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Abstract

Tuberculosis caused by mycobacteria(s) of the complex of Mycobacterium tuberculosis (MTBC) nowadays represents a problem
in public health. The scenery is worsened by comorbidities and the rise in multidrug-resistant strains (MDR). Despite this, recent
reports have highlighted the emergence of high-throughput alternatives to potentiate diagnostic and more effective treatment, such
as omics technologies. Indeed, current Omics technologies allow a deep analysis of the dynamics of gene expression, proteins, and
metabolites The gene expression profiles along with the type of blood samples versus stools and sputum can make a difference in the
diagnosis because they represent a window into the molecular signature of cell tissue or organ-specific. The integration of omics data
with artificial intelligence methodologies (i.e., machine learning, deep learning, big data analytics, and neural networks) can generate
algorithms as a biological language model to evaluate, and predict embed numerical representation of the data generated from omics
technologies addressing the host-pathogen interface. The objective of the present review is to pinpoint how the omics technologies
has been contributing to the dissection and understanding on this. At the same time, emphasize the use of Al to accelerate this. This
review was based on searches and data from the PubMed database from 2020 to 2025. The result was a landscape of the milestones
of omics and Al in TB. These advances in both or individually can support and potentiate enormously the diagnostic and treatment
in TB.
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Introduction

Tuberculosis (TB), is an ancient infectious disease dated from
Egyptian mommies [1], caused by the etiologic agent M. tuberculosis
(Mtb). It represents a health problem in underdeveloped countries
as well as in developed countries. It is one of the 10 leading causes
of mortality worldwide caused by a single pathogen [2]. The most
recent mortality registered ranged from 1 to 5 million, while
approximately 10 million individuals developed active TB [1,2]. A
quarter of the world’s population develops latent tuberculosis
with a probability percentage of 3 to 10% of reactivation [2,3].
According to recent data from WHO [1] in 2023-2024, people who
develop Tuberculosis accounted for 87% of the global amount. The
scenery is worse because of the emergence and increase in multi
drug resistance (MDR) and super extensive drug resistance (XDR)
to the first line and even second line of antibiotics [7]. On the other
hand, the only vaccine against human tuberculosis is the Bacillus
Calmette Guerin-based vaccine or BCG-vaccine, the only effective
and officially approved prophylactic measure [8]. However, the
BCG vaccine protect children from different forms of TB. Memory
fades as they grow and, practically in adulthood, there is no
immunological memory, and therefore the risk of developing active
TBis high [8-11]. Ahotspotin the TB vaccine (TBVAC) development
is the route of administration. If the bacillus enters via the upper
airways, the mucosal and the systemic immune system is activated
and triggered [9-13]. However, in a recent report it has been
reported that intravenous BCG vaccine administration to Macaques
rhesus and aerosol challenge with Mtb have induced protective
antibodies [13,14]. On referring specifically to how to potentiate the
diagnosis of human TB is necessary to gain knowledge of the Mtbh
susceptibility of the host to mycobacterial infections [14,15]. The
success of transmission could reflect pathogen adaptation to the
host, strengthening the theory that there has been a co-evolution
of the pathogen with its host at molecular and immunological
level, and thus, the eradication of the pathogen is not an easy task
and require the understanding and elucidation of the molecular
mechanism of pathogenicity for the development and design
of vaccine and immunotherapies to halt the transmission and to
hamper the antimicrobial resistance [15-17]. Indeed, the Mtb
strain genotypes could also influence the multidrug-resistant
capability of the strains and, indirectly, antibiotics-based treatment
[18-20]. The host genetic variability to mycobacterial infections

leads to the establishment of a framework in the dissection and
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knowledge of the immune pathogenesis of TB [21].0n the other
hand, omics technologies in conjunction with immunological
parameters can aid to dissect blood cells subsets that are playing a
role in the host immune response against Mtb [5,8,22,23]. Studies
using single-cell transcriptomics and T cell receptor sequencing
are being contributed and highlight that all major cell clusters
(mononuclear cell populations) are present in both, pleural fluid
and peripheral blood of Extra Pulmonary Tuberculosis (TPE)
patients [22-24]. Another contribution of the omics technologies
is toward the biology of the TB infection and the host pathogen
interaction, specifically referring to the bio signatures, in non-and
immune cells, i.e., monocytes, and granulocytes at transcriptional,
and epigenetic level (DNA methylation, and microRNA) [24,25].
Furthermore, the integration of omics technologies such as
metabolomics and transcriptomics can inform us about the
physiological level of the metabolites and signalization pathways
at the immunological level of the host response and this can be
used either as basic or applied knowledge [22,18-20]. Moreover,
it can provide information about the capabilities of Mtb to escape
and transverse the harsh, stringent, heterogeneous niches, and
the microenvironment in humans, as well as the expression
of virulence factors for the extra pulmonary dissemination
[3,5,7,26,27]. It can provide information of the virulence factor
involved in the molecular mechanism of pathogenesis, such as
the analysis of the secretory system in the pathogen, the efflux
bombs, the cell wall composition, in the genetic variability of the
different clinic isolates which can provide valuable information of
the resistance mechanism [2,6-8,27]. Overall, these technologies
can aid in the identification of correlates of immune protection
(biomarkers) and progression of TB disease. Along with the multi
omics integration approach can be facilitated through the use of
Al-based approaches, to integrate large amounts of quantitative
and omics data. Artificial intelligence (AI) methodologies such
as deep learning (DL)(simple interconnected units), machine
learning (ML)(based on algorithms for the processing of many
parameters, e.g., images, biomarkers, immunological), Big Data
Analytics (BDA) and Artificial Neural Networks (ANN), might
give input to the processing and analysis of the data and images
to potentiate the prognostic, diagnostic, and vaccine development
[22-27], of paramount importance, for the development of rational
TB treatment regimens especially novel host response-directed

therapeutics [22-27]. In the present review, it is pinpointed
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both the advancement and development of the omics and the
Al, in addressing the mechanism of TB immunopathogenesis to
potentiate enormously diagnostic and prophylactic/therapeutic
vaccines. Therefore, after the introduction to the three main issues,
Tb, omics and Al, we pursued to first pinpoint the main aspects
of the host response upon infection with M. tuberculosis, the main
target to be deal with, followed by the milestones of omics and Al,

and the implication on diagnostic and development of treatments.

