

Effect of Ashirwad Nutrivila (manufactured by Ashirwad AWF29 technology) on Growth, Biomass, and Fruit Characteristics of Tomato (*Solanum lycopersicum* L.)

Milan A Bhatt*, Kathad H Kamliya and Nana K Bhammar

Ashirwad Nutrients, Mahuva, Bhavnagar, Gujarat, India

*Corresponding Author: Milan A Bhatt, Ashirwad Nutrients, Mahuva, Bhavnagar, Gujarat, India.

DOI: 10.31080/ASMI.2026.09.1580

Received: January 12, 2026

Published: January 31, 2026

© All rights are reserved by **Milan A Bhatt, et al.**

Abstract

Tomato (*Solanum lycopersicum* L.) is an important vegetable crop valued for its nutritional and economic significance. This study evaluated the effect of Ashirwad Nutrivila (Amino Acid + Green Seaweed Extract + Hormones + Enzymes) on tomato growth, biomass accumulation, and fruit characteristics. The experiment was conducted under field conditions using a Randomized Complete Block Design (RCBD) with treated plants receiving foliar spray of Ashirwad Nutrivila and control plants sprayed with water. Foliar application of Ashirwad Nutrivila substantially enhanced vegetative growth, with plant height increasing from 47.12 ± 1.21 cm in control plants to 64.78 ± 2.90 cm in treated plants. The number of leaves and shoots per plant increased from 50.12 ± 1.38 to 72.45 ± 2.78 and 4.86 ± 0.76 to 8.12 ± 0.98 , respectively, while leaf area increased from 1211 ± 1.08 cm^2 to 1645 ± 2.09 cm^2 . Leaf and shoot dry weights improved from 29.32 ± 1.15 g to 43.45 ± 2.23 g and 14.35 ± 1.09 g to 24.06 ± 2.87 g, resulting in a total dry weight increase from 29.84 ± 1.98 g to 69.62 ± 2.20 g. Fruit development was also enhanced, with fruit length rising from 4.78 ± 0.87 cm to 7.01 ± 0.91 cm, fruit diameter from 5.10 ± 0.54 cm to 6.78 ± 1.12 cm, and fruit index from 0.87 ± 0.01 to 1.18 ± 0.02 . These results indicate that Ashirwad Nutrivila effectively improves tomato growth, biomass, and fruit quality.

Keywords: *Solanum lycopersicum*; Ashirwad Nutrivila; Plant Hormones; Green Seaweed Extract; Sustainable

Abbreviation

RCBD: Randomized Block Design.

Introduction

Tomato (*Solanum lycopersicum* L.) is one of the most widely cultivated and economically important vegetable crops worldwide [1]. It is valued not only for its high nutritional content, including vitamins, minerals, and antioxidants such as lycopene, but also for its important role in supporting livelihoods and global food security [2]. The productivity and quality of tomato are strongly influenced by vegetative growth, biomass accumulation, and fruit development, which depend on nutrient availability and overall

plant physiological status [3]. Modern agricultural practices increasingly emphasize sustainable strategies that enhance plant performance while minimizing reliance on chemical fertilizers, leading to growing interest in bioactive compounds and biostimulants [4].

One promising approach involves the use of bioactive compounds, including amino acids, green seaweed extracts, plant hormones, and enzymes, which have been widely applied to support plant growth and development [5]. Amino acids play an important role in plant metabolism as building blocks of proteins and as precursors of several metabolic compounds [6]. Exogenous

application of amino acids has been reported to promote vegetative growth, leaf expansion, and root development in a range of crops, contributing to improved plant vigor [7].

Green seaweed extracts contain natural growth regulators, polysaccharides, vitamins, and micronutrients that can stimulate root and shoot development and improve nutrient uptake [8,9]. In tomato and other vegetable crops, the application of seaweed-based biostimulants has been associated with enhanced canopy development and improved overall plant growth [10].

