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Introduction

Beta-lactamases are enzymes which inactivate beta-lactam 
antibiotics [1], such as penicillin, by hydrolysing the amide bond 
[2] in the beta-lactam ring. Enzymatically, beta-lactamases can be 
classified as serine beta-lactamases or metallo-beta-lactamases. 
Serine beta-lactamases catalyses the hydrolysis via a serine-bound 
intermediate [2] while metallo-beta-lactamase require zinc as in-
termediate [3]. The first beta-lactamase isolated is penicillinase 
from Escherichia coli in 1940 [4], before the beginning of antibiotic 
era in 1942 [5]. However, phylogenetic analysis suggests serine 
beta-lactamases to be more than 2 billion years old [6], strongly 
suggesting that beta-lactamases originated before antibiotic era, 
with the main function to aid in cell survival by defending early 
microorganisms from naturally occurring beta-lactams produced 
by other competitors in the environment [7]. Clinically, carbape-
nem-hydrolysing class D beta-lactamases (CHDLs) are important 
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as they confer resistance against carbapenems, which are antibi-
otics of last resort [8,9]. A study [10] has shown that OXA-2 beta-
lactamases are CHDLs, even though currently they are classified as 
narrow-spectrum. However, it is not known where the first beta-
lactamase originated.

Studies has shown that some functional sequences can originate 
randomly. In vitro selection experiments demonstrate that func-
tional RNAs and proteins can be obtained from random sequence 
libraries [11]. Keefe and Szostak [12] have produced four new func-
tional ATP-binding proteins from random-sequence libraries. Many 
random sequences can be bioactive peptide or RNA [13]. Moreover, 
recent studies demonstrate the possibility of putatively functional 
genes [14] and peptides [15] from random DNA sequences and 
amino acid sequences respectively. Hence, is it possible for func-
tional beta-lactamases to originate from random sequences?

This study examines the possibility of functional Oxa-2 beta-
lactamases originating from random sequences by evaluating ran-

Citation: Brenda ZN Kwek., et al. “Random Sequences May Have Putative Beta-Lactamase Properties". Acta Scientific Medical Sciences 3.7 (2019):  
113-117.



Random Sequences May Have Putative Beta-Lactamase Properties

114

Methods

A set of Oxa-2 beta-lactamases sequences (known as baseline 
sequences) were retrieved from GenBank using Salmonella en-
terica subsp. enterica serovar Typhimurium R46 blaOXA gene for 
oxacillin-hydrolyzing class D beta-lactamase OXA-2 (Accession 
number NG_049496.1) as the query on BLASTN with default pa-
rameters and an E-value threshold of 1e-9. A set of 10,000 ran-
dom sequences between 74 and 1,029 nucleotides in length and 
2,654 adenine, 2,296 cytosine, 2,745 guanine and 2,304 thymine 
per 10,000 bases; without start and stop codons; were generated 
using RANDOMSEQ [16]. Length of 74 to 1,029 represented 20th to 
100th percentile of the lengths of baseline sequences.

An open reading frame (ORF) can be defined as a sequence of 
codons, which begins and ends with a start and stop codon respec-
tively [17]. A set of 10 sequences of 10 kilobases with uniform nu-
cleotide distribution was generated using RANDOMSEQ [16] and 
ORFs of at least 33 nucleotides, corresponding to one of the short-
est gene known [18], were identified.

Determining open reading frames from random sequences

Identification of putative beta-lactamases were carried out 
using a previously described method [14]. Two sets of pairwise 
sequence alignments were performed using both Smith-Waterman 
algorithm [19], also known as local alignment, and Needleman-
Wunsch algorithm [20], also known as global alignment, via 
Bactome (https://github.com/mauriceling/bactome). In the first 
series, each baseline sequence was pairwise aligned to every 
other baseline sequence and the distribution of scores were used 
as measure for putative beta-lactamase sequences. In the second 
series, each of the 10,000 random sequence was pairwise aligned 
to every baseline sequence. A minimum and average alignment 
score were generated for each random sequence. Based on 
bootstrap statistics [21], the probability of each random sequence 
being a putative beta-lactamase sequence was determined by the 
proportion of baseline alignment scores below the minimum and 
average alignment score of the random sequence for stringent and 
relaxed criteria respectively.