The host-pathogen interaction interface in Tuberculosis

e  The general hallmark of the host immune response upon Mth
infection is the co-existence with the host immune response
that results in an inflammatory response induced by the
pathogen. Several studies in the different animal models
and clinical studies have proposed that there are some basic
requirements for the molecular mechanism of Tuberculosis
[8,14,26,27-29] that includes the molecular and cellular
components of the host immune system, innate and adaptive.

e  The initial molecular recognition, upon air droplet entrance
and ingestion by upper airway cells, bacilli is internalized
by the alveolar macrophages [14,29-34], with a molecular
recognition in first term. The molecular interaction between
the pathogen-associated mediated patterns (PAMPS) and the
patterns of recognition receptors surface (PRRS) on antigen

presenting cells (Macrophages, and Dendritic cells).

e The PAMPS on the pathogen surface such as the mycobacterial
glycolipids (LAM),
(LM), 38-kDa and 19-kD mycobacterial
phosphatidylinositol mannosidases (PIM), tri-acylated or di-
acylated, lipoproteins, recognized by (TLR2/TLR1) or (TLR2/
TLR6) [27-29].

(lipoarabinomannan lipomannan

glycoproteins,

e The PRRS on the antigen presenting cells as -TLRs receptors
located on cell membranes or intracellularly (TLRs),TLR2,
TLR4, TLR9Y, and possibly TLR8. TLR2 can form heterodimers
with both TLR1 and TLR6 [29-34]. -Receptors are the C-type
lectin receptors (CTLRs) (e.g. mannose receptor): -Receptors
located in the cytoplasm, NLRs, the CD207, and the IPAFs
[28-34].-the cytoplasmic proteins such as the Retinoic acid-
inducible gene,(RIG)-I-like receptors (RLRs),-The receptor

on the Dendritic cell-specific intercellular adhesion molecule
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grabbing non-integrin (DC-SIGN) and Decti-1), The phagocytic
receptors, such as FC-yg receptors, the complement receptors,

and the scavenger receptors [29-34].

The host innate immune response upon M. tuberculosis
infection

After the initial molecular interaction as pinpointed above
[71,73,87-89], the recruitment of the innate immune cells at the
site of infection allows control of Tuberculosis infection at very
early times, maturation, migration of APC, and the expression of
the costimulatory molecules, but it also allows the infected APCs
to maintain an inflammatory state that is like a depot effect for
clearance and elimination of Mtb [29,30,34,35].

Microbicides innate mechanism of the host response, such as
phagosome-lysosome fusion, autophagy, oxidative stress, antigen
processing, inflammasome activation, antigen presentation by
MHC class I, class II, and CD1 (glycolipids presentation, cross-
priming) [31,32], production of nitric oxides [92] and other
reactive intermediates that eventually will favor an inflammatory
state to continue in a replicative state (active infection) [29,31,34].
Innate mechanisms of the host response, such as phagosome-
lysosome fusion, autophagy, oxidative stress, antigen processing,
inflammasome activation, antigen presentation by MHC class I,
class II, and CD1 (glycolipids presentation, cross-priming) [31,32],
production of nitric oxides and other reactive intermediates
that eventually will favor an inflammatory state to continue in a
replicative state (active infection) [29,34], while in macrophage
infection, there are mainly pro-inflammatory cytokines, and the
activation of the macrophages elicited several other cytokines,
IL-18 and IL-12, for continuous activation of macrophages and
naive CD4+ lymphocytes, the Th (helper T cells). Th1 cells that
upon activation induce the production of IFN-y and TNF-a at the
same time, macrophages produce oxide nitric (NO) [30-34] (Figure
1A), granulocyte-macrophage colony-stimulating factor (GM-
CSF), chemokines (CXCL1, CXCL5, CCL2, and CCL7), antimicrobial
peptides, which mediate the activation and recruitment of
inflammatory cells [35,36]. In addition, the innate mechanism
includes reactive 02 species and the activation of the proteasome

for antigen processing [30,36-38] (Figure 1A).
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Figure 1a: Upon infection, M. tuberculosis enters via the upper airways as particle droplets, followed by the uptake by the alveolar mac-
rophages, which reach the local bronchi alveolar(s) in the lung, and replicate. The recruitment of the innate immune cells at the site of
infection allows in principle control of Tuberculosis infection at very early times, maturation, migration of APC, and the expression of the
costimulatory molecules, microbicides innate mechanism of the host response, such as phagosome-lysosome fusion, autophagy, oxida-
tive stress, antigen processing, inflammasome activation, antigen presentation by MHC class |, class II, and CD1 (glycolipids presentation,
cross-priming), production of nitric oxides and other reactive intermediates that eventually will favor a inflammatory state to continue in
a replicative state (active infection). Moreover, the production of antimicrobial peptides, such as beta-defensins and cathelicidins by the
airway epithelium and alveolar macrophages, play a role not only in the bacterial elimination but also in the recruitment and activation
of diverse immune cells(human {beta}-defensin-2, expressed and associated with Mycobacterium tuberculosis during infection of human
alveolar epithelial cells. The cytokines, like the chemokines, influence the behavior of the innate cells and their recruitment of innate cells

to the site of infection, linked with adaptive immunity.

The activation and the production of a set of cytokines reach
and allow the differentiation of the helper T cells to T helper 17
(Th17) cells interleukin-17 (IL-17) producers [39-43].

In latency, the granuloma can sterilize the infection,
becoming sclerotic and calcified, whereas in active Tuberculosis,
granulomas are necrotic and have a caseous appearance. Latent
bacilli coexist for survival with immune and nonimmune cells,
including fibroblast and epithelial cells [18,29,30,44]. Myeloid
cells continue to provide a safe, persistent, and survival niche for
the establishment of the bacilli in the granuloma in the lung and
tissues [18,29,30,31,34,35,44,45]. The bacilli remain quiescent in
anon-replicative state [32,38] at the level of the lung, and occupies
the majority of its decades-long life cycle in a state of slowed or
arrested replication [1,4,7] (Figure 2B). However, the role of other
targeted tissues targeted is the inducible bronchus-associated
lymphoid tissue (BALT), a lymphoid tissue that contains B-cell
follicles found in inflammatory lung diseases [41,45]. A recent