Plant hormones are essential regulators of growth and development, influencing processes such as cell division, elongation, flowering, and fruit formation [11-13]. Similarly, enzymes play an important role in plant metabolism and nutrient utilization, supporting normal growth and tissue development [14,15]. When applied in bioactive formulations, these compounds may contribute to improved vegetative growth, biomass accumulation, and fruit development [16].

Although the individual effects of amino acids, seaweed extracts, hormones, and enzymes have been reported in previous studies, information on their combined effects in a single formulation under field conditions remains limited. Therefore, the present study was undertaken to evaluate the effect of Ashirwad Nutrivila, a formulation containing amino acids, green seaweed extract, hormones, and enzymes, on tomato growth, biomass accumulation, and fruit physical characteristics. The results of this study are expected to provide information on the effects of a bioactive foliar formulation on tomato growth, biomass accumulation, and fruit physical characteristics under field conditions.

Materials and Methods

Experimental site and plant material

The present study was conducted during the summer season of 2024 at the Experimental Farm to evaluate the effect of Ashirwad Nutrivila manufactured by Ashirwad AWF29 technology, having a combination of Amino Acid, Green Seaweed Extract, Hormones and Enzymes) on tomato (*Solanum lycopersicum* L.) growth, biomass accumulation, and fruit characteristics. Ashirwad Nutrivila was obtained from Ashirwad Nutrients, the manufacturer of the product. Tomato seedlings were grown in plots measuring 15 m² with a plant spacing of 40 cm, and each experimental unit consisted of 30 plants.

Treatments and experimental design

The experiment included two treatments: control plants sprayed with tap water and plants treated with Ashirwad Nutrivila. Treatments were arranged in a Randomized Complete Block Design (RCBD) with three replicates. Ashirwad Nutrivila contains amino acids, plant hormones, enzymes, and other bioactive compounds that promote plant growth and productivity.

Foliar application of Ashirwad Nutrivila

Ashirwad Nutrivila was applied as a foliar spray starting 30 days after transplanting, and repeated three times at 10-day intervals (30, 40, and 50 days after transplanting). Control plants were sprayed with tap water to account for the effect of spraying.

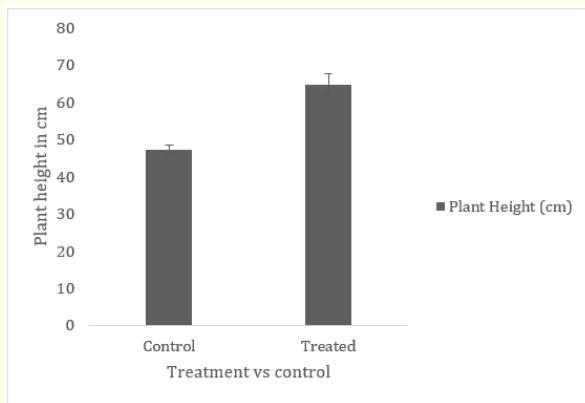
Data collection

Vegetative growth parameters were recorded at 60 days after transplanting. Three representative plants from each plot were randomly selected to measure plant height (cm), number of leaves and shoots per plant, and leaf area (cm²). For dry weight determination, leaves and shoots were collected from sampled plants, oven-dried at 70°C until constant weight, and weighed to obtain leaves, shoots, and total plant dry weight. At harvest, five representative fruits from each plot were collected to record fruit length (cm), fruit diameter (cm), and fruit index (length/diameter).

Statistical analysis

All data are expressed as mean ± standard error (SE) of three replicates. SE was calculated as SD divided by the square root of the number of replicates. Statistical analysis was performed using analysis of variance (ANOVA) at p ≤ 0.05.

Results and Discussion


Effect of Ashirwad Nutrivila on tomato growth and fruit characteristics

Plant height

Foliar application of Ashirwad Nutrivila substantially enhanced vegetative growth in tomato, as reflected by increased plant height compared with control plants (Figure 1). This indicates that Ashirwad Nutrivila promotes shoot elongation and overall plant vigor.

