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Alzheimer’s disease (AD) is one of the most common forms of 
dementia in elder people which is contributing an estimated 60-
80% of all cases [1]. An alarmingly increasing prevalence in AD 
during the last decade has revealed that more than 80 million peo-
ple all over the world may be affected by this incurable disease by 
2040 [2]. Although progresses have been made in the etiology, di-
agnosis and treatment, the exact molecular pathophysiology of AD 
remains elusive. Formation of amyloid beta, tau protein phosphor-
ylation, formation of amyloid plaque and neurofibrillary tangle and 
apoptosis were reviewed as the major molecular mechanism asso-
ciated with the disease [3,4]. Oxidative stress and inflammation in 
astrocytes were demonstrated as the etiological factors [5]. Experi-
mental evidences revealed that mammalian target of rapamycin 
(mTORC), a significant molecule involved in the coordination of in-
flammatory signals during hypoxia, in neurons and astrocytes has 
been proposed to be involved in AD. mTOR is a serine-threonine ki-
nase which belongs to the phosphoinositol 3-kinase (PI3K)-related 
kinase family protein. It acts as the downstream signaling molecule 
in the PI3K/Akt pathway which is activated by growth factors and 
insulin. Two distinct multi-protein complexes, mTOR complex 1 
(mTORC1) and mTOR complex 2 (mTORC2) are reported [6]. The 
mTOR signaling pathway integrates both intracellular and extra-
cellular signals generated from amino acids, growth factors, oxy-
gen level and energy status. This complex has long been proposed 
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The prevalence of late onset Alzheimer’s disease (AD), one of the most common causes for dementia in elder people, is alarmingly 
increasing worldwide. Various signaling pathways such as oxidative stress, inflammation, and apoptosis are involved in the forma-
tion of amyloid beta (Aβ) and tau proteins which are demonstrated as the hall mark of this irreversible disease. Elevated mammalian 
target of rapamycin (mTOR) signaling has been reported in the pathophysiology of many human ailments including AD. mTOR is a 
serine-threonine protein kinase in the phosphoinositol/protein kinase B pathway which has role in the cellular growth process and 
survival. The effect is mediated through the up regulation of protein synthesis and down regulation of autophagy. mTOR is the cata-
lytic subunit of complexes mTORC1 and mTORC2. mTORC1 regulates the cell growth and metabolism whereas mTORC2 is involved 
in the organization of cytoskeleton. Overwhelming research on this complex signaling machinery during the last decade revealed 
that mTORC1 enhances the formation of Aβ and decreases its degradation. Furthermore, mTORC1 increases the synthesis and phos-
phorylation of tau proteins. Both these neurotoxic compounds cause the synaptic plasticity in the preclinical AD patients. Therefore, 
regulation of mTORC1 may render beneficial effect in preventing the progression of AD mainly at the early stage. Rapamycin and 
curcumin were demonstrated as inhibitors of mTORC1 and, thereby, showed neuroprotection in experimental AD models. This re-
view article discusses the role of mTORC1 and the agents that target this complex to prevent the formation and progression of AD.

Introduction

Mammalian target of rapamycin

The complex structure of mTOR is constituted by several sub-
units [10]. Among the many structural subunits described for 
mTORC1, mTOR is the catalytic subunit. The others are regula-
tory subunits which include proline-rich AKT substrate 40 kDa 
(PRAS40), DEP-domain-containing mTOR-interacting protein 
(Deptor) and regulatory-associated protein of mTOR (Raptor) 
[11]. Among this, the PRAS40 and Deptor when recruited to the 
complex mTORC1 is inhibited. Furthermore, tuberous sclerosis 
protein 1/2 (TSC1/2) was also demonstrated as an inhibitor of 
mTORC1 [12]. The mTORC1activity is stimulated by amino ac-
ids (mainly leucine), growth factors, insulin, serum phosphatidic 