report proposed that the proximity of BALT to the lung granuloma

could influence the B cell follicles in BALT for protection against TB
in addition to interferon-gamma (IFN-y) [17-19,29]. While TNF-a is
a pro-inflammatory cytokine required for an organized formation
of granuloma [29,34,46] (Figure 1B). Furthermore, besides the
cellular and molecular components that can be followed and
detected, the dormancy regulon, and especially those dedicated
to providing energy, the encoded phospholipases [46], the two-
component system, Pho P, and Pho Q[47], the phosphate-binding
proteins Pst1 and PstS2 [48]and the proteins encoded by operons
[46,47] could be targeted [36]. Thus, the host immune response
could be raised at glance by the tuberculin skin test (TST) and the
delayed hypersensitivity test (DHT) to mycobacterial antigens
[22,48-56]. These tests is the extent to which these might reflect or
predict the likelihood of developing active disease. This possibility
remains a mystery because the subtle molecular balance between
the bacilli and the host interaction is such that the latent bacilli are
maintained, under certain conditions, and for cell cycle replication,
and is lauded to reenter the cell cycle to ensure its propagation as a
species [3,7,14,28,29,35,45,46].
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Figure 1b: The latent stage of the TB infection, is featured by the activation of the cellular response, once after the Mtb have triggered a

pro-inflammatory response, with the induction of pro-inflammatory cytokines important to keep an activated state of the macrophages,

and for the differentiation of the naive CD4+T cells toward Th1, Th2, Th3, Th17. In this stage the host response is toward the balance to

bacterial killing, avoid tissue damage and bacilli persistence through the formation of the granulomes. The different subsets of CD4+, the

CD8+ T cells, the NK cells, the

activate and control the cellular response to Mtb (IL-23, IL-27). The balance in the levels of the induction of for example TNF-

-T cells all are involved in the production of the IFN-

, and other cytokines that are important to initiate,
, IL-17,

IL-12, IL-18, are pivotal for fitness of Mtb while keeping a molecular off switch of the host response.

Omics technologies to address the host immune response to
Mycobacterium tuberculosis infection

Omics technologies represent a key technological advance that
have led the development of personalized medicine by providing
an unprecedented amount of data enabling to dissect the molecular
basis of many diseases and tracing detailed patients ‘molecular
signatures on a system biology scale [22-24,57]. The technologies
that follow the signature and imprinting of the interaction host-

pathogen, spatial, and multidimensional analysis include single-

cell RNA-sequencing (scRNA-seq) and combinatorial multimodal
analysis of surface proteins and cellular transcriptomics [57,58].
Examples are the cellular indexing of transcriptomes and epitopes
(CITE-seq) and accessibility analyses throughout transposase-
accessible chromatin (ATAC-seq) assay [46]. In terms of infectious
diseases, elucidate the mechanism of pathogenicity [14,21,27,56-
58] and the imprinting of the signature at the interface host-
pathogen [23,24,59-63], and thus, gain insight and integrate the
knowledge at the interface of the interaction that leads to disease
[29,61-63].
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The Human Tuberculosis study, through the perspective of
One Health [1,2], consists of, 1) the unification and integration
of cellular and molecular tools applied to animals [29,45,54], 2)
the integration of the factors that affect the progression of the
disease, 3) the identification of genetic markers, and biomarkers

for diagnostic and prognostic purposes [27,29,59,61-63].

One health to integrate the “ome” host response rather than
isolated features of the adaptive immune response through new
generation high-throughput sequencing to obtain the complete
transcriptome (RNA Ome) [63,64] or complete quantification using
microarrays [65] in cells from blood samples and mucosal fluids
[27,29,62-64].

The use of the multi-omics technologies allows a deep insight of

several processes such as:

e The dynamics of cells and molecules, of the signaling
pathways [56,57] involved in the interaction host-pathogen
interface, the architecture, the topography of the immune
cells in the lymphoid tissues (primary, secondary, and

tertiary)

e The quantification of the repertoire of antibodies and

receptor(s) in T and B cells, and

e The profile of the subset of antigen-presenting cells and

lymphocytes under specific settings

The technology of the siRNA-seq analyses allows the
determination of the identification and characteristics of clonal
populations of T and B cells toward an antigen (a pathogen,
microbial, fungi, viral to a vaccine candidate, and their association
with different disease susceptibilities or states, as well as their
capacity to migrate into tissues lesions [22,23,28,29,58]. A pioneer
work on this has been the role of type I interferons signature in
neutrophils of active TB patients [60]. A milestone in terms of
new-generation Sequencing (NGS) is that millions of genomic
or transcriptomic sequences can be analyzed at the same time,
speeding the analysis of different organisms and different
experimental and clinical settings [64-67] (Figure 2A). RNA-Seq
technique allows transcriptomic profiles from cDNA libraries with
the advantage of not reference genome for bioinformatics analysis,
or no prior information on the transcriptome of either of the two
species that are going to be analyzed [62,64] with higher levels of
reproducibility [27,29,66,67]. It allows the identification of a large
number of highly informative molecular markers. A set of expressed
sequence tag (EST)-derived simple sequence repeat (SSR) and SNP
EST-SSR and SNPs), associated with functional genes, making them
applicable to adaptation studies. The identification of mutations

and polymorphisms represent potential genetic markers for

07
molecular diagnosis of human TB [14,15,21,29,60,63,68-70]. As it
is outlined in Figure 2A, the contribution of each omics technology
started in 1998 with the Mtb sequencing and the human genome
sequencing (2003) allowing to unveil for one side the molecular
components involved in the immune pathogenesis and for the other
side, to dissect the genetic susceptibility to mycobacterial diseases
(e.g., mutations in the interferon gamma receptor, MyD88, NEMO,
and many other components in the pro-inflammatory pathway).
From to 2015 of the use of the different omics technologies in TB
mechanism of pathogenicity increased significantly, specifically
at the level of epigenetics and how this is modulated by Mtb for

success and long term survival in the lung [21,29,70].

Genomics

Since its introduction in 2010, next-generation sequencing
(NGS) has become a foundational technology in genomics by
providing detailed structural information about genomic variants
[21,72,73]. Building on this foundation, NGS enables the detection
of mutations and polymorphisms, which serve as genetic markers
for the molecular diagnosis of human TB. Structural genomics
supports the identification of single-nucleotide polymorphisms
(SNPs) for strain typing of MTBC lineages and for determining
drug resistance profiles. These applications facilitate the
development of targeted diagnostic tools and inform treatment
strategies in clinical research. Furthermore, to inform about how
structural genomic information can influence and modulate the
host-pathogen interaction, WGS using a DNA platform provides
a more complete account of the genomic features of the Mtb-
infected resistance population [64,72,73]. Moreover, using WGS
analysis, several gaps are being approached: the evolving nature
of drug resistance in TB, the resistance population to both first-
line and second-line anti-TB drugs, and the genetic susceptibility
to mycobacterial infections in humans through genome-wide
studies [14,21,72-75]. Under this context, WGS-based approaches
are quickly moving from research laboratories to clinical care and
public health applications [64,71,76]. Thus, WHO is already using
WGS for drug resistance surveillance and is scheduled to evaluate
sequencing technologies for routine genotypic DST [1,76] and for
accurate predictions for resistance to pyrazinamide, ethionamide/
prothionamide, and para-amino salicylic acid, respectively [77-
81]. The impact of this is that bona fides of NGS allow millions of
genomic or transcriptomic sequences at lower time and reduced
cost [77-83] (Figure 2A).

