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Abstract
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We have realized a new architecture for AI allowing an increase in capabilities and innovation in the Internet of Things (IoT). IoT 
applications are a major source of data and Big Data is a consequence. This challenge call for more intelligent computing models 
(Digital Agent, Neural Network, Deep learning, …) that enable rapid innovation for applications and service delivery. The scope of our 
work is to realize an Internet of Things (IoT) architecture to delivers fast-moving data from sensors and devices around the world 
making sense of all that data using artificial intelligence (AI). Digital Agents are used as a framework for modeling, understanding 
and reasoning about data. They operate for multisensory integration to adapt behavior for a perceptual integration of data in the 
context. The architecture is triggered by events and internal processes provide deep analysis on data using an R machine. Each 
Digital Agent has multiple cognitive/perceptual layers with increasing degrees of abstractions. WE design the architecture with top-
down and bottom-up mechanisms working together to connect the cognitive representations to the perceptual data. We require a 
Cognitive Layer (CL) and a Perceptual Layer (PL) with their own autonomous structures. 

A PL has a Receptive field as a particular region of the sensory space in which a stimulus (event) will modify the firing of the input 
neuron. In our model the receptive field is a set of sensorial point in a context. Receptive fields’ points to interpretative object called 
place cell. A place cell is a kind of a neuron in a SOM (Self-Organizing Map). Place cells are thought, collectively, to act as a cognitive 
representation of a specific location in CL space, known as a cognitive map. The structure of CL reflects the cognitive associations that 
we normally acquire through experience; and the structure of the perceptual layer reflects the historical series of input data. There 
is an autonomous memory for each layer where the associations or structures of the respective layers are stored. 

Abbreviations
IoT: Internet of Things; IoE: Internet of Everything; SSB: Smart Sys-
tem Bus; DA: Digital Agents.

Introduction
The new architectures for AI realize a processing system that 

allows an increase in capabilities and innovation in the Internet of 
Things (IoT). In a world where almost anything can be connected 
to the Internet, the exponential increase in the volume of informa-
tion and connected devices creates a dilemma. In these cases new 
intelligent technology solutions are an enabling opportunity for 
innovation in Internet of Things (IoT). These challenges call for 

more intelligent computing models (Digital Agent, Deep Learning, 
Semantic Networks,…) that permits rapid innovation for applica-
tions and service delivery.

IoT applications are considered to be a major source of big 
data and are supported through cloud architectures where data is 
stored and processed.

The critical challenge is using this data when it is still in motion, 
extracting valuable information from it. Organizations are scram-
bling to apply tools and analytics to these streams of data before 
the data is stored for post-event analysis because it is necessary to 
detect patterns and anomalies while they are occurring, in motion, 
in order to have a considerable impact on the event outcome.
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Our Research Platform

For real-time decision making on data, we have developed an 
architecture triggered by events that process and provide deep 
analysis on data. Event processing uses the following techniques 
to manage, and make sense of streaming data:

1.	 Assessment, applying transformations and rules to deter-
mine if further processing needs to occur or the data (or 
event) can be quickly discarded.

2.	 Analysis, time series, analysis generated by an event 
stream processing, can be continuously processed to un-
derstand real-time trends.

3.	 Correlation, event stream processing allows to connect to 
multiple streams of data and identify that series of events 
occurred.

4.	 Digital Agents, (DA) Neural Networks (NN) and other AI 
Tools are vital for modeling, understanding and reasoning 
about data. 

A Digital Agent can be considered as the universal primitives 
of digital computation [1] while NN are connectionist computing 
systems vaguely inspired by the biological neural networks. Such 
systems learn tasks by considering examples, generally without 
task-specific programming.

Finally, we have used software metrics to expand our standards 
with new ones to try to define a rationale for software process 
design. As well know, a software metric is a measure of a degree 
to which a software system or process possesses some property 
[2-4]. The property we had essentially in mind was performance 
to improve algorithms and to create recipe to use the different AI 
tools. Therefore, AI measurements are highly demanded, but such 
work is still in its infancy in industrial environments. 