in the pathophysiology of human ailments including cancer and 
diabetes mellitus. A recent review highlights the significance of 
mTORC1 pathway as a possible therapeutic target for brain vascu-
loprotection in AD [7]. Since several pathways are explained in the 
mechanism for AD, Sahoo., et al. recently recommends ‘Combina-
tion-drugs-multi-targets’ as a possible strategy [8]. Despite many 
phytochemicals that target the NF-κB proved as effective in the 
inflammation-based AD therapy [9], only a few mTORC1 targeting 
agents were demonstrated in AD models. Therefore, discussing 
the role and agents targeting the mTORC1 complex signaling ma-
chinery will be worthwhile contribution to this field. This review 
article discusses the role of mTORC1 in the formation and progres-
sion of AD and agents targeting this complex.
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The exact role of the hyperactive mTOR in the cognitive defi-
cits associated with AD remains elusive. Hyperactive mTORC1 is 
closely associated with the level of soluble Aβ and tau proteins. 
mTORC1 increase the translation of tau proteins [20]. Further-
more, mTORC1 maintains the homeostasis of protein essential for 
the neural plasticity or regulates the translation such proteins. The 
hyperactivity of mTOR signaling has been shown to enhance the 
phosphorylation and reduce the dephosphorylation of tau pro-
tein in order to favor the formation of tangle [21]. The tau pro-
tein hyperphosphorylation favors the formation of neurofibrillary 
tangles. Evidence is pointed to the role of mTORC1 in reduced 
clearance of Aβ as well. Previous studies were demonstrated 
that mTORC1 is a negative regulator of autophagy therefore, hy-
peractivity of mTORC1 signaling is associated to the reduced the 
clearance of Aβ in the brain of AD [22,23]. Therefore, autophagy 
disorders may cause the accumulation of pathologically defective 
misfolded proteins in AD. Decreased mTORC1 activity up regulates 
the removal of dysfunctional cellular components via autophagy. 
Several recent evidences supported this. 
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Hypoxia and low cellular energy status can inhibit the mTORC1 
activity. During mild hypoxia, a reduction in the adenosine tri-
phosphate level can activate the adenosine monophosphate kinase 
(AMPK), which promotes the activation of TSC1/2. Hypoxia can 
involve in the activation of TSC1/2 through transcriptional regula-
tion of DNA damage response 1 [16] TSC1/2 inhibits the mTORC1 
signaling. AMPK can also directly phosphorylate and inactivate the 
positive regulator, Raptor which finally inhibits the mTORC1 [17]. 

Role and agents regulating mTOR in Alzheimer’s disease

Formation of amyloid beta (Aβ), tau proteins and their aggre-
gated forms such as extracellular Aβ plaques and intracellular neu-
rofibrillary tangles are demonstrated as the major hallmarks of AD. 
The formed Aβ can aggregate to form an oligomeric toxic form dur-
ing the progression of the disease. It has been hypothesized that 
the synaptic dysfunction is initiated by soluble Aβ oligomers [18]. 
Aβ impairs the brain-derived neurotrophic factor induced signal-
ing in cortical neurons and thus underlies the deficits of synaptic 
plasticity. This occurred at the early stage of AD before significant 
neuronal loss is evidenced [19]. Synaptic plasticity is a key con-
tributor to declined learning and memory in severely impaired AD 
patients. The role of mTORC1 in AD is depicted in figure 1. Signal 
transduction pathways generated from the PI 3-K/Akt/mTOR cas-
cade during the oxidative stress in brain can send signals to mul-
tiple cross talking pathways which are ultimately inducing neuro-
degeneration. 

Caccamo., et al. demonstrated that genetic reduction of mTORC1 
could ameliorate the cognitive decline in AD. Hyper activation of 
PI3K/Akt/mTOR pathway can lead to the disease progression due 
to the reduction in autophagy in the inferior parietal lobe of pre-
clinical AD patients [24]. AD is found to be developed in Down’s 
syndrome where Di Domenico., et al. demonstrated the activation 
of mTORC1 signaling contributes to the Aβ and neurofibrillary 
tangles generation [25].