Metagenomics

Next-generation sequencing (mNGS). One of the most significant
milestones of metagenomics is that, despite rapid molecular

methods such as PCR and LAMP, rapid advances in NGS technology
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are allowing increasingly rapid and accurate sequencing of
entire bacterial genomes at ever-decreasing cost, providing
unprecedented depth of information [84-87]. mNGS under different
settings can provide information about significant dynamic
changes in the clinical manifestation of TB in the progression of
the disease, and recurrent antibiotic treatment. A significant
advantage of mNGS is its ability to sequence microorganisms that
cannot be cultured under standard laboratory conditions. This
method has improved the detection of pathogenic infections, such
as Non-Tuberculous Mycobacterial (NTM) and in severe cutaneous
TB cases [88-91]. In addition, similar to targeted next-generation
sequencing (tNGS), mNGS enables the identification of specific
pathogens in clinical samples through multiplex polymerase
chain reaction (PCR) amplification or probe capture, resulting in
high sensitivity and greater efficiency [92]. Indeed, it has been
reported that through the use of mNGS is that it has been possible
to confirm conventional metagenomics in 101 of 123 TB patients
[19,85,86,88-90], with bacteriologically and clinically, supporting
thus, the notion that NGS stands to revolutionize the diagnosis and
epidemiological study of TB. Furthermore, to address the role of
the lung microbiota in the immunomodulation of the host response
in TB [84], especially in active or severe patients [85]. Thus, using
BALF samples and sequencing shotgun metagenomics, it has been
possible to assess alterations in the lung microbiota associated
with TB infection. It has been observed that anti-TB treatment
significantly affects the alpha and beta diversity in patients with
PTB [85]. Moreover, determination of lung microbial signatures
in cells from the upper airways provides unique features of lung
microbial dynamics and clinical characteristics of TB patients,
providing thus new insights for medicine of precision [19,85-90].
From the milestones, metagenomics have advanced in the last
decade (Figure 2A) favoring the microbiome analysis in the host

immune response to different external insults.

Epigenomics

Epigenetic processes refer to modifications in gene expression
that are regulated by distinct microenvironments within the
body, such as neuroendocrine alterations, oncogenic activity,
and exposure to chemical substances. These mechanisms are
particularly significant in the context of host-pathogen interactions
during the development and progression of tuberculosis.
Epigenetic regulation of host chromatin facilitates granuloma

formation, thereby promoting the survival and persistence of Mtb

08
[89-92]. Consequently, this intracellular pathogen has developed a
mechanism to modulate and regulate the host’s epigenetics, which
facilitates the pathophysiology of tuberculosis and contributes to
host susceptibility to the pathogen while also activating the host
immune response against the invading organism, resulting in active
disease. Under this scenery infected macrophages subsequently
enhance their effector functions through epigenetic changes,
making DNA more accessible for transcription [89-92]. Expression
of these markers occurs in host-infected macrophages during
pathogen recognition, phagocytosis, and degradation within the
phagolysosome, activation of the inflammasome, and proteasome-
mediated antigen processing and presentation [93-95]. Epigenetic
studies in active disease have indicated that infected macrophages
enhance their effector functions through epigenetic alterations
(increased hyper-methylation of IL6R, IL4R, and IL17R) that
render DNA more accessible for transcription [19,96-102]. In
addition, the shift in metabolism towards glycolysis and the
secretion of pro-inflammatory cytokines are effector functions that
are also regulated by epigenetic modifications. This plays a crucial
role in the macrophage’s capacity to effectively respond to Mtb
infection, and represent promising biomarkers for diagnostic and
therapeutic strategies in infectious diseases. In addition, it has been
shown that suberanilohydroxamic acid (SAHA), an FDA-approved
oral drug inhibiting histone deacetylase enzymes (HDACI), can
alter epigenetic mechanisms prior to the metabolic switch and
enhance immune responses during Mtb infections [93,96,99,102].
Furthermore, modifications such as histone acetylation, changes
in non-coding RNA, DNA methylation, and variations in miRNA
play significant roles in the pathophysiology of tuberculosis and
influence the infection’s outcome [93,95]. The challenge lies in
identifying the key host proteins, non-coding RNAs, or secretory
proteins produced by Mtb that either directly or indirectly induce
epigenetic modifications in the host chromatin, as a strategy to
navigate and coexist with the immune response [25,26,93-98],
thus promoting its survival and spread. Thus, the integration
of this research with other omics technologies has facilitated
the identification of various molecular genetic markers and
biomarkers related to both active and latent infections (Figure 2A).
To the identification and recognition of host proteins, non-coding
RNAs, and secretory proteins that directly or indirectly contribute
to epigenetic modifications [25,26,95,96]. In resistant individuals
there is a latency stage characterized by epigenetic regulation of

host chromatin that promotes the development of granulomas,
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which are comprised of immune and non-immune cells.

Itis a strategy to coexist with the host immune system and long-
term persistence and survival of Mtb [93,94]. Studies conducted
to study the mechanisms involved in the suppression of various
immune genes, epigenetic studies included the identification of
microRNAs and the analysis of regions upstream of the transcription
start sites of these genes for common sequence motifs. This insight
sheds light on the survival strategies of Mtb within infected cells,
characterized by a sophisticated immune “molecular switch off”
regulated by both microRNAs and Alu sequence repeat elements

transposable.