Research Contribution

This research has explored the use of maps onto maps inspired 
by neuroscience. As is well known nervous system is a set of mod-
ules of neurons that is able to ignite a many layers cognition. Even 
if we used supervised neural network we were able to create a full 
circuit that from the analysis of IoT data generate to an answer 
through cognitive steps.

Related works on cognitive architectures

A cognitive architecture is a generic computational model to 
study systems behavior and cognition. It provides agents with de-
cision-making mechanisms.

 Among the most known cognitive architectures we have: SOAR 
[5,6]; CLARION [7] and ACT-R [8]. 

SOAR is the most known and includes working and long-term 
memory, and learning mechanisms (chunking, reinforced knowl-
edge, etc.). 

John E. Laird proposed a standard cognitive architecture to 
provide the appropriate computational abstraction for defining 
a standard model, although the standard model is not itself such 
an architecture [9-13]. The standard model spans key aspects of 
structure, processing, memory, learning and perception and motor.

We started our work from Laird one, even if we have modified 
the standard depending on neuroscience approaches developed 
these years. 

The purpose of architectural processing is to support bounded 
rationality, not optimality. System behavior is driven by sequential 
action selection via a cognitive cycle. 

We think that complex behavior arises from a sequence of in-
dependent cognitive cycles that operate in their local context, but 
separate architectural modules for global optimization and plan-
ning are necessary creating more independent layers in a logic of 
maps of maps as in natural brains.

Declarative and procedural long-term memories are contained 
in neural networks and not in symbols structures and associated 
quantitative metadata.

Global control is provided by a cognitive map realized by a neu-
ral network and procedural long-term memory is composed of 
rule-like conditions and actions. Rules are necessary to produce 
control actions for IoT environment.

Learning updates cognitive maps for specific contexts and it oc-
curs online and incrementally, as a side effect.

Perception and Motor Control is the key of a working IoT ar-
chitecture. We can have many different such perception modules, 
each with input from a different modality and its own buffer. This 
is prepared “ad hoc” for each smart object or mobile connected de-
vice. Motor control converts internal states into external actions.

Neuroscience suggests connectionist models as basis for cog-
nitive architecture. It considers processing as the dynamic and 
graded evolution of activities in a neural net module. Each unit's 
activation depends on the connection strengths and activity of its 
neighbors, according to the activation function.
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The consequence of all these assumptions is a hybrid connec-
tionist architecture. Elements of classical symbolic processing 
are included in neural nets, Wermter and Sun [14]. We realized 
a collection of neural net modules that share data coded in acti-
vation patterns following Miikkulainen [15]. We used the best of 
the two worlds as the hybrid models combines both symbolic and 
sub-symbolic approaches with the rising paradigm represented by 
connessionistic machine learning methods, such as deep learning, 
which have found enormous practical success in limited domains, 
Kotseruba [15].

AI architecture for IoT

We are going to describe now our DA based architecture. It is 
devoted to manage complex environment and it is structure to give 
a cognitive taste to old fashioned Command, Control and Commu-
nication systems.

Complex Environment management 

AI systems permit the transition from Command, Control and 
Communication systems to Mission Management Systems where 
there is a requirement for always more unmanned management.

We have the following transitions:

o	 The Human System Interface is no more a cockpit Aide 
but it becomes a decision aide permitting operator em-
powerment;

o	 Sensing has an evolution from events collection to a Dy-
namical Threshold Management with a choice of phe-
nomena of interest;

o	 Monitoring and Diagnosis process uses Models leaving 
event-action schema for a more complete semantic of 
events.

o	 Decisions are simulation and model based; statistics sup-
port Proactive Decisions.

A summary of the software architecture 

We give a rapid sketch of the architecture flow. 