Similar improvements in vegetative growth and plant development have been reported in tomato following foliar

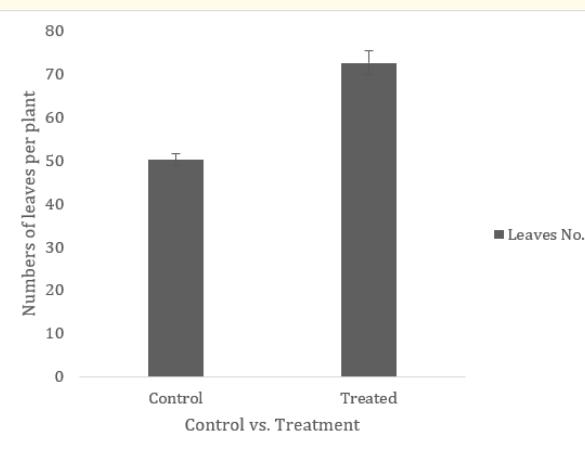

application of seaweed-based biostimulants [17,18]. These studies suggest that biostimulants containing amino acids and bioactive compounds can enhance plant vigor and shoot growth, which is consistent with the effects observed in the present study.

Figure 1: Effect of Ashirwad Nutrivila on tomato plant height.

Number of leaves

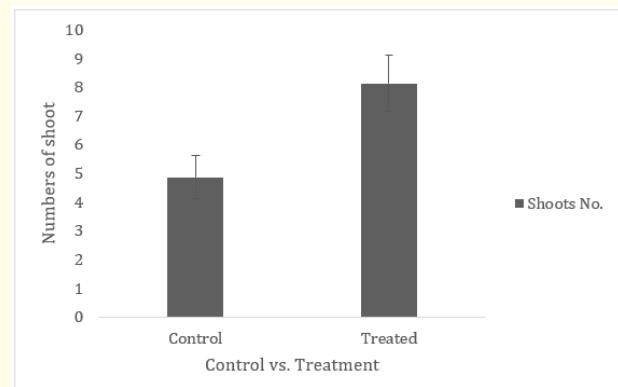

Treated plants showed a higher number of leaves per plant compared with control plants (Figure 2), indicating enhanced leaf production and a larger photosynthetic canopy. Previous studies have also reported that foliar application of seaweed-based fertilizers or amino acid formulations can promote leaf development in tomato, supporting improved vegetative growth [19].

Figure 2: Effect of Ashirwad Nutrivila on number of leaves in tomato.

Number of shoots

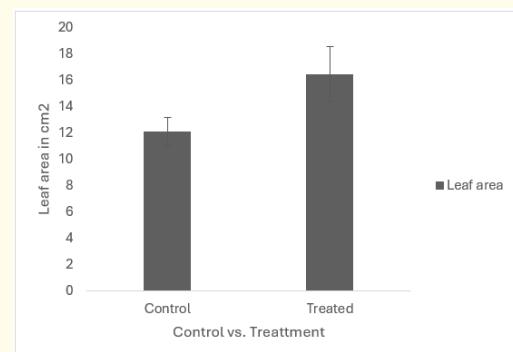

The number of shoots per plant increased from 4.86 ± 0.76 in the control to 8.12 ± 0.98 in AminoSeazyme-treated plants (Figure 3), demonstrating an improvement in shoot production under foliar application.

Figure 3: Effect of Ashirwad Nutrivila on shoot production in tomato plants.

Leaf area

Ashirwad Nutrivila treatment resulted in a larger leaf area compared with control plants (Figure 4), indicating improved canopy development and vegetative growth. An expanded leaf surface is generally associated with a greater capacity for light interception and biomass production, which supports overall plant vigor. Similar enhancements in leaf expansion following the application of seaweed-based biostimulants have been reported in tomato under non-stress conditions [20], suggesting that bioactive compounds can promote vegetative development across different cultivation systems.

Figure 4: Effect of Ashirwad Nutrivila on leaf area of tomato plants.

Effect of Ashirwad Nutrivila on plant biomass

Ashirwad Nutrivila application resulted in a significant increase in vegetative biomass compared with the control treatment (Table 1). Both leaf and shoot dry matter accumulation were higher in treated plants, indicating improved overall plant growth and biomass production. The greater total dry weight observed in Ashirwad Nutrivila-treated plants reflects enhanced vegetative development, which is an important indicator of plant vigor and growth efficiency.