Transcriptomics

Transcriptomic analysis can be conducted to investigate the
spectrum of the disease, the regulation of gene expression during
host-pathogen interaction, and the host immune response. This
can inform about patterns and signatures to predict outcomes of
the disease severity and progression, and henceforth be a tool for
diagnosis and treatments [103-106]. The fundamental scientific
principle of transcriptomics involves the analysis of RNA, utilizing
methods such as exome sequencing and microarrays to quantify
RNA transcripts in specific cells or peripheral blood during
active, severe, or latent infections. This understanding provides
insights into how the host’s immune response is modulated
during and across different stages and clinical sub-stages of Mth
infection. The RNA-Seq technique facilitates the generation of
transcriptomic profiles from cDNA libraries, offering the benefit of
not requiring a reference genome for bioinformatics analysis, even
in cases where there is no prior knowledge of the transcriptome
for either of the two species under investigation. Additionally,
RNA-Seq does not have a maximum quantification limit and
demonstrates greater reproducibility [141,145,146]. It facilitates
the identification of a wide array of highly informative molecular
markers [63,65,103,104]. This method allows us to explore the
host-pathogen interaction through the analysis of transcripts and
transcriptional signatures at the interface of systemic and mucosal
compartments [103-109]. For instance, during an active or primary
infection, the bacteria localize to specific sites (typically the
lungs) and are associated with clinical symptoms [103,104]. The
transcriptional signature can serve as a valuable tool for diagnosing

and predicting the progression of active TB disease [108,109].
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In terms of the host immune response, the integrated analysis
of single-cell transcriptomes and T cell receptor profiling during
the immune response reveals the presence of T cell exhaustion
deficiencies in patients with pulmonary tuberculosis [107] in both
CD4+ and CD8+ and in clonally expanded CD4+ and CD8+T cells
that also expressed the cytolytic markers granzyme (GZMK) and
perforin [107]. In addition, this study provided insights into the
transcriptional signature associated with the type I IFN pathway in
neutrophils of active TB patients compared to healthy individuals,
contributing to understanding the intricate immune pathogenesis
involved in active TB (Figure 1B,2A).

The transcriptome that provides insights into the non-
invasive and quiescent phenotype, contrasting active infection
with dormancy, reveals changes when the bacteria reach an
extra pulmonary site, such as the ocular environment. The genes
associated with active replication, aerobic respiration, and lipid
metabolism are either significantly downregulated or show no
differential expression. Thus for example, it has been reported
that in AIOF (a specific cell or niche environment) exhibits a
downregulation of genes from the DosR regulon, suggesting a
suppression of dormancy, similar to what is observed within RPE
cells [47,48,105-109].

Of note is that when M. tuberculosis infects human whole blood,
there is suppression of gene transcription rather than activation,
affecting the spatial and functional effector functions. This reveals
their role in the mechanism of host immune response, such as
uptake, phagocytosis, activation of the proteasome, and antigen
presentation. Interestingly, when clusters of alveolar macrophages
in the lung are infected, a different landscape has been observed.
Instead of a transcriptional signature, an epigenetic pattern of
restrictive response to infection has been found. Furthermore,
through transcriptomics, it has become possible to identify immune
protection correlates, particularly emphasizing the importance of
cells expressing the IFN-y receptor in protective immunity [105-
109].

Various factors (environmental, genetics, age, and co-infections)
can influence these cells’ ability to respond to IFN-y, affecting their
cytokine response capacity and, henceforth, a decreased immune
response to MTbh infection. On other hand, in comorbidities of TB
and DM, transcriptional data have shown that several molecules,
including lipocalin (LCN2), defensin alpha 1 (DEFA 1), and
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integrin subunit alpha 2b (ITGA2B), were notably upregulated,
while chloride intracellular channel 3 (CLIC3) was significantly
downregulated. Moreover, interleukin 17 (IL-17) and other
signaling pathways such as phosphatidylinositol 3-kinase (PI3K)-
AKT, and peroxisome proliferator-activated receptor (PPAR), have
been found to play significant roles in the management of post-
infection with DM. Thus, the transcriptional profile can be utilized
to monitor the progression of tuberculosis disease and to discover
novel immune mechanisms [47,48,92,105-109].

Proteomics

In recent years, research has focused on understanding how the
proteome is affected during host-pathogen interactions in TB. It
has been suggested that gaining a deeper insight into how genome-
encoded functions are carried out and adjusted at the proteomic
level could greatly aid in the development of therapies targeted
specifically at TB [109-112]. The modulation of the proteome
through epigenetic alterations, commonly referred to as post-
translational modifications (PTMs), these include processes like
phosphorylation, particularly in proteins linked to chromosomal
instability. Notably, protein acetylation (Ac), especially lysine
acetylation, plays a role in regulating cellular metabolism [92,93].
Acisrecognized as amodification affecting numerous proteins, both
histone and non-histone, found in various cellular compartments,
including the nucleus, cytoplasm, and mitochondria, and it is
involved in a range of functions from gene regulation and cell
signaling to metabolism in both normal and pathological contexts
[47,113-115]. A recent innovation involves the integration of
diverse omics technologies to offer a comprehensive synthesis
of genomic, transcriptomic, and proteomic data, ultimately
elucidating functional relationships between genes and proteins
[112,113]. Nevertheless, this technology faces certain constraints,
particularly because proteomic data is not as plentiful as genomic
data. To address these challenges, three methodologies have
emerged: 1) Techniques like reverse phase protein arrays (RPPA)
that enable the simultaneous collection of semi-quantitative data
for a larger number of proteins in biological and clinical samples
[111]. 2) This process entails the application of protein lysates to
nitrocellulose, allowing for the quantification of selected proteins
or phosphoproteins across multiple samples under identical
experimental conditions. 3) The SOMA scan assay serves to quickly