Smart objects and mobiles communicate with cloud servers 
using micro-services. Mobiles facilitate humans with an interface 
totally based onto Natural Language. The app user experience and 
user interface (UX/UI) is made to facilitate vocal and written com-
munication. 

Figure 1: Architecture flow.

Web services actuate requests to SSB (Smart System Bus). SSB 
drives the requests to the appropriate software cloud machines.

Modifying the Natural Language content is easy to associate 
cloud applications to a mobile or to any IoT device.

Smart System Bus (SSB): Scope and Functions	

SSB is a software system born in the new wave of IT Technolo-
gies related to Cloud Computing. It collects events from sensors 
and it is able to collect, cluster and support decisions, sometime in 
unmanned way.

The main functions of the SSB system are:

o	 Events management

o	 Communication management

o	 Actions management depending on Decision Models. 

SSB has architecture with one or more servers and controllers. 
Controller can be installed everywhere. Controllers can be any 
type of distributed hardware mobiles enclosed.

SSB can send feedback controls to the environment. It aggre-
gates large numbers of sensors with a fusion of heterogeneous in-
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AI Machine 

An AI machine is based on Digital Agent as the universal primi-
tives of digital computation [1]. All physically possible computa-
tion can be directly implemented using Digital Agents. 

Message passing using types is the foundation of system com-
munication. When a Digital Agent receives a message, it can con-
currently: sends/receives messages to/from other Digital Agents 
and creates new Digital Agents to solve a problem.

Digital Agent Model can be used as a framework for modeling, 
understanding, and reasoning about, a wide range of concurrent 
systems. 

Information integration needs to make use of the following in-
formation system principles:

formation from many sources. Many instrument resources have a 
continuous technological evolution and this characteristic causes 
continual re-invention of driver software. SSB middleware has as 
primary design goal to facilitate integration of instruments into 
current computing to leverage Cloud-based services.

o	 Persistence: Information is collected and indexed.

o	 Concurrency: Work proceeds interactively and concur-
rently, overlapping in time.

o	 Pluralism: Information is heterogeneous, overlapping 
and often inconsistent. There is no central arbiter of 
truth.

o	 Provenance: The provenance of information is carefully 
tracked and recorded. 

Digital Agents 

Digital Agents are used as universal primitives of concurrent 
digital computation, have beliefs, desires and intentions. They have 
states which can be nested, so that, (for example), one agent is able 
to have beliefs about another agent’s intentions. Agents communi-
cate using asynchronous SSB standard messages architecture. 

We can define formally a Digital Agent or Computing Agents as 
models of processes, which are essentially sets of traces represent-
ing possible complete sequences of actions performed by an agent 
and its environment. Such a model provides a firm basis for rea-
soning about phenomena. 

Formally, Digital Agent or Computing Agents are modeled as 
processes, which are essentially sets of traces representing pos-
sible complete sequences of actions performed by an agent and its 
environment.

Such a model provides a firm basis for reasoning about phe-
nomena. 

Digital agents are objects which may perform various actions, 
thus exhibiting some discrete behavior, and this behavior may be 
influenced by the actions of other agents. An action performed by 
the computing agent itself is an output action, while an action per-
formed by some exterior agent is an input action. 

We shall use traces to represent sequences of actions. A trace 
is a sequence of symbols taken from some alphabet, which is just 
a set of symbols. The set of all finite traces formed from alphabet 
A is written A*. The catenation of two traces t and u is written as 
the juxtaposition of the two, i.e. combine (t, u). In our internal rep-
resentation we assume that the continuous interaction of an agent 
and its environment is summarized by a discrete concatenation of 
view-action sequence of the form: v0, a0, v1, a1, an, vn. A view repre-
sents a sensory description associated with a context state.

Agent declarations and initialization 

Agents are declared via the agent keyword, followed by the 
agent’s name (which must be unique), and the body of the agent. At 
startup, agents are invoked in the order in which they are declared; 
an agent terminates when it reaches the end of its code body or if 
terminated. Agents can communicate the results of their actions.

