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Abstract

Lacticaseibacillus paracasei subspecies paracasei NTU 101 was isolated from the faecal matter of a healthy, breast-fed newborn

infant in Taiwan. It has been shown to be potentially useful in gut health, and recognised by US FDA as “generally recognised as safe”

leading to potential engineered probiotics applications. Mathematical kinetic models provide time-course profile of modelled me-

tabolites, which can be used to guide metabolic engineering approaches. However, there is no kinetic model of L. paracasei to-date. In

this study, we present a whole cell simulatable kinetic model of L. paracasei subspecies paracasei NTU 101, 1caKKNC26, constructed

using ab initio approach by identifying enzymes from its published genome. The resulting model consists of 846 metabolites, 356

enzymes with corresponding transcriptions and translations, and 677 enzymatic reactions; which can be a baseline model for in-

corporating other cellular and growth processes, or as a system to examine cellular resource allocations necessary for engineering.
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Introduction

Lacticaseibacillus paracasei subspecies paracasei NTU 101,
belonging to the lactic acid bacteria (LAB) family [1], was isolated
from the faecal matter of a healthy, breast-fed newborn infant in
Taiwan [1-3]. As such, it is considered “Generally Recognised As
Safe (GRAS)” by US FDA under GRAS Notice 1232. L. paracasei
NTU 101 demonstrating strong resistance to gastric acid and bile
salts; thereby, allowing probiotic efficacy upon transit through the

gastrointestinal (GI) tract [4]. Human trials demonstrated that L.

paracasei NTU 101 consumption improves peristalsis and shortens
defecation interval [4,5]; and potentially has anti-obesity effects
by regulating the AMPK pathway, enhancing fatty acid oxidation,
and promoting lipolysis [6]. At the same time, it demonstrates
immunomodulatory action, specifically promoting maturation and
function of Regulatory T (Treg) cells, rebalancing Th1/Th2/Th17
ratios, offering significant therapeutic potential in preventing and
alleviating allergic pathologies such as atopic dermatitis [1,7].
Hence, metabolic engineering of L. paracasei NTU 101 has been

considered [8].
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Mathematical modelling is central to metabolic engineering,
shaping how strategies are designed and refined [9,10]. Two major
frameworks dominate the field [11,12]: genome-scale models
(GSMs), also called constraint-based models, and kinetic models
(KMs). Each offers distinct advantages, but KMs have a particular
strength in handling in silico gene knock-ins with greater ease
than GSMs [13]. More importantly, KMs provide predictions for
both metabolic rates and end-product yields, whereas GSMs tend
to focus mainly on flux distributions [14]. This dual predictive
capability positions KMs as a stronger platform for screening
metabolic engineering ideas before committing to laboratory work.
Consequently, there is a growing push within the community to
expand efforts in constructing more comprehensive kinetic models
[15,16].

However, there is no KM of L. paracasei to-date. As such, this
study aims to construct a KM of L. paracasei NTU 101 using ab
initio approach by identifying enzymes from its published genome
[17], and identifying the corresponding reaction from KEGG [18].
The result is a whole cell KM of L. paracasei NTU 101, named as
lcaKKNC26 using the nomenclature proposed by Cho and Ling
[19], which consists of 846 metabolites, 356 enzymes with
corresponding transcriptions and translations, and 677 enzymatic

reactions.

Materials and Methods

Identification of Reactome. The genome of Lacticaseibacillus
paracasei subspecies paracasei NTU 101 (NCBI RefSeq assembly
GCF_002901165.3; NCBI GenBank Accession NZ_CP167253.1)
was used as source to identify enzymatic genes using the process
previously described [13,20,21]. Briefly, each enzymatic gene was
identified as a presence of complete Enzyme Commission (EC)
number in the GenBank record and mapped into reaction IDs
via KEGG Ligand Database for Enzyme Nomenclature [18]. For
example, EC 1.1.1.23 (https://www.genome.jp/entry/1.1.1.23)
catalyses reactions R01158, R01163, and R03012; where the

substrates and products of each rection can be identified.

Model development

Enzyme productions and reactions were modelled using the
ordinary differential equation (ODE) format described by Sim., et al.
[22]. Using BioNumbers estimates, an E. coli cell contains roughly
3000 RNA polymerase molecules (BioNumbers 106199) [23], of