Elevated reactive oxygen species and pro-inflammatory cy-
tokines, such as TNF-α level can trigger the mTOR signaling in 
AD patients. These processes are enhanced during diabetes, one 
of the well-known risk factors for AD. Oxidative stress pathways 
that involve the PI 3-K/Akt/mTOR cascade can lead to cellular 
injury through the increased apoptosis and decreased autophagy 
[26,27]. The presence of apoptotic proteins was demonstrated 
in Alzheimer’s disease models [28]. Apoptotic DNA fragmenta-
tion and caspase activation is also evidenced in the brain of AD 
patients [29]. Apoptosis of neuron may be independent of the on-
set of autophagy. In neurodegenerative disorders, autophagy can 
render protection [30]. Autophagy is necessary for the clearance 
of mutated α-synuclein toxicity in neurons [31]. This was evident 
from the studies in Parkinson’s disease where autophagy protects 
against neuronal cell loss and α-synuclein toxicity [30]. 

Therefore, the deficit due to the hyper activity of mTORC1 can 
be attenuated by therapy using the specific inhibitors of this sig-
nal complex. Several clinical trials demonstrated the beneficial 
anticancer effects from inhibiting the PI3K/Akt/mTOR signaling 
pathway by agents such as sirolimus, everolimus, temsirolimus 
and ridaforolimus (deforolimus) [32-34]. However, clinical trials 
using specific inhibitors of mTORC1 in subjects with early AD have 
not yet been evaluated. Recent results from the National Institute 
on Aging Interventions Testing Program have shown that pharma-
cologically reducing mTOR signaling with rapamycin increases the 
median and maximal lifespan in genetically heterogeneous mice 
[35]. Curcumin was demonstrated to significantly decrease the 
expression of PI3K/mTOR protein levels and increased the au-
tophagy and, thereby, showed neuroprotection in APP/PS1 double 

acid and oxidative stress [13,14]. The cytokines including tumor 
necrosis factor-alpha (TNF-α), activate the IκB kinase-β which can 
inhibit TSC1 and, thereby, activates the mTORC1 [15]. The activated 
mTOR will produce a p70 ribosomal S6 kinase 1 dependent nega-
tive feedback loop which is explained as the main autoregulatory 
mechanism.

Figure 1: Inflammation (IF) and oxidative stress (OS) in 
neurons can hyper activate the mammalian target of rapamy-
cin (mTORC1). Hyperactive mTORC1 inhibits the autophagy, 
increase the apoptosis, clearance of amyloid beta (Aβ) and 
enhance the translation of tau protein. These effect contrib-
ute to the formation of Aβ oligomer, neurofibrillary tangels 

and, thereby, leading to impaired cognitive functions..
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Signal transduction pathway of the PI 3-K/Akt/ mTOR cascade 
can positively regulates the cell growth and proliferation by pro-
moting many anabolic processes. During oxidative stress, multiple 
pathways are affected that involve the PI 3-K/Akt/mTOR signaling 
that ultimately interface with programmed cell death and autoph-
agy. While enhancing the apoptosis and limiting the autophagy, 
hyper activation of mTORC1 will favor the deposition of abnormal 
dysfunctional proteins like Aβ in nerve cells. Hence, the removal of 
Aβ is possible by maintaining the process of autophagy which can 
be achieved through selectively inhibiting the activity of mTORC1. 
Activation of mTORC1 can lead to increase translation of tau protein 
and its phosphorylation. Suppression of mTORC1 activity reduced 
the Aβ oligomerisation, formation of tau proteins and, thereby, res-
cued the memory deficits. But the exact role of mTOR complex and 
the associated therapeutic intervention in AD patients is limited. 
Therefore, further studies using agents with the multi targeted ac-
tivity in combination with the standard drugs are essential. 

Conclusion and Future Perspectives

transgenic mice [36]. Epigallocatechin gallate was effective in AD 
as an agent decrease the Aβ generation as well as interfering in its 
assembly to the toxic form [37,38]. Like epigallocatechin gallate, 
several other natural compounds such as caffeine and resveratrol 
were also demonstrated as inhibitors of mTOR, but their effect on 
mTORC1 complex in an in vivo AD model or clinical trials remains 
elusive [39]. 
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