Beliefs, desires and intentions

Agents have explicit data structures corresponding to beliefs, 
desires, and intentions. These states can be nested, so that (for ex-
ample) an agent can have beliefs about other agent’s intentions. 

Agent’s beliefs are the information it has about contexts and 
about itself; these beliefs may be incorrect. An agent’s intentions 
activate a course of action (s) as one's purpose or objective plan.

An agent’s desires means a strong feeling of wanting to have 
something or wishing for something to happen but still it is not in 
an intention state. 
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Context

Context is a structure composed by entities and relationships. 
Such data can be of two types: unchangeable and changeable. 

An agent is part of a context and can represent and analyze it as 
a dynamical system. In general, the state of a dynamical system is a 
trace that summarizes all the information about the past behavior 
of the system. 

Beliefs related to a context overload agent belief, for example:

On (table, floor); unchangeable

John (age, 15); changeable

d) Communication

A DA provides built-in communication primitives for sending 
and receiving messages. Their messages can be: pushed to mobile. 
They send orders and data, receive orders and data. Messages are 
event following SSB standard.

The effect of communication is to change the state of the recipi-
ent of the message or to activate actions. Note that message deliv-
ery is guaranteed, but it is asynchronous. 

The following is thus a legal modal expression:

believe AGE = 50;

intention (week = 1, heartrate = 80, … week = 12, heartrate = 75);

Functions

A DA can activate functions as precompiled or interpreted SSB 
routine. All functions have global scope and can be invoked either 
by agents or by other functions.

Learning

A DA can learn from different sources: Smart Objects, Mobiles 
and internet. Data is appropriately used to extract meaning using 
neural networks or mapping data to a cognitive map. Neural net-
work are the key tool to classify events a.

Neural networks can be applied to numerous situations where 
time series prediction is required. We can turn a temporal problem 
into a simple input output mapping by taking the time series data 
x(t) at k time-slices t, t–1, t–2, …, t–k+1 as the inputs, and the out-
put is the prediction for x(t+1).

Agent’s Cognitive Architecture 

Central to AI Machine is an extended semantic network. This is 
a knowledge base that contains a large number of entities of differ-
ent type (class) and relationships between entities. 

Each knowledge base is related to a context, an aggregate of en-
tities, relationships and rules.

AI machine can be thought of as an architecture where there is 
no single algorithm that is responsible for intelligence. Rather, a 
large number of different specialized algorithms can be actives and 
these works closely together in cognitive synergy.

An Agent is immersed in a context (and he is swimming in the 
IoE interacting with Agents, processes, people). This implies that 
its learning and adaptation activities presuppose social learning.

In an agent it is very important to attribute importance to the 
whole of the cognitive and social processes involved in the learning 
process, integrating them with the associations between stimuli 
and reinforcements that follow a certain behavior, as behaviorism 
had always done.

An agent is able to put into play his private processes, such as 
attention or thought, to learn.

There are three elements that interact with one another in refer-
ence to the learning process: the agent, the context and behavior. It 
is the so-called mutual determinism or triadic reciprocity, whereby 
the environment influences the subject and his behavior, the sub-
ject influences the environment with his behavior and behavior 
influences the subject himself. We learn by observing the external 
context and the environment that surrounds us. We learn not only 
through reinforcements and penalties because mere observation 
produces certain learning effects without the need for direct rein-
forcement. 

Computational Modelling for Digital Agent 

After the description of the basic characteristic of a Digital 
Agent, we will describe the internal structure of their architecture. 

First of all each DA has multiple cognitive/perceptual layers 
with increasing degrees of abstractions. 

We require that there be top-down and bottom-up mechanisms 
working together to connect the Cognitive representations to the 
perceptual data. 
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Phenomenological Layer

Phenomenological layer groups IoT data. The objective of PL is 
to organize data and to map to CL describing situations. During ev-
ery system cycle new data are collected in PL. 

