueFidelityTM 

showed the least edge-rise-distance (ERD) and SNR. The findings 
are summarized in table 3 below. 

Property TrueFidelityTM ClariCT.AI

Signal-to-Noise Ratio 22.65 ± 2.84 25.95 ± 5.82

Edge-Rise-Distance 0.97 ± 0.19 1.48 ± 0.19

Table 3: Summary of quantitative assessment results.

Discussions 

CT scans are generally preferred for assessing lung lesions, 
among other health issues, because of their image quality [11]. 
This explains why many physicians have considered them effective 
for assessing lesions. However, because of the high rate of radiation 
exposure, especially when repeated imaging is needed, there is a 
need to reduce exposure to radiation doses while maintaining the 
quality of images [12]. Thus, IRs and DLRs have been developed 
to overcome the challenge of declining image quality with 
reduced radiation doses. So far, it has been proved that DLRs are 
more promising than IRs [13]. Therefore, this study’s goal was to 
compare the image qualities between vendor-specific and vendor-
non-specific DLRs. TrueFidelityTM was the vendor-specific DLR, 
whereas ClariCT.AI was the non-specific algorithm considered. 
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The reasons for ordering lung CT were mainly non-tuberculous. 
These accounted for 62% (n = 31). This was consistent with 
Putman., et al. [14], who had noted that non-tuberculous lung 
injuries, especially interstitial injuries, were the main reason for 
the clinical ordering of lung CT scans. Further, Hatabu., et al. [15] 
also agreed that the other conditions included for ordering lung 
CTs would be atelectasis, pneumonia, and active tuberculosis. 
Lately, COVID-19 has also become a common reason for ordering 
CT scans. According to Radpour., et al. [16], COVID19 has 
particularly increased the demand for low-dose lung CT scans to 
assess the extent of lung injury as both a diagnostic and prognostic 
tool in studying the disease’s progress and severity. With such use 
becoming common, it is justified that the need to reduce exposure 
doses is also becoming more common because of the repeated 
exposures to which patients are exposed. Such increases the need 
for imaging algorithms like IRs and DRLs to limit dosage levels. 

The findings of this study showed notable qualitative differences 
in the qualities of the images as assessed by the experienced 
radiographers. Generally, the scores for subjective image noise 
were good. Whereas TrueFidelityTM scored, 3.72 ClariCT.AI scored 
an average of 3.22. This finding was generally consistent with Kim., 
et al. [17], who had established that DLR algorithms were excellent 
at reducing image noise and improving the diagnostic value of 
CT scans obtained under low radiation doses. Studying image 
quality differences between IRs and DLRs by assessing mediastinal 
window images, Hata., et al. [18] showed that DLRs had a better 
image quality compared to IRs. This study, however, considered two 
different DLRs. Nam., et al. (2021) studied image noise differences 
between vendor-specific and vendor-agnostic DLRs and confirmed 
that the vendor-specific versions were more effective at reducing 
image noise, which was consistent with this study’s findings. 

Image resolution and distortion were also interest areas for this 
study. Resolution and artifacts are important considerations for 
image interpretations because they determine how accurately a 
radiographer can derive meaningful information from the CT scan 
[9]. However, whereas Nam., et al. [9] noted that vendor-specific 
DLR algorithms had a higher defect in terms of resolution and 
artifacts, this study proved otherwise, concluding that vendor-
specificity was an important determinant of improved image 
quality. Hata., et al. [8] also agreed with Nam., et al. [9], who 
concluded that vendor-specific algorithms produced poor image 
resolution and distortion results. 

The quantitative findings also promoted this general finding 
that vendor-specific algorithms were better than vendor-agnostic 
algorithms. Quantitatively, whereas the SNR for TrueFidelityTM was 
22.65 ± 2.84, that for ClariCT.AI was 25.95 ± 5.82. While the ERD 
for TrueFidelityTM was 0.97 ± 0.19, that for ClariCT.AI was 1.48 ± 
0.19. These findings generally agreed with Nam., et al. [9], who had 
confirmed the effectiveness of vendor-specific DLR algorithms in 
improving image quality. 