04
which about a quarter are active at any moment (BioNumbers
111676) [24]. With a polymerization rate of 22 ribonucleotides
per second (BioNumbers 104109) [25] and an average nucleotide
mass of 339.5 Da, the total mRNA production rate comes to about
5600 kDa per second, or 9.3e-18 grams per second. Given the
cellular volume of about 0.7 cubic micrometres [26] and 4225
protein-coding genes (BioNumbers 105443) [27], this yields an
approximate synthesisrate of 2.92 micromolar per gene per second.
The mean mRNA half-life is 107.56 seconds (BioNumbers 107666)
[28], which corresponds to a decay of 0.93% per second. Hence, the
resulting rate law for mRNA synthesis is d[mRNA]/dt = 0.00292
- 0.0093[mRNA]. For translation, mammalian data indicate a
median of 1000 peptides per transcript per hour (BioNumbers
106382) [29] or 0.278 peptides per second. Protein degradation
in E. coli occurs at roughly 1% per hour (BioNumbers 109924)
[30]. Thus, d[peptide]/dt = (0.278[mRNA] - 0.00000278[peptide])
micromolar per second. The full reactome was modelled as ODEs
[20,31], with kcat = 13.7 per second and Km = 1 millimolar,
following the typical enzyme parameters reported by Bar-Even,,
et al. [32], and formatted according to the AdvanceSyn Model
Specification [33].

Model simulation

The constructed model was tested for simulatability using
AdvanceSyn Toolkit [33]. Initial concentrations of all mRNA and
enzymes were set to 0 mM. Initial concentrations of all metabolites
were set to 1 mM except the following which were set to 1000 mM:
(I) C00001 (Water), (II) C00002 (ATP), (III) C00003 (NAD+), (IV)
C00004 (NADH), (V) C00005 (NADPH), (VI) C00006 (NADP+), (VII)
C00007 (Oxygen), (VIII) CO0011 (Carbon Dioxide), (IX) C00014
(Ammonia), (X) C00025 (L-Glutamate), (XI) C00031 (D-Glucose),
(XII) C00037 (Glycine), (XIII) C00041 (L-Alanine), (XIV) C00042
(Succinate), (XV) C00047 (L-Lysine), (XVI) C00049 (L-Aspartate),
(XVII) CO00059 (Sulfate), (XVIII) C00064 (L-Glutamine), (XIX)
C00065 (L-Serine), (XX) C00067 (Formaldehyde), (XXI) C00073
(L-Methionine), (XXII) C00097 (L-Cysteine), (XXIII) C00124
(D-Galactose), (XXIV) C00133 (D-Alanine), (XXV) C00137 (myo-
Inositol), (XXVI) C00145 (Thiol), (XXVII) C00148 (L-Proline),
(XXVIII) C00159 (D-Mannose), (XXIX) C00178 (Thymine), (XXX)
C00180 (Benzoate), (XXXI) C00208 (Maltose), (XXXII) C00221
(beta-D-Glucose), (XXXIII) C00243 (Lactose), (XXXIV) C00246
(Butanoic acid), (XXXV) C00275 (D-Mannose 6-phosphate),
(XXXVI) C00279 (D-Erythrose 4-phosphate), (XXXVII) C00310
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(D-Xylulose), (XXXVII) C00327 (L-Citrulline), (XXXIX) C00363
(dTDP), (XL) C00380 (Cytosine), (XLI) C00390 (Ubiquinol),
(XLII) C00392 (Mannitol), (XLIII) C00396 (Pyrimidine), (XLIV)
C00399 (Ubiquinone), (XLV) C00404 (Polyphosphate), (XLVI)
C00463 (Indole), (XLVII) C00511 (Acrylic acid), (XLVIII) C00536
(Triphosphate), (XLIX) C00577 (D-Glyceraldehyde), (L) C00620
(alpha-D-Ribose  1-phosphate), (LI) C00644 (D-Mannitol
1-phosphate), (LII) C00672 (2-Deoxy-D-ribose 1-phosphate),
(LIII) C00689 (alpha,alpha’-Trehalose 6-phosphate), (LIV) C00704
(Superoxide), (LV) C00794 (D-Sorbitol), (LVI) C00810 ((R)-
Acetoin), (LVII) C00812 (Alkyl thiol), (LVIII) CO0850 (Aryl sulfate),
(LIX) C00860 (L-Histidinol), (LX) C00900 (2-Acetolactate), (LXI)
€00962 (beta-D-Galactose), (LXII) C00966 (2-Dehydropantoate),
(LXIII) C01035 (4-Guanidinobutanoate), (LXIV) C01100
(L-Histidinol phosphate), (LXV) C01101 (L-Ribulose 5-phosphate),
(LXVI) C01159 (2,3-Bisphospho-D-glycerate), (LXVII) C01165
(L-Glutamate 5-semialdehyde), (LXVIII) C01267 (3-(Imidazol-4-
yl)-2-oxopropyl phosphate), (LXIX) C01335 (ROH), (LXX) C01336
(Aryl thiol), (LXXI) C01344 (dIDP), (LXXII) C01345 (dITP),
(LXXII) C01659 (Acrylamide), (LXXIV) C01929 (L-Histidinal),
(LXXV) C01962 (Thiocysteine), (LXXVI) C02291 (L-Cystathionine),
(LXXVII) C02505 (2-Phenylacetamide), (LXXVII) (02527
(Butanoylphosphate), (LXXIX) C03078 (4-Guanidinobutanamide),
(LXXX) C€03169 (Pyrimidine nucleoside), (LXXXI) (C€03287
(L-Glutamyl  5-phosphate), (LXXXI[) C03291 (L-Xylulose
5-phosphate), (LXXXIII) C03406 (N-(L-Arginino)succinate),
(LXXXIV) C03620 (Monocarboxylic acid amide), (LXXXV) C03912
((S)-1-Pyrroline-5-carboxylate), (LXXXVI) C04666 (D-erythro-1-
(Imidazol-4-yl)glycerol 3-phosphate), (LXXXVII) C05167 (alpha-
Amino acid), (LXXXVII]) C05394 (3-Keto-beta-D-galactose),
(LXXXIX) C05399 (Melibiitol), (XC) C05400 (Epimelibiose), (XCI)
C05403 (3-Ketolactose), (XCII) C05539 (N-Acetyl-L-2-amino-6-
oxopimelate), (XCIII) C06006 ((S)-2-Aceto-2-hydroxybutanoate),
(XCIV) C06010 ((S)-2-Acetolactate), (XCV) C06019 (D-arabino-
Hex-3-ulose 6-phosphate), (XCVI) C06030 (Methyloxaloacetate),
(XCVII) C06244 (Acetamide), (XCVII]) C06423 (Octanoic acid),
(XCIX) C06697 (Arsenite), (C) C06892 (2-Deoxy-5-keto-D-gluconic
acid), (CI) C06893 (2-Deoxy-5-keto-D-gluconic acid 6-phosphate),
(CII) C07086 (Phenylacetic acid), (CIII) C09815 (Benzamide), (CIV)