Interface with the context

A sentient has a Receptive field as a particular region of the sen-
sory space in which a stimulus (event) will modify the firing of the 
input neuron. In our model the receptive field is a set of sensorial 
point of a context. 

Receptive fields’ points to interpretative object called place cell. 
A place cell is a kind of a neuron in a SOM (Self-Organizing Map) 
called “place field”. Place cells are thought, collectively, to act as a 
cognitive representation of a specific location in space, known as 
a cognitive map. 

We require a Cognitive Layer (CL) and a Perceptual Layer (PL) 
with their own autonomous structures. The structure of CL reflects 
the Cognitive associations that we normally acquire through expe-
rience; and the structure of the perceptual layer reflects the histori-
cal series of input data. There is an autonomous memory for each 
layer where the associations or structures of the respective layers 
are stored. 

Multisensory integration

Multisensory integration permits to manage information from 
the different sensory modalities may be integrated by the Phenom-
enological system.

A coherent representation of objects combining modalities en-
ables us to have meaningful perceptual experiences. Indeed, mul-
tisensory integration is central to adaptive behavior because it al-
lows to perceive coherent perceptual entities in the context. 

Bayesian integration

The theory of Bayesian integration is based on the fact that the 
agent must deal with a number of inputs, which vary in reliability. 
In dealing with these inputs, it must construct a coherent repre-
sentation of the world that corresponds to reality. The Bayesian 
integration view is that the agent uses a form of Bayesian inference 
[16]. This view has been backed up by computational modeling of 
such a Bayesian inference from signals to coherent representation, 
which shows similar characteristics to integration in the brain.

Development of multisensory operations

An agent equipped with multiple sensory systems, utilize them 
in an integrative manner to achieve action and perception [17].

The agent’s experiences in the context

We assume that the continuous interaction of an agent and its 
environment is summarized by a discrete view-action-view se-
quence of the form: 

v0, a0, v1, a1,...,an, vn. (1)

A view represents a sensory description associated with a con-
text state. 

An action denotes a sequence of one or more control laws 
(Zhang Y.) that take the agent from one state to the next. Distinc-
tive states are the result of following control trajectory. The basin 
of attraction of the hill-climbing control laws absorbs accumulated 
error from each trajectory every time each action happens.

The sequence (1) is transformed into a set of schemas of the 
form (vi, si), ai, (vi+1, si+1), where si is the state name associated 
with the environment state where view vi is observed. A schema 
represents a particular action execution of the agent in the en-
vironment. An action execution is characterized in terms of the 
distinctive states the agent was at before and after the action was 
performed.

If the states of the system to control obey to a SISO nonlinear 
system:

ds(t)/dt =f(s(t))+Bu(t), y(t) = Cx(t) (2)

where s(t) is the state vector, y(t) is the system output e u(t) is 
the system input, we can achieve the desired control with a neu-
ral network. Using a recurrent neural network, we can construct a 
neural network system model:

With the assumption of independence between various sources, 
traditional cue combination model is successful in modality inte-
gration. However, depending on the discrepancies between mo-
dalities, there might be different forms of stimuli fusion: integra-
tion, partial integration, and segregation. To fully understand the 
other two types, we have to use causal inference model without 
the assumption as cue combination model. This freedom gives us 
general combination of any numbers of signals and modalities by 
using Bayes' rule to make causal inference of sensory signals [16].

08

Citation: Francesco Rago. “An AI and IoT Multi-Tiers Architecture for Real Time Integration and Analyse of Data Sensor”. Acta Scientific Medical Sciences 
3.3 (2019): 03-15.

An AI and IoT Multi-Tiers Architecture for Real Time Integration and Analyse of Data Sensor



ds(t)/dt =As(t) +WS(s(t))+Bu(t), y(t) = Cs(t) (3) 

where W is the connection matrix and S is the activation function.