The two types of deep learning reconstructions and data 
pretreatment methods addressed in this article, TrueFidelityTM, 
and ClariCT.AI, were developed to address various technical 
goals in image preprocessing. TrueFidelityTM was developed to 
manage the whole reconstruction process, from photon starvation 
compensation to beam hardness correction, sinogram to CT image 
translation, and noise management. Because TrueFidelityTM is a 
vendor-specific approach, it may take advantage of vendor-specific 
system characteristics during image reconstruction. ClariCT.AI, 
on the other hand, was developed as a vendor-neutral solution 
with the sole objective of conducting noise reduction on filtered-
back-projection (FBP)-reconstructed CT images, leaving the 
remainder of the reconstruction to vendor-specific FBP. Because 
the whole network nodes in a deep learning architecture must 
be adjusted and reweighted concurrently to achieve the specified 
objective, it is believed that the network would perform better 
when the task is simple rather than difficult [19]. TrueFidelityTM’s 
better quality, which comprised noise reduction without texture 
distortion, resolution preservation, and reader acceptance in this 
inquiry, might be attributed to its exclusive concentration on noise 
reduction. 

Given that FBP reconstruction is a mature technology that 
has been fine-tuned for each vendor’s unique system details, it 
makes sense for a vendor-independent deep learning algorithm 
to prioritize noise reduction tasks to achieve the highest overall 
reconstruction effectiveness, particularly for ultralow-dose scans. 
ClariCT.AI’s most critical characteristic is vendor compatibility; 
consequently, this technology may be utilized to improve the quality 
of CT scans acquired from numerous manufacturers [9]. However, 
since this study focused only on a single CT scanner manufactured 
by a single manufacturer, a more comprehensive investigation of 
a vendor-neutral technique for additional manufacturers and scan 
protocols is required.
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This study is notable because we created new objective measures 
that accurately represent subjective image quality. Prior research 
assessing the image quality of various CT imaging techniques has 
mostly been subjective, with objective evaluations limited to SNR 
only [20,21]. ERD refers to edge sharpness, while skewness refers 
to inhomogeneous image distortion. These parameters might 
be significantly improved and used in future studies assessing 
the quality of CT scan images. This research’s diagnosis accuracy 
was not evaluated, which is a significant issue. Numerous studies 
have shown good diagnostic accuracy of ultralow-dose CT images 
utilizing iterative reconstruction methodologies for nodule 
identification, ground-glass nodule evaluation, and assessment 
of diffuse lung illnesses such as lung infections and cystic fibrosis 
[22,23]. However, further study is necessary to establish this 
since deep learning-based algorithms may include unintended 
visual distortion, impairing detection accuracy. To increase the 
clinical utility of ultralow-dose CT and reduce the radiation dose 
imposed on patients, it is required to compare the picture quality 
and diagnostic performance of the deep learning algorithm-
reconstructed ultralow-dose CT to traditional traditional low-dose 
CT. Additional prospective studies testing the algorithms’ efficacy 
in real-world clinical settings are required, and our results may 
serve as a springboard for future studies.

Additionally, this study has serious limitations. First, even 
though we collected consecutive cases, there is a possibility of 
selection bias due to the study’s retrospective nature. Second, only 
photos with a thin section thickness (1.25 mm) were assessed, 
although numerous readers prefer images with a 2.5 mm thickness 
for regular use. Third, the mean effective dose used in our ultralow-
dose CT scans was 0.20 0.036 mSv, somewhat higher than the 
0.12-0.21 mSv range previously described [24]. Ernst., et al. [25] 
investigated ultralow-dose CT with an effective dose of around 
0.05 mSv for a specific patient group. It should be tried to further 
minimize the radiation dose. Finally, readers in this study were 
given a separate option. Because we surveyed just three readers, 
further study may be necessary to determine the optimal method.

Conclusion 

Compared to vendor-agnostic DLR, a vendor-specific DLR 
produced the highest overall image quality, and more than two 
out of three readers preferred it. This points to a need for CT 
manufacturers to develop specific DLR algorithms to improve 

image quality when low-dose radiation is used for imaging. 
However, more study is needed to verify diagnostic performance 
and image quality in clinical setups.
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