Treatments	Dry Weight (g/plant)		
	Leaves (mean \pm SE)	Shoots (mean \pm SE)	Total (mean \pm SE)
Control	29.32 \pm 1.15	14.35 \pm 1.09	43.67
Treated	43.45 \pm 2.23	24.06 \pm 2.87	

Table 1: Effect of Ashirwad Nutrivila on dry weight of tomato.

Values represent mean \pm standard error (SE) of three replicates (n = 3).

Previous studies have also reported that seaweed-based biostimulants and amino acid formulations can promote biomass accumulation in tomato and other vegetable crops [21]. These results are consistent with the present study and support the potential of bioactive foliar formulations to improve plant growth under field conditions.

Effect of Ashirwad Nutrivila on physical characteristics of tomato fruits

Foliar application of Ashirwad Nutrivila improved the physical characteristics of tomato fruits compared with the control treatment (Table 2). Treated plants produced fruits with greater size and a more favorable length-to-diameter ratio, indicating improved fruit shape and development. These changes reflect a positive influence of the bioactive formulation on reproductive growth and fruit morphology.

Treatments	Physical Characteristics/ plant		
	Fruit length (cm, mean \pm SE)	Fruit diameter (cm, mean \pm SE)	Fruit index (L/D, mean \pm SE)
Control	4.78 \pm 0.87	5.10 \pm 0.54	0.87 \pm 0.01
Treatment	7.01 \pm 0.91	6.78 \pm 1.12	1.18 \pm 0.02

Table 2: Effect of Ashirwad Nutrivila on physical characteristics of tomato. Values represent mean \pm standard error (SE) of five fruits per plot (n = 3 replicates). Fruit index is calculated as fruit length divided by fruit diameter.

Previous studies have also reported that seaweed-based biostimulants and related bioactive formulations can enhance fruit development and physical attributes in tomato [22,23]. Although those studies were conducted under different experimental conditions, the general trends support the role of bioactive compounds in improving fruit quality.

Overall, the application of Ashirwad Nutrivila enhanced vegetative growth, biomass accumulation, and fruit physical characteristics in tomato, indicating its potential as an effective bioactive foliar treatment for improving plant growth and fruit quality under field conditions.

Conclusion

The present study demonstrated that foliar application of Ashirwad Nutrivila, containing amino acids, green seaweed extract, hormones, and enzymes, considerably improved vegetative growth, biomass accumulation, and fruit physical characteristics of tomato under field conditions. Treated plants showed enhanced plant growth, leaf and shoot development, and improved canopy structure, indicating overall better vegetative performance. In addition, improvements in fruit size and shape suggest a positive influence on reproductive development. These results indicate that Ashirwad Nutrivila has potential as an effective bioactive foliar treatment for improving tomato growth and fruit quality in sustainable cultivation systems.

Bibliography

1. Toni Hermann Cyr, *et al.* "Tomato (*Solanum lycopersicum*) pollinators and their effect on fruit set and quality". *The Journal of Horticultural Science and Biotechnology* 96.1 (2021): 1-13.
2. Abu Haraira Ammad, *et al.* "Enhancing health benefits of tomato by increasing its antioxidant contents through different techniques: A review". *Advancements in Life Sciences* 9.2 (2022): 131-142.
3. Wang Tianqi, *et al.* "Foliar arginine application improves tomato plant growth, yield, and fruit quality via nitrogen accumulation". *Plant Growth Regulation* 95.3 (2021): 421-428.
4. Ntsomboh-Ntsefong Godswill, *et al.* "Enhancing Crop Productivity and Sustainability through Biological and Organic Fertilizers: Strategies for Food Security". *American Journal of Plant Sciences* 16.9 (2025): 1041-1082.
5. Nanda S., *et al.* "Utilization of seaweed-based biostimulants in improving plant and soil health: current updates and future prospective". *International Journal of Environmental Science and Technology* 19.12 (2022): 12839-12852.