quantify a specific set of proteins, primarily aimed at identifying
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biomarkers for two significant purposes: facilitating preclinical
and clinical drug development, and supporting clinical diagnostic
applications related to various diseases and conditions [110-112].
Mass spectrometry-based proteomics (MSP) can provide insights
into the quantitative status of a proteome by accurately identifying
the primary chemical structures of proteins or peptides, including
various post-translational modifications that may go undetected.
This technology has played a significant role in deciphering cellular
signaling networks, clarifying the dynamics of protein-protein
interactions in numerous cellular activities, and improving the
understanding and diagnosis of disease mechanisms [114,115].
Therefore, mass spectrometry (MS)-based methods have become
the preferred choice over the last twenty years for reliable
and nearly comprehensive identification and quantification
of proteins in biological samples. One of the advantages of the
MSP ) is that it offers valuable information regarding the true
biochemical environment of the specific cell or tissue, as it enables
the quantification of small molecules [112], and it can identify
the primary chemical structures of proteins or peptides that
contain multiple PTMs. The limitations of discovery proteomics
are currently being addressed by targeted proteomics using two
methodologies, a selected/multiple reaction monitoring (S/
MRS) [112] and parallel monitoring (PRM) [112]. These allow for
consistent and precise quantification at low abundance levels and
in complex mixtures. It is particularly effective for personalized
medicine when measuring a small number of proteins across
a large volume of patient samples [47,48,113]. Additionally,
discovery proteomics can be utilized to explore the interactions
between hosts and pathogens, particularly concerning the impact
of PTMs during the interactions. This involves the use of both top-
down and bottom-up approaches. Top-down proteomics examines
the complete sequence of the proteins being studied, aiming to
minimize any alterations to the sample. Bottom-up proteomics
relies on the pre-digestion of samples (usually using trypsin)
followed by the examination of peptide fragments through high-
throughput analytical techniques [47,48,113]. It is crucial to gather
comprehensive data on the proteins being monitored throughout
the interaction, both in the early and late stages after infection,
as these may serve as potential targets for specific quantification,

necessary for diagnostic purposes [89-112].

On the other hand, proteomics to explore host’s immune

response upon in TB, offer an in-depth understanding of protein

Citation: Gloria G Guerrero M,, et al. “Omics and Artificial Intelligence Addressing Host Immune Response in TB". Acta Scientific Microbiology 9.1 (2026):

02-24.



Omics and Artificial Intelligence Addressing Host Inmune Response in TB

dynamics to clarify their roles and functions in this interaction.
By analyzing data computationally, various potential T and B
cell epitopes were identified, which were subsequently tested
in vitro and demonstrated immunogenicity with the ability to
influence innate immune responses [15-17]. This particular
protein enhances the maturation of dendritic cells by elevating the
expression of activation markers such as CD80 and HLA-DR while
reducing DC-SIGN expression, with this interaction being facilitated
by the innate immune receptor TLR2. Mining the human proteome
in TB infection has led to findings such as: 1) a protein capable of
influencing innate immune responses and promoting dendritic cell
maturation by enhancing the expression of activation markers like
CD80 and HLA-DR, while reducing DC-SIGN expression through
the innate immune receptor TLR2,2) the immunodominant Mtbh
antigen, MPT70, was found to be upregulated in macrophages
infected in vitro in response to gamma interferon (IFN-y) or
conditions of nutrient and oxygen deprivation. In vivo studies
indicated that the serum levels of MPT70 in tuberculosis (TB)
patients revealed higher IgG reactivity or detection in comparison
to healthy controls. Furthermore, the changes and immunogenic
properties of the Mtb proteome has been reported to be linked with
the dormancy survival regulator (DosR) and the resuscitation-
promoting factor (Rpf) [22,29,47,48,113].

Among the proteins that contribute to the evasion of Mtb is
Rv2626c, also referred to as hypoxic response protein 1 (HRP1) or
dormancy safety regulator protein. These antigens can suppress
TLR4 inflammatory signaling in macrophages by binding to the
RING domain of TRAF6, thereby hindering lysine (K) 63-linked
polyubiquitination of TRAF6, which affects E3 ubiquitin ligase
activity [22,29,34,115]. It has been observed that this provoke a
robust serum antibody response in cases of active tuberculosis.
Moreover, a peptide that encompasses the C-terminal region of
amino acids 123-131 has demonstrated significant therapeutic
effects in a mouse model of sepsis induced by cecal ligation and
puncture, targeting macrophages and effectively penetrating the
cell membrane. These peptide-based treatments exhibit anti-
inflammatory and antibacterial effects for sepsis management
[115].

Epitope analysis of PE/PPE Rv1705, part of the five type VII
secretion systems (ESX-1 to ESX-5), revealed a dominant epitope

located in its N-terminal domain. Epitopes associated with a
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peptide TLR4 agonist RpfE-like adjuvant at the N-terminus elicit
a robust helper and cytotoxic CD8+ T-cell immune response,
resulting in elevated levels of IFN-y [114-116]. This results in
macrophage activation and the production of cytokines necessary
for the differentiation of naive CD4+ T-cells [37,47,48,67].

Metabolomics

Metabolomics is used to examine the alterations in the body’s
metabolites across various conditions, which can be a significant
method to determine variations in metabolites, identifying disease-
related metabolic biomarkers, mechanisms behind drug action/
metabolism, drug toxicity, microbial drug resistance, and the role
of carbohydrate metabolism during Mtb infection. This might
serve as indicators of the host-pathogen interaction [115,116].
These peptide-based treatments exhibit anti-inflammatory
and antibacterial effects for sepsis management Metabolomics,
alongside genomics, proteomics, and transcriptomics as part of
systems biology, helps clarify the functionality of the genome
of the pathogen in the context of host-pathogen interactions
[116,117]. This approach aims to provide a better understanding
of the mechanisms of drug action, drug toxicity, and microbial drug
resistance. Additionally, it highlights how metabolite biomarkers

can act as prognostic indicators for predicting treatment outcomes.

The contributions of metabolomics to the characterization of
tuberculosis have been significant, particularly in enhancing the
understanding of Mtb regarding (1) metabolism, (2) growth and
replication, (3) pathogenicity, and (4) drug resistance [116-119]
(Figure 2A). To accomplish these various tasks and objectives,
liquid chromatography tandem mass spectrometry (LC-MS/
MS) in conjunction with comprehensive bioinformatics analysis
has facilitated the identification of metabolites in the serum
of patients with osteoarticular TB [116,117], to uncover new
metabolic biomarkers for diagnosis [119]. It can also be possible
to determine metabolites involved in several lipid metabolic
signaling pathways, including choline metabolism, sphingolipid
signaling, retrograde endocannabinoid signaling, as well as
[118]. To

explore how metabolism is influenced during the interaction

sphingolipid and glycerophospholipid metabolism

between host and pathogen in active TB, and DM [119], the
multimodal metabolomics and lipid omics approach used to
analyze plasma metabolic profiles revealed disturbances in

lipid metabolism through the C18 metabolomics and lipid omics
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Figure 2a: The timeline of the research milestones in the use of omics technologies in addressing host pathogen interaction in the

context of Tuberculosis (A-C). It is pinpointed several of them, which allow to delineate the increasing usage of the single and combined

omics technologies. The details of each research is delineated with the author, the year and the milestone.

