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Abstract

Lacticaseibacillus paracasei subspecies paracasei NTU 101 was isolated from the faecal matter of a healthy, breast-fed newborn 
infant in Taiwan. It has been shown to be potentially useful in gut health, and recognised by US FDA as “generally recognised as safe” 
leading to potential engineered probiotics applications. Mathematical kinetic models provide time-course profile of modelled me-
tabolites, which can be used to guide metabolic engineering approaches. However, there is no kinetic model of L. paracasei to-date. In 
this study, we present a whole cell simulatable kinetic model of L. paracasei subspecies paracasei NTU 101, lcaKKNC26, constructed 
using ab initio approach by identifying enzymes from its published genome. The resulting model consists of 846 metabolites, 356 
enzymes with corresponding transcriptions and translations, and 677 enzymatic reactions; which can be a baseline model for in-
corporating other cellular and growth processes, or as a system to examine cellular resource allocations necessary for engineering.
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Introduction

Lacticaseibacillus paracasei subspecies paracasei NTU 101, 
belonging to the lactic acid bacteria (LAB) family [1], was isolated 
from the faecal matter of a healthy, breast-fed newborn infant in 
Taiwan [1-3]. As such, it is considered “Generally Recognised As 
Safe (GRAS)” by US FDA under GRAS Notice 1232. L. paracasei 
NTU 101 demonstrating strong resistance to gastric acid and bile 
salts; thereby, allowing probiotic efficacy upon transit through the 
gastrointestinal (GI) tract [4]. Human trials demonstrated that L. 

paracasei NTU 101 consumption improves peristalsis and shortens 
defecation interval [4,5]; and potentially has anti-obesity effects 
by regulating the AMPK pathway, enhancing fatty acid oxidation, 
and promoting lipolysis [6]. At the same time, it demonstrates 
immunomodulatory action, specifically promoting maturation and 
function of Regulatory T (Treg) cells, rebalancing Th1/Th2/Th17 
ratios, offering significant therapeutic potential in preventing and 
alleviating allergic pathologies such as atopic dermatitis [1,7]. 
Hence, metabolic engineering of L. paracasei NTU 101 has been 
considered [8].
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Mathematical modelling is central to metabolic engineering, 
shaping how strategies are designed and refined [9,10]. Two major 
frameworks dominate the field [11,12]: genome-scale models 
(GSMs), also called constraint-based models, and kinetic models 
(KMs). Each offers distinct advantages, but KMs have a particular 
strength in handling in silico gene knock-ins with greater ease 
than GSMs [13]. More importantly, KMs provide predictions for 
both metabolic rates and end-product yields, whereas GSMs tend 
to focus mainly on flux distributions [14]. This dual predictive 
capability positions KMs as a stronger platform for screening 
metabolic engineering ideas before committing to laboratory work. 
Consequently, there is a growing push within the community to 
expand efforts in constructing more comprehensive kinetic models 
[15,16].

However, there is no KM of L. paracasei to-date. As such, this 
study aims to construct a KM of L. paracasei NTU 101 using ab 
initio approach by identifying enzymes from its published genome 
[17], and identifying the corresponding reaction from KEGG [18]. 
The result is a whole cell KM of L. paracasei NTU 101, named as 
lcaKKNC26 using the nomenclature proposed by Cho and Ling 
[19], which consists of 846 metabolites, 356 enzymes with 
corresponding transcriptions and translations, and 677 enzymatic 
reactions.

Materials and Methods

Identification of Reactome. The genome of Lacticaseibacillus 
paracasei subspecies paracasei NTU 101 (NCBI RefSeq assembly 
GCF_002901165.3; NCBI GenBank Accession NZ_CP167253.1) 
was used as source to identify enzymatic genes using the process 
previously described [13,20,21]. Briefly, each enzymatic gene was 
identified as a presence of complete Enzyme Commission (EC) 
number in the GenBank record and mapped into reaction IDs 
via KEGG Ligand Database for Enzyme Nomenclature [18]. For 
example, EC 1.1.1.23 (https://www.genome.jp/entry/1.1.1.23) 
catalyses reactions R01158, R01163, and R03012; where the 
substrates and products of each rection can be identified.

Model development

Enzyme productions and reactions were modelled using the 
ordinary differential equation (ODE) format described by Sim., et al. 
[22]. Using BioNumbers estimates, an E. coli cell contains roughly 
3000 RNA polymerase molecules (BioNumbers 106199) [23], of 