6. Ali Qasim., *et al.* "Role of amino acids in improving abiotic stress tolerance to plants". *Plant tolerance to environmental stress*. CRC Press (2019): 175-204.
7. Khan Shumaila., *et al.* "Exogenous application of amino acids improves the growth and yield of lettuce by enhancing photosynthetic assimilation and nutrient availability". *Agronomy* 9.5 (2019): 266.
8. Ali Omar, *et al.* "Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production". *Plants* 10.3 (2021): 531.
9. Loconsole Danilo., *et al.* "Application of commercial seaweed extract-based biostimulants to enhance adventitious root formation in ornamental cutting propagation protocols: a review". *Frontiers in Horticulture* 3 (2024): 1371090.
10. Dos Santos Ana Sofia Rodrigues. "Deciphering putative biostimulant effects of a seaweed extract, from *Gracilaria gracilis*, in tomato plants". MS thesis. Universidade NOVA de Lisboa (Portugal), (2023).
11. Rafiq Muhammad., *et al.* "Unraveling the Hormonal and Molecular Mechanisms Shaping Fruit Morphology in Plants". *Plants* 14.6 (2025): 974.
12. Banjare Rajni., *et al.* "Physiological aspects of flowering, fruit setting, fruit development and fruit drop, regulation and their manipulation: a review". *International Journal of Environment and Climate Change* 13.12 (2023): 205-224.
13. Jain Shubham., *et al.* "A comprehensive review on role of bio-regulators in the growth and development of fruit and vegetable crops". *International Journal of Environment and Climate Change* 13.11 (2023): 2879-2892.
14. Kishorekumar, Reddy., *et al.* "An overview of important enzymes involved in nitrogen assimilation of plants". *Nitrogen Metabolism in Plants: Methods and Protocols* (2019): 1-13.
15. Zuo Yanan., *et al.* "Application of vermicompost improves strawberry growth and quality through increased photosynthesis rate, free radical scavenging and soil enzymatic activity". *Scientia Horticulturae* 233 (2018): 132-140.
16. Kaya Cengiz and Ferhat Ugurlar. "Non-microbial Biostimulants for Quality Improvement in Fruit and Leafy Vegetables". *Growth Regulation and Quality Improvement of Vegetable Crops: Physiological and Molecular Features*. Singapore: Springer Nature Singapore (2025): 457-494.
17. Subramaniyan Lakshmi., *et al.* "Biostimulation effects of seaweed extract (*Ascophyllum nodosum*) on phytomorphophysiological, yield, and quality traits of tomato (*Solanum lycopersicum* L.)". *Horticulturae* 9.3 (2023): 348.
18. Hernández-Herrera Rosalba Mireya., *et al.* "Seaweed extract improves growth and productivity of tomato plants under salinity stress". *Agronomy* 12.10 (2022): 2495.
19. Sasikala M., *et al.* "Effect of seaweed extract (*Sargassum tenuerrimum*) on seed germination and growth of tomato plant". *International Journal of ChemTech Research* 9.09 (2016): 285-293.
20. Chanthini Kanagaraj Muthu-Pandian., *et al.* "The macroalgal biostimulant improves the functional quality of tomato fruits produced from plants grown under salt stress". *Agriculture* 13.1 (2022): 6.
21. Mzibra Abir, *et al.* "Biostimulants derived from Moroccan seaweeds: seed germination metabolomics and growth promotion of tomato plant". *Journal of Plant Growth Regulation* 40.1 (2021): 353-370.
22. Awaad A H H. "Evaluation of seaweed extract impact on growth and yield of tomato plants under salinity stress conditions". *Annals of Agricultural Science, Moshtohor* 59.2 (2021): 515-526.
23. Espinosa-Antón Adrian Alejandro., *et al.* "Productivity and Quality Characteristics of Tomato Fruits (*Solanum lycopersicum*) Are Improved by the Application of a Green Seaweed (*Ulva ohnoi*)". *Agriculture* 15.7 (2025): 750.