assessment [119;120]. In comparison to TB alone, the comorbidity
with DM demonstrated increased levels of bile acids and
compounds associated with carbohydrate metabolism, along with
decreased levels of glutamine, retinol, lysophosphatidylcholine,
and phosphatidylcholine [120]. Additionally, arachidonic acid
metabolism was identified as a potentially significant component
in the pathophysiological relationship between TB and DM, and
within a correlation network of the markedly altered molecules,
chenodeoxycholic acid emerged as a key node. The fatty acid (22:4)
was present in all major modules [119,120], while various amino
acid (phenylalanine/histidine,citrulline/arginine kynurenine/
tryptophan) ratios differentiated TB from the control group. While
amino acid levels (i.e., serine, glycine) and choline were lower in
TB-DM than in TB alone [118-120]. All together, these findings
have contributed to the discovery of new metabolite biomarkers,

and to the understanding of metabolic alterations in TB-DM [116-

120]. On the other hand, the combination of omics, metabolomics
and lipid omics offer a comprehensive overview of the metabolic
transformations linked to these infections, and autoimmune
conditions [118,119]. Moreover, and of relevance is that using
metabolomics and transcriptomic data from patients with PTB,
and DM has suggested that the NOTCH1/JAK/STAT signaling
pathway plays a crucial role [119,120]. The physiological levels of
these metabolites could serve both for fundamental understanding
as well as for clinical use as biomarkers for PTB in patients with
DM [119,120].

Artificial intelligence and infectious disease

Artificial intelligence (AI) has been around for over 60 years.
Its importance has grown with the rise of omics technologies,
generating vast amounts of data and resulting in many real-world

applications, particularly in medical imaging [121]. In the last
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decade, the development of artificial intelligence methodologies
has contributed to accelerating the processing of large amounts
of data and reducing the error rate in image analysis. In infectious
disease research, artificial intelligence has been used for modeling
by combining machine learning, computational statistics, and
information retrieval with routinely collected infectious disease
surveillance data and data science [121-126]. A search in the
PUBMED database currently retrieves 4,339 papers focused on the
application and development of Al methods to accelerate research
in this area. Infectious diseases, which the WHO cites as a major
threat to individual and public health, are a key field where Al-
driven tools offer significant potential [121-126] (Figure 3). This
information is used to answer key epidemiological questions,
such as the rate of transmission and incidence, the distribution,
frequency, magnitude, the predictions and control of factors linked
to human health and disease, as well as the determining factors of

diseases in defined human populations.

Remarkably, Al is revolutionizing data analysis and the

prediction of pathological outcomes. Al models facilitate
disease diagnosis, condition classification, and risk prediction
[122,123]. Integrated with systems and synthetic biology (omics
technologies), Al accelerates anti-infective drug discovery,
enhances the understanding of infection biology, and expedites
diagnostic development [124]. The application of artificial
intelligence in infectious disease research involves developing
systems capable of interpreting complex datasets [122-126].
These approaches facilitate analysis at multiple biological scales,
ranging from single cells to entire populations. Furthermore, Al
methods integrate large-scale quantitative and omics data, thereby
expanding research capabilities and driving advancements in
biomedicine and biotechnology. Al has the potential to identify
pathogens in different types of samples (such as fluids or solids)
for accurate diagnosis [125]. This can even be more optimized
through the combination of automation with Al algorithms, thus
increasing productivity. Since the pandemic in 2019, in terms of
imaging animal models, it has motivated rapid developments in
Al and medical imaging techniques, with two main objectives:
to improve patient care, but also to fill gaps that exist in clinical

infectious disease research [127].

13

Furthermore, Al methodologies such as machine learning
(ML) and big data analytics (BDA) algorithms can be applied for
analyzing diverse datasets. Thus, for example, ML can be applied
and addressing in several key areas, such as outbreak prediction,
pathogen identification, and drug discovery, while the combination
of ML and BDA can aid in the prediction of for example the
performance of antigens as vaccine candidates, the feasibility of
subunit antigen vaccine, at the same that be helpful in the subunit
vaccine design, discovery and characterization [128]. ML and
DL can be focused for a better management of human infectious
diseases and clinical research, in terms of laboratory diagnostic
that includes, -Digital culture plate reading,-Malaria diagnosis,-
Antimicrobial resistance profiling, -Clinical imaging analysis
(e.g. pulmonary tuberculosis diagnosis) [129] -Clinical decision
support tools (e.g., sepsis prediction, antimicrobial prescribing),
-and public health outbreak management (e.g. COVID-19) [129].
Besides, Al can address Clinical validation, such as, research with
translational potential, and -drug discovery and microbiome-based

interventions.

Artificial intelligence and Tuberculosis

From the 4339 paper related to the role of the Al in infectious
disease, 1186 are related to Al and TB [126-130]. In Figure 2
it is depicted selected milestones of Al in TB research. Thus, the
application of artificial intelligence to Tuberculosis has been
exploredsince the developmentofalgorithms, with the performance
starting around 2012. Since then, it has become one of the system
biology languages with impressive results. Artificial intelligence
(AI) has become the most novel and powerful bioinformatics tool
in the research of almost any field of science. The current potential
of Artificial Intelligence (AI) in infectious disease resides in that it
has transformed the landscape of prognostic, diagnostic, and TB
treatment. The integration of Al tools, such as machine learning
(ML) and natural language processing (NLP), trained with vast
amounts of clinical data, including genomic, transcriptomic, and
imaging data [126-128], can enhance our ability to identify at-risk
populations, predict drug resistance, identify novel mutations,
optimize treatment regimens, predict disease outcomes, and
[66,67,105,129-131].