Determining putative beta-lactamases from random 
sequences

To test whether a putative beta-lactamase can evolve over gen-
erations to have more characteristics of known beta-lactamases, in 
silico evolution was carried out using DOSE [22,23], using previ-
ously described methods [24,25]. Briefly, a single population of 100 
digital organisms was created, deployed in the same ecological cell 
and simulated for 500 generations. A random sequence with mini-
mum alignment score just above that of the baseline sequences was 
used as genome for the ancestral organism, which would be cloned 
into the initial population of 100 organisms. 10% point mutation 
rate [26,27] will be used. Organism fitness was calculated as aver-
age pairwise alignment of its genome to a random selection of 250 
baseline sequences (known beta-lactamases). The lowest decile of 
the organisms by fitness were removed. However, in event where 
more than 50% of the population were removed, a random selec-
tion of 10 organisms were removed instead. A random selection of 
remaining organisms after removal were replicated to top up the 
population to 100 organisms for the next generation. The simula-
tion was repeated 30 times.

In Silico evolution of putative beta-lactamase

Results and Discussion

BLASTN of using Salmonella enterica subsp. enterica serovar 
Typhimurium R46 blaOXA gene for oxacillin-hydrolyzing class D 
beta-lactamase OXA-2 (Accession number NG_049496.1) yielded 
6,555 hits within the E-value threshold, forming the set of baseline 
sequences. The distribution of nucleobases of the 6,555 baseline 
sequences is 26.54% adenine, 22.96% cytosine, 27.45% guanine, 
and 23.03% thymine. The minimum and maximum nucleotide 
length for baseline sequences are 24 and 1029 respectively (Fig-
ure 1), with an average and standard deviation of 94.9 and 106.55 
bases respectively. The baseline sequences were pairwise aligned, 
and yield a total of 21,480,735 alignments (Figure 2). The mean 
alignment score is 57.1 (standard deviation of 18.46), with 11 and 
1,028 as the minimum and maximum scores respectively. Align-
ment results from local [19] and global [20] were identical; hence, 
local alignment was used for subsequent analysis.

Characterization of Oxa-2 Beta-lactamases

We identified an average of 184 ORFs per random sequence 
of 10 kilobases (Figure 3). The shortest ORF found consists of 36 
nucleotides while the longest ORF consists of 498 nucleotides. 
Our result suggests that ORFs, potential protein-coding region of a 
gene [28], can exist randomly and is consistent with a recent study 
showing 196 ORFs per 10 kb of random sequences [14]. Cardoso-
Moreira and Long [29] had presented a model of de novo origins 

184 ORFs per 10 kilobases found.

domly generated sequences against known Oxa-2 beta-lactamases. 
Our results suggest that substantial proportion of randomly gener-
ated sequences may be putative beta-lactamases, with 4% of the 
randomly generated sequences showing 99% probability as puta-
tive beta-lactamases.

Sequence Data Sets

Citation: Brenda ZN Kwek., et al. “Random Sequences May Have Putative Beta-Lactamase Properties". Acta Scientific Medical Sciences 3.7 (2019):  
113-117.



Random Sequences May Have Putative Beta-Lactamase Properties

115

Figure 1: Distribution of baseline sequence lengths. 

of ORFs through mutations. However, our results suggest another 
possible route for de novo ORF – emerging from random sequenc-
es without the need for mutations, which does not contradict the 
model proposed by Cardoso-Moreira and Long [29]. 

Figure 2: Beta-lactamase local pairwise alignment score. 

Figure 3: Total number of ORFs identified per 10 kilobases 
of randomly generated sequences.

Our results show that all 10,000 randomly generated sequences 
have minimum pairwise alignment score equal or higher than the 
minimum local pairwise alignment score of 6,555 from baseline 
sequences. As the range of pairwise alignment scores among 
baseline sequences represents the sequence diversity of beta-
lactamases; therefore, if a random sequence is not likely a putative 
beta-lactamases, then its minimum pairwise alignment score with 
known beta-lactamases (baseline sequences) should be lower 
than the minimum pairwise alignment score among known beta-
lactamases. Our results show that all 10,000 randomly generated 
sequences have 34% probability of being putative beta-lactamases 
(Table 1), based on the probability that the average pairwise 
alignment scores of all randomly generated sequences are above 
34% of the 21,480,735 baseline pairwise scores. A possibility can 
be a left-skew of baseline alignment scores due to short sequences 
in the baseline set. Despite so and using the same argument, 4% of 
the 10,000 randomly generated sequences have 99% probability of 
being putative beta-lactamases as their pairwise alignment scores 
are at or above 99th percentile of the baseline pairwise alignment 
scores.