C11038 (2’-Deoxy-5-hydroxymethylcytidine-5’-diphosphate),

05
(CV) C11215 (Arsenate ion), (CVI) C14899 (3-Dehydro-L-
gulonate 6-phosphate), (CVII) C15498 (ROOH), (CVIII) C15584
(Phenol), (CIX) C16737 (5-Deoxy-D-glucuronate), (CX) C20904
(2-Iminopropanoate), (CXI) C21860 (3-Demethylubiquinol), (CXII)
G00275 (Maltose), (CXIII) G09795 (Trehalose 6-phosphate), (CXIV)
G10504 (Lactose), (CXV) G10529 (Epimelibiose), (CXVI) G10531
(3-Ketolactose). The model was simulated using the fourth-order
Runge-Kutta method [34,35] from time zero to 3600 seconds with
timestep of 0.1 second, and the concentrations of metabolites
were bounded between 0 millimolar and 1000 millimolar. The

simulation results were sampled every 2 seconds.

Results and Discussion

The annotated genome of L. paracasei NTU 101 consists of 2956
genes as of the latest annotation dated 20 August 2024, including
2780 protein coding sequences. 356 unique EC numbers consisting
of 677 enzymatic reactions involving 846 metabolites were
identified and developed into a model based on AdvanceSyn Model
Specification [33]. In addition, 712 ODEs acting as placeholder for

enzyme transcriptions and translations were added.

The constructed 1caKKNC26 model was executed using
the AdvanceSyn Toolkit [33], and the successful generation of
simulation trajectories (Figure 1) indicates that the model is
syntactically correct and structurally coherent as argued in recent
model constructions [13,21,36-40] - conversely, if the model has
either syntax error(s) or is structurally incoherent, it cannot be
simulated and resulting in no simulation results or trajectories.
Although the simulated pool of AMP (adenosine monophosphate)
appears to be cyclical, this outcome should not be interpreted
biologically because all turnover numbers and Michaelis-Menten
constants were fixed at their median values across enzymes [32].
These placeholder values inevitably distort flux distributions.
Nevertheless, what we offer here is a functional and fully
simulatable kinetic model template of L. paracasei NTU 101 that
can serve as a flexible foundation for incorporating organism-
specific parameters, additional pathways, or higher-level cellular
processes such as growth, regulation, or resource allocation [41-

43] or as a system to examine cellular resource allocations [44-47].
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Figure 1: Selection of Simulation Results.

Conclusion

In this study, we present an ab initio whole cell kinetic model
of Lacticaseibacillus paracasei subspecies paracasei built from
the enzymes found in the genomic sequence of Lacticaseibacillus
paracasei subspecies paracasei NTU 101. The resulting kinetic
model, 1caKKNC26; comprising of 846 metabolites, 356 enzymes
with corresponding transcriptions and translations, and 677

enzymatic reactions.

Supplementary Materials

Reaction descriptions and model can be download from https://
bit.ly/lcaKKNC26.
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