which about a quarter are active at any moment (BioNumbers 
111676) [24]. With a polymerization rate of 22 ribonucleotides 
per second (BioNumbers 104109) [25] and an average nucleotide 
mass of 339.5 Da, the total mRNA production rate comes to about 
5600 kDa per second, or 9.3e-18 grams per second. Given the 
cellular volume of about 0.7 cubic micrometres [26] and 4225 
protein-coding genes (BioNumbers 105443) [27], this yields an 
approximate synthesis rate of 2.92 micromolar per gene per second. 
The mean mRNA half-life is 107.56 seconds (BioNumbers 107666) 
[28], which corresponds to a decay of 0.93% per second. Hence, the 
resulting rate law for mRNA synthesis is d[mRNA]/dt = 0.00292 
– 0.0093[mRNA]. For translation, mammalian data indicate a 
median of 1000 peptides per transcript per hour (BioNumbers 
106382) [29] or 0.278 peptides per second. Protein degradation 
in E. coli occurs at roughly 1% per hour (BioNumbers 109924) 
[30]. Thus, d[peptide]/dt = (0.278[mRNA] – 0.00000278[peptide]) 
micromolar per second. The full reactome was modelled as ODEs 
[20,31], with kcat = 13.7 per second and Km = 1 millimolar, 
following the typical enzyme parameters reported by Bar-Even., 
et al. [32], and formatted according to the AdvanceSyn Model 
Specification [33].

Model simulation

The constructed model was tested for simulatability using 
AdvanceSyn Toolkit [33]. Initial concentrations of all mRNA and 
enzymes were set to 0 mM. Initial concentrations of all metabolites 
were set to 1 mM except the following which were set to 1000 mM: 
(I) C00001 (Water), (II) C00002 (ATP), (III) C00003 (NAD+), (IV) 
C00004 (NADH), (V) C00005 (NADPH), (VI) C00006 (NADP+), (VII) 
C00007 (Oxygen), (VIII) C00011 (Carbon Dioxide), (IX) C00014 
(Ammonia), (X) C00025 (L-Glutamate), (XI) C00031 (D-Glucose), 
(XII) C00037 (Glycine), (XIII) C00041 (L-Alanine), (XIV) C00042 
(Succinate), (XV) C00047 (L-Lysine), (XVI) C00049 (L-Aspartate), 
(XVII) C00059 (Sulfate), (XVIII) C00064 (L-Glutamine), (XIX) 
C00065 (L-Serine), (XX) C00067 (Formaldehyde), (XXI) C00073 
(L-Methionine), (XXII) C00097 (L-Cysteine), (XXIII) C00124 
(D-Galactose), (XXIV) C00133 (D-Alanine), (XXV) C00137 (myo-
Inositol), (XXVI) C00145 (Thiol), (XXVII) C00148 (L-Proline), 
(XXVIII) C00159 (D-Mannose), (XXIX) C00178 (Thymine), (XXX) 
C00180 (Benzoate), (XXXI) C00208 (Maltose), (XXXII) C00221 
(beta-D-Glucose), (XXXIII) C00243 (Lactose), (XXXIV) C00246 
(Butanoic acid), (XXXV) C00275 (D-Mannose 6-phosphate), 
(XXXVI) C00279 (D-Erythrose 4-phosphate), (XXXVII) C00310 
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(D-Xylulose), (XXXVIII) C00327 (L-Citrulline), (XXXIX) C00363 
(dTDP), (XL) C00380 (Cytosine), (XLI) C00390 (Ubiquinol), 
(XLII) C00392 (Mannitol), (XLIII) C00396 (Pyrimidine), (XLIV) 
C00399 (Ubiquinone), (XLV) C00404 (Polyphosphate), (XLVI) 
C00463 (Indole), (XLVII) C00511 (Acrylic acid), (XLVIII) C00536 
(Triphosphate), (XLIX) C00577 (D-Glyceraldehyde), (L) C00620 
(alpha-D-Ribose 1-phosphate), (LI) C00644 (D-Mannitol 
1-phosphate), (LII) C00672 (2-Deoxy-D-ribose 1-phosphate), 
(LIII) C00689 (alpha,alpha’-Trehalose 6-phosphate), (LIV) C00704 
(Superoxide), (LV) C00794 (D-Sorbitol), (LVI) C00810 ((R)-
Acetoin), (LVII) C00812 (Alkyl thiol), (LVIII) C00850 (Aryl sulfate), 
(LIX) C00860 (L-Histidinol), (LX) C00900 (2-Acetolactate), (LXI) 
C00962 (beta-D-Galactose), (LXII) C00966 (2-Dehydropantoate), 
(LXIII) C01035 (4-Guanidinobutanoate), (LXIV) C01100 
(L-Histidinol phosphate), (LXV) C01101 (L-Ribulose 5-phosphate), 
(LXVI) C01159 (2,3-Bisphospho-D-glycerate), (LXVII) C01165 
(L-Glutamate 5-semialdehyde), (LXVIII) C01267 (3-(Imidazol-4-
yl)-2-oxopropyl phosphate), (LXIX) C01335 (ROH), (LXX) C01336 
(Aryl thiol), (LXXI) C01344 (dIDP), (LXXII) C01345 (dITP), 
(LXXIII) C01659 (Acrylamide), (LXXIV) C01929 (L-Histidinal), 
(LXXV) C01962 (Thiocysteine), (LXXVI) C02291 (L-Cystathionine), 
(LXXVII) C02505 (2-Phenylacetamide), (LXXVIII) C02527 
(Butanoylphosphate), (LXXIX) C03078 (4-Guanidinobutanamide), 
(LXXX) C03169 (Pyrimidine nucleoside), (LXXXI) C03287 
(L-Glutamyl 5-phosphate), (LXXXII) C03291 (L-Xylulose 
5-phosphate), (LXXXIII) C03406 (N-(L-Arginino)succinate), 
(LXXXIV) C03620 (Monocarboxylic acid amide), (LXXXV) C03912 
((S)-1-Pyrroline-5-carboxylate), (LXXXVI) C04666 (D-erythro-1-
(Imidazol-4-yl)glycerol 3-phosphate), (LXXXVII) C05167 (alpha-
Amino acid), (LXXXVIII) C05394 (3-Keto-beta-D-galactose), 
(LXXXIX) C05399 (Melibiitol), (XC) C05400 (Epimelibiose), (XCI) 
C05403 (3-Ketolactose), (XCII) C05539 (N-Acetyl-L-2-amino-6-
oxopimelate), (XCIII) C06006 ((S)-2-Aceto-2-hydroxybutanoate), 
(XCIV) C06010 ((S)-2-Acetolactate), (XCV) C06019 (D-arabino-
Hex-3-ulose 6-phosphate), (XCVI) C06030 (Methyloxaloacetate), 
(XCVII) C06244 (Acetamide), (XCVIII) C06423 (Octanoic acid), 
(XCIX) C06697 (Arsenite), (C) C06892 (2-Deoxy-5-keto-D-gluconic 
acid), (CI) C06893 (2-Deoxy-5-keto-D-gluconic acid 6-phosphate), 
(CII) C07086 (Phenylacetic acid), (CIII) C09815 (Benzamide), (CIV) 
C11038 (2’-Deoxy-5-hydroxymethylcytidine-5’-diphosphate), 