Figure 2: Phenomenological Layer.

Cognitive Layer

Phenomenological states are subject to a transformation from 
Phenomenological Entities into Cognitive Entities and Relation-
ships. The CL has as main components a cognitive map, which 
serves to acquire, code, store and recall about the relative loca-
tions and attributes of phenomena in their everyday knowledge 
environment. The term refers to a kind of neural network repre-
senting the agent knowledge. A Cognitive map is a map, indicating 
routes and paths and environmental relationships, which finally 
determines what responses the system will release.

Knowledge is updated whenever a relationship is found. The 
cognitive map updated by a neural network is a topological map, 
i.e., it represents only the connectivity between entities. Associa-
tions between entities can be represented by the variable Vi, j, an 
association stored in the modifiable synapses of the neural net-
work. Whereas a positive Vi, j association means that knowledge 
entity j can be accessed from knowledge i. 0 means no relationship 
exists. 

The prediction of neighboring place j, pj, is permits to calculate 
activation aj by aj = pi Vi,j, and this activity indicates whether entity 
j is accessible from entity i. 

Cognitive Layer Basic Flow

During every system cycle new data is collected and trans-
formed into Phenomenological Entities, if appropriate. Data are 
contained in view and schemas structured depending on a tem-
plate.

 If we indicate EAVi = [elementi, attributei, valuei] and RELk = 
(elementi, relation_namek, elementj) as elements of the views; we 
can execute rules: 

{EAVi} AND {RELi} => {actionj} AND {EAVj} AND {RELj} 

and new states prepared using statistical tools of R machine, if 
appropriate.

There is a time cycle to transform Phenomenological Entities 
into Cognitive Entities and Relationships. Neural networks recog-
nize data status and define a possible update/evolution of CL.

The relation between schemas and contextual cognitive maps 
is recognized by a type of nonlinear mapping. The neural network 
model can be applied to many types of non-linear maps, if the per-
tinent variables were adjusted properly. This is a non-linear map-
ping between views whose data updates the specific contextual 
cognitive map while schemas are the input of cognitive maps to 
generate an output that will operate on PL.

If the CL is very dissimilar or juxtaposed after a predefined 
number of cycles (dissimilarity is measured on using a standard 
algorithm) this means a new concept is in the CL and problem solv-
ing results are evaluated using a fitness algorithm: more a logic ele-
ment is able to fix problems, more it is fit. If it is not fit, new CL is 
changed with the old one.

Method 
This research uses a software development methodology spe-

cifically suited to the AI and IoT paradigm. The software produc-
tion process can be successful if an appropriate methodology in-
teracts with all the different layers of the organization: processes, 
human and non-human resources management. AI computing pro-
motes designing and developing applications in terms of autono-
mous software entities (agents). Agents are situated in contexts 
and they achieve their goals by interacting with others agents in 
terms of high-level protocols. 

Learning is the most natural of activities [18]. A machine learns 
from data it receives by identifying patterns and relationships 
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within the data itself. Once operational, it becomes an automated 
process with minimal intervention (though substantial influence) 
from its human counterparts.

Machines can continuously analyze substantial amounts of in-
formation and transform what they have read into intelligent in-
sights at a tremendous operational scale.

Figure 3: CL Layer.

Overview of methodology

The methodology organizes all the activities in four typical 
macro-phases: (Plan, Design, Build, and Operate), classifying them 
into Process, Organization, Resources, depending on how many 
different layers of the organization exist. The phases of are repeat-
ed recursively for each agent that autonomously aligns itself with 
the organization’s goals in a never-ending process. We will focus 
our attention only on Design Phase.