4% Random sequences with more than 99% probability as 
putative beta-lactamases

Alignment 
Score

Minimum 
Score

Average 
Score

Probability of  
Beta-lactamase Function

>10.9 100% 100% 0%
>19.9 100% 100% 0.2%
>24.9 0% 100% 1%
>29.9 0% 100% 2%
>34.9 0% 100% 6%
>39.9 0% 100% 15%
>44.9 0% 100% 34%
>49.9 0% 99% 60%
>54.9 0% 97% 69%
>59.9 0% 95% 75%
>64.9 0% 93% 79%
>69.9 0% 90% 82%
>74.9 0% 86% 87%
>79.9 0% 80% 96%
>84.9 0% 67% 98%
>89.9 0% 4% 99%
>94.9 0% 0% 100%
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This is consistent with several studies. Yona., et al. [30] report 
about 60% of random sequences have wild-type promoter 
efficiency with only 1 base mutation out of 103 bases. Ling [15] 
suggests that nearly 27% of randomly generated amino acid 
chains may contain putative protein domains. Although Ling 
[15] uses amino acid chains, Neme., et al. [13] report that 25% of 
randomly generated 150 nucleotide sequences exhibit beneficial 
effect on E. coli growth rate when expressed as RNA or peptide. 
This is also supported by Thong-Ek [14] suggesting the possibility 
of de novo emergence of putative archaebacterial genes. Zhang., et 
al. [31] also suggest an average emergence of 51.5 de novo genes 
per million years in Oryza by studying the genomes of 13 closely 
related Oryza species. 

Next, we examine whether a putative beta-lactamase can evolve 
under selective pressure by selecting a random sequence with the 
lowest average pairwise alignment score with the baseline se-
quences and perform in silico evolution. The selected sequence, 
Test_2716, has the sequence length of 103 nucleobases and has 
the lowest average score of 53.05. Our simulation results (Figure 
4) show a possibility for Test_2716 to mutate into a functional 
beta-lactamase as its average maximum score cross the baseline 
average score of 57.1 at the 4th simulated generation. This is con-
sistent with previous studies [24,25] showing a rapid increase in 
fitness under selective pressure. Using the stricter criteria of grand 
mean (mean of means), the fitness of Test_2716 increases but did 
not surpass the baseline average of known beta-lactamases. This 
suggests that Test_2716 may not reach the average functionality 
of a putative beta-lactamase. However, the grand mean plateau be-
tween 56.3 and 56.5, which is more than 69% probability of being 
putative beta-lactamases (Table 1), from 20th to 500th generation. 
This suggests that a putative beta-lactamase may rapidly evolve 
into a more functional beta-lactamase under selection.

Putative beta-lactamase can evolve under selective pressure

Carvunis., et al. [32] defined “proto-gene” as a gene born from 
non-genic sequence by random processes without selection, and 
must fulfil 3 criteria; namely, the DNA sequence must be tran-
scribed and translated, and the protein product must be beneficial 
to the organism. A proto-gene is the first stage of a de novo gene ori-
gin with a beneficial and selectable phenotype that can be selected 
[11]. As Yona., et al. [30] demonstrate that substantial proportion 
of random sequences can be promoters, it is plausible to consider 
that the requirement for transcription has substantial chance of be-
ing randomly fulfilled.

Figure 4: Simulation result of random sequence Test_2716. 
Error bars represent standard errors.

Our results demonstrate the feasibility of de novo origination 
of ORFs and putative beta-lactamases from random sequences; 
hence, the requirement for translation is fulfilled. This is supported 
by Zhang., et al. [31] reporting that 56.6% of the de novo genes 
identified are translated. As antibiotic resistance genes such as 
beta-lactamase can improve survivability in stressful ecological 
conditions [33-35], the requirement for beneficial function is also 
fulfilled. Baym., et al. [36] have demonstrated the emergence of 
high-resistant mutants from susceptible strains within 2 weeks 
under a strong selective pressure. Therefore, it is plausible to 
consider that beta-lactamase may originate de novo from random 
sequences and selected for survival benefits.

Conclusion
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