(CV) C11215 (Arsenate ion), (CVI) C14899 (3-Dehydro-L-
gulonate 6-phosphate), (CVII) C15498 (ROOH), (CVIII) C15584 
(Phenol), (CIX) C16737 (5-Deoxy-D-glucuronate), (CX) C20904 
(2-Iminopropanoate), (CXI) C21860 (3-Demethylubiquinol), (CXII) 
G00275 (Maltose), (CXIII) G09795 (Trehalose 6-phosphate), (CXIV) 
G10504 (Lactose), (CXV) G10529 (Epimelibiose), (CXVI) G10531 
(3-Ketolactose). The model was simulated using the fourth-order 
Runge-Kutta method [34,35] from time zero to 3600 seconds with 
timestep of 0.1 second, and the concentrations of metabolites 
were bounded between 0 millimolar and 1000 millimolar. The 
simulation results were sampled every 2 seconds. 

Results and Discussion

The annotated genome of L. paracasei NTU 101 consists of 2956 
genes as of the latest annotation dated 20 August 2024, including 
2780 protein coding sequences. 356 unique EC numbers consisting 
of 677 enzymatic reactions involving 846 metabolites were 
identified and developed into a model based on AdvanceSyn Model 
Specification [33]. In addition, 712 ODEs acting as placeholder for 
enzyme transcriptions and translations were added. 

The constructed lcaKKNC26 model was executed using 
the AdvanceSyn Toolkit [33], and the successful generation of 
simulation trajectories (Figure 1) indicates that the model is 
syntactically correct and structurally coherent as argued in recent 
model constructions [13,21,36-40] – conversely, if the model has 
either syntax error(s) or is structurally incoherent, it cannot be 
simulated and resulting in no simulation results or trajectories. 
Although the simulated pool of AMP (adenosine monophosphate) 
appears to be cyclical, this outcome should not be interpreted 
biologically because all turnover numbers and Michaelis–Menten 
constants were fixed at their median values across enzymes [32]. 
These placeholder values inevitably distort flux distributions. 
Nevertheless, what we offer here is a functional and fully 
simulatable kinetic model template of L. paracasei NTU 101 that 
can serve as a flexible foundation for incorporating organism-
specific parameters, additional pathways, or higher-level cellular 
processes such as growth, regulation, or resource allocation [41-
43] or as a system to examine cellular resource allocations [44-47].
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Figure 1: Selection of Simulation Results.

Conclusion

In this study, we present an ab initio whole cell kinetic model 
of Lacticaseibacillus paracasei subspecies paracasei built from 
the enzymes found in the genomic sequence of Lacticaseibacillus 
paracasei subspecies paracasei NTU 101. The resulting kinetic 
model, lcaKKNC26; comprising of 846 metabolites, 356 enzymes 
with corresponding transcriptions and translations, and 677 
enzymatic reactions.

Supplementary Materials

Reaction descriptions and model can be download from https://
bit.ly/lcaKKNC26. 
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