Design

In the Design phase, you go to the macro-level definition tasks 
of the process model. In this way it is possible to carry out the gap 
analysis, which determines the guidelines for subsequent activi-
ties. The decomposition of processes in sub-processes and tasks 
is carried out to the level of detail determined by the specific de-
sign requirements. In any case, decomposition levels are defined as 
process policies, goals and interfaces, leaving the agent creating his 
experience and inducing adaptive activities. If it is applicable, it can 

be based on standard pattern logic where process patterns are the 
set of activities, actions, work tasks or work products and similar 
related behavior followed by a software development life cycle:

o	 Develop a high-level business description, 

o	 Develop a Solution Overview Diagram, 

o	 Identify Process Patterns,

o	 Identify Integration Patterns,

o	 Identify Composite Patterns, 

o	 Identify Application Patterns, 

o	 Identify Run-Time Patterns.

Identify run-time and product mappings

In each step the use of Machine Learning requires considerable 
data and computational power. Because Machine Learning applies 
analytics to such large amounts of data, and runs sophisticated al-
gorithms, it typically requires high levels of computer performance 
and advanced data management capabilities. 

In each Pattern the designer has to value the applicability of 
Machine Learning algorithms in the terms of:

o	 Function Approximation

o	 Probability Estimation

o	 Pattern Recognition

o	 Clustering

o	 Prediction

For each step the designer must define Data Collection and Pre-
processing, the Architecture of networks, the appropriate training 
and validation procedure.

Architecture of networks use the paradigm “maps of maps” to 
integrate different Receptive Field processing and Machine Learn-
ing algorithms. Pattern based Adaptive Modules manage Relation-
ship Module to integrate Sensors Data and networks.

Some Basic Principles of Architectural and IoT Design 

We introduce some empirical rules that can lead to the emer-
gence of super-additive phenomena:

1.	 Information and intelligence must be distributed among 
a large number of entities like individuals, AI agents and 
smart objects;
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2.	 Control should not be superimposed, but must emerge as poli-
cies and result in interaction between peer-to-peer agents;

3.	 The system must be autocatalytic; must, therefore, be char-
acterized by a positive feedback, which guarantees increasing 
returns;

4.	 The only way to create a truly complex system that works 
correctly is to assemble it incrementally starting from simple 
modules that can operate independently;

5.	 The system must be as heterogeneous as possible as diversity 
accelerates adaptation and strengthens the system;

6.	 It is necessary to minimize the errors made during the system 
testing phases;

7.	 There is no need to pursue the optimization of a particular 
function; you need to have multiple goals;

8.	 In the system testing phase, a state of continuous imbalance 
must be pursued because equilibrium means death of the 
whole system. 

9.	 The laws governing large complex systems come from the bot-
tom. Such laws are subject to a process of continuous adapta-
tion, as a result of the interactions between the agents at the 
lowest levels of such systems.

A system built following previous rules doesn’t behave like 
mechanical systems as can adapt to a vast set of stimuli (even not 
predetermined). It may evolve and its performance is not sensitive 
to component faults as a result of redundancy of system elements.

On the other hand, such system is not optimal relying on an 
emerging control mechanism (such as a price system in a free mar-
ket economy) and inefficient, due to redundancy in the elements 
used. It is difficult to control. The system may evolve towards un-
wanted situations, and is non-linear and this means that, in the 
face of similar but not equal stimuli, different responses can be 
obtained. Consequently, it is difficult to predict the behavior of the 
system.

The complexity of the system, and the high number of interre-
lationships between the agents, makes the operation of the system 
at least obscure. In view of these considerations it is necessary to 
keep the system in close control. 

Figure 4: Adaptive and Relationship Modules.
Metrics

Effective management of any process requires quantification, 
measurement, and modeling. Software metrics provide a quantita-
tive basis for the development and validation of models of the soft-
ware development process. Metrics can be used to improve soft-
ware productivity and quality. This module introduces the most 
commonly used software metrics in AI Architecture. 

Run-time Architecture Evaluation

Following [19] a symbol system supports the acquisition, repre-
sentation, storage, and manipulation of symbolic structures. Archi-
tecture is analogous to the hardware of a standard computer, while 
the symbols (which encode knowledge) correspond to software. 
The role of a general symbolic architecture is to support the encod-
ing and use of diverse types of knowledge that are applicable to 
various goals and actions.

The basic functions performed by anarchitecture usually con-
sist of the following [20]:

o	 The fetch-execute cycle

o	 Assemble the operator and operands

o	 Apply the operator to the operands using architectural 		
	 primitives

o	 Store results for later use

o	 Support access structures

o	 Input and output

11

Citation: Francesco Rago. “An AI and IoT Multi-Tiers Architecture for Real Time Integration and Analyse of Data Sensor”. Acta Scientific Medical Sciences 
3.3 (2019): 03-15.

An AI and IoT Multi-Tiers Architecture for Real Time Integration and Analyse of Data Sensor



Viewpoint Architectural Metric (AM) Type (Unit of 
Measurement)

Scenario 
Viewpoint 

Number of patterns Counter

Logical 
Viewpoint 

Number of external interfaces:  
number of Receptive field in 

the context map, 
number of interface invoca-
tions with other layer and 

agents. 
Number of nets and adaptive 

module per net

Counter 
 
 

Counter

Process 
Viewpoint 

Process Counter 
Process Coordination: 

Interprocess Communication 
(IPC), 

Remote Call Counter.

Counter 
Counters

Physical 
Viewpoint 

Tier Counter Counter

Architectur-
al Decision 
Viewpoint 

Number of architecture design 
problems solved 

Number of options considered 
per problem

Counter 
Fuzzy Counter

Information 
Viewpoint 

Data model size and structure 
(e.g., number of entities and 

entity relationships) 
Transaction management 

profile, e.g. number of system 
transactions and their size/

duration

Counter 
Counter

Patterns 
Metrics 

number of layers 
EIP integration flows

Counter 
Counter

Table a

Results 
Architectures are distinguished by their implementation and 

specific set of primitive operations supported. 

We experimented the described architecture with the following 
metrics.

Viewpoint Architectural Metric (AM) PL CL
Scenario 
Viewpoint 

Number of pattern 18 10

Logical  
Viewpoint 

Number of external interfaces  
(number of Receptive field in the 

context map) and number of  
interface invocations with other 

layer and agents 
Number of nets and adaptive module 

per net

5 2

Process 
Viewpoint 

Process Counter 
Process Coordination Means 

Interprocess Communication (IPC) 
and Remote Call Counter

6 
65

6 
2

Physical 
Viewpoint 

Tier Counter 2 2

Architectural 
Decision 
Viewpoint 

Number of architecture design  
problems solved 

Number of options considered per 
problem

5 
NA

2

Information 
Viewpoint 

Data model size and structure (e.g., 
number of entities and entity  

relationships) 
Transaction management profile, e.g. 
number of system transactions and 

their size/duration

7 7

Patterns 
Metrics 

Number of patterns, 
EIP integration flows

18 
3

Table b

We processed weather forecasts for 65 simulated smart objects 
with 65 DA executions on a ACPIx64 server using as database a 
MySql engine. We have the following average results.

A Digital Agent uses in average 14 seconds to terminate the ex-
ecution. Operators containing neural networks activations and R 
routines use less time than the logical algorithm of rules. We have 
to balance rules that are easier to implement but slower in execu-
tion with the other operand that uses neural network. 

Activity Unit duration 
(secs)

# Ave Duration 
(sec)

Execute cycle 14
Apply Operator 0,24 20 4,8
Rules 0,32 24 7,68
I/O 1,52

Table c

Discussion 
This research has explored the use of maps onto maps on two 

layers. We trained supervised neural network because our as-
sumption was that this is the basic structure of a brain as experi-
mented by neuroscience. 

Metrics where used to value specific rules and operators per-
formance. Next steps will be to create higher layer to permit a DA 
stream to improve cognitive levels of the systems.
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