enhance our ability to identify at-risk populations, predict drug

tailor therapeutic interventions It can

resistance, identify novel mutations, optimize treatment regimens,
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predict disease outcomes, and tailor therapeutic interventions
[132-134]. Indeed, Al tools, such as artificial neural networks
(ANN)(neural networks, connectionist models to solve complex
patterns of data without previous knowledge of the distribution
of the data), fuzzy logic (to facilitate expression through natural
language labels and bring us closer to that natural treatment of
language when attempting to qualify and quantify within the
development of information systems), genetic algorithms, DL and
artificial intelligence simulation (AIS), have become a promising
alternative that can aid clinicians and researchers to augment
efficacy and specificity in the diagnostic test in different types of
samples and in computer-assisted diagnosis for chest imaging
radiology [135,136] (Figure 3). Since current diagnostic tests, e.g.,
Tuberculin skin test (TST), interferon gamma release (IFN-yRes),
biomarkers and the gold standard assay can only differentiate
infected individuals from healthy ones but cannot discriminate
between latent TB (LTBI), and active TB infection (ATB), it has
been proposed that the application of machine learning (ML) in

diagnosis [137] could aid in a more effective differential diagnosis

14
of healthy and LTB patients. Once optimized and validated, it can be

amenable to large-scale screening everywhere [137]. Al machine
learning can be combined with several other methodologies, such
as NGS, PET-CT (Positron Emission Tomography (PET) scan and
a Computed Tomography (CT) (a combined assay of detection of
radiotracers -PET,, and the image test scan-CT,, to evaluate organ
and tissue function and thus to detect clinic manifestations of
disease much faster than other image methods. To track diseases,
e.g, neurodegenerative, cancer and cardiac conditions. The X-pert
or the Gene X-pert MTB/RIF assay, a PCR assay for the detection of
rifampicin resistance worldwide in patients with HIV-associated,
smear-negative tuberculosis. The determination and identification
of blood biomarkers, can aid and potentiate the TB diagnostic and
treatment as well [138]. The line probe assay (LPAs), based both
in PCR and electrophoresis in gel, and is an assay for the detection
of MDR rifampicin and isoniazid (INZ) and for the detection of
another species of mycobacteria from sputum or medium cultures
[1,2].

B
T P ]
el
Airdicnl b Lk ™ [}
g U0k S
mebed  degmnk W ey disgpeis  maik i =
Tan remg u lg v s 15 armama. Tagloring i
b o dnug-reci xn
M.._ o] I~ = ! rukarmin
e B g S
] Aredrinl mieligencs iy mmd e 1] r
m =l ol seyaried sk chemifing  wndl dn-—- A .
e avor duis Prea = [N —— —— 1
—l | g e
p— [y = =
=i :'I:.L_ LL—'.HIL-: e (=] Dk g o gl " T
e ek of e i CY wmam Pedclm of hd [ R
e e — gt | (Rl TrEERGE curmasn @ 15 [ SR e
Wire ke inm maba ralo baalrars pduriny ;:-1“ T ey baggh-rick. berwen e Crcm's
T ptiin

o
ity [ TR YR

Trabsaisma ol 13 arisoial
el B

radiap gl wm g AL rool,

hl-l;h .\.I: o —
TH i g O sl

Figure 2b: As depicted for omics technologies, despite that Al started to be used sixty years ago, in recent years, the application and

the use of Al through the three main methodologies, deep learning (DL), machine learning (ML) and Big Data analytics (BDA) are being

applied as prediction, evaluation, validation, differentiation in diagnostic and to improvedimmunotherapies based on the host immune

response.
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Figure 3: The interaction host-pathogen in the context of the immune pathogenesis of the TB disease can be addressed using omics

technologies in conjunction with artificial intelligence. As outlined in figure 1 the milestones of the omics technologies have required

the development of a biological language to interpret in active or latent TB infection, and the subclinical stages, the expression of genes,

proteins, and metabolites in tissues, organs, and fluids can be determined using omics technologies. This molecular information that

can be the source and a input for IA algorithms, to predict, to evaluate basic and applied investigations for example, on the different

types of mycobacterial drug resistance [(MDR), single-drug resistance (SDR), and extensive drug resistance (XDR)]. Al through different

methodologies, deep learning, machine learning, Big data analytics, and neural networks to approach mechanisms of resistance, the

genetic variability in the host response to TB infections, the bio signature at the level of the epigenome, proteome, transcriptome,

metabolome. The signature that allow biomarkers determinations for diagnostic and treatment.

Al can contribute to global health in two main aspects, one is in
chest radiography, covering from simple computer-aided diagnosis
systems to more advanced deep learning algorithms [139]
(Figure 3). The other is in the capacity of Al-based technologies
to discriminate EPTB and Crohn’s disease (CD). This can be done
through the use of multiple parameters, which results in increasing
sensitivity and accuracy versus traditional models. Moreover, a
test library of chest X-ray (CXR) images blindly re-read by two TB
clinicians developed with different levels of experience and then
processed by 12 CAD software solutions [140]. A disadvantage
of this software is that the majority of the CAD software showed

significantly lower performance among participants with a

past history of TB. Another weakness was that the radiography
equipment used to capture the CXR image was also shown to affect
performance for some CAD software. Despite this, it is indicated
that TB program implementers now have a wide selection of
quality CAD software solutions to utilize in their CXR screening
initiatives [140].

How to have a snapshot to decipher the dynamics, the profile
of the innate and adaptive immune responses, under the external
stimuli, pathogens, and their association with other diseases,
with other physiologic states at specific tissue and mucosal

compartments. To these challenges, novel technologies such
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as multi-omics technologies have become a revolution that
generates thousands of data to interpret them and to understand
what is happening in health and disease [131,132]. Furthermore,
multidimensional analyses generate such an amount of data
that the lack of appropriate language to interpret can lead to
misunderstanding of what is happening at the interface of the
host-pathogen interaction and in the dynamics of a population of
cells in a specific tissue environment. Therefore, a type of biological
model language that has become very popular is the Al, which can
be a valuable tool to evaluate what is happening in a particular
experimental condition in a tissue-specific environment using
language models. Al can learn complex patterns within sequences
(amino acids in a protein, nucleotides in genes [131,132] and
interactions, such as the Immunological pathways. Indeed, Al is an
artificial neural network that can capture the interaction of amino
acids in a protein, signaling pathway, or gene expression patterns
across long sequences [131,132]. Another example is single-
cell gene expression data formulated sequentially by creating
a sequence in which genes appear in the order of their RNA
expression levels in a cell. As the language model processes the
input sequence, it internally computes an embedding, a numerical
representation for data analysis and visualization, and fine-tuning
the data relevant to the desired goal. The input allows a direct
prediction approach, which is the simplest, the language model
is given inputs and used as is to make predictions. The transfer of
learning, in which pre-training on a larger dataset, provides the
model with a fundamental understanding of the data, enabling
more efficient learning of the new objective during fine-tuning with
novel data. A model that has already been trained (pre-trained) on
the data and is offered further trained (fine-tuned) on new data
[119-124,131-133].

DL in enhancing TB diagnosis through the classification and
detection of TB bacilli in microscopic images. The systematic
review outlines various DL techniques used to assist in automating
sputum smear microscopy, which traditionally relies on manual
counting and is prone to human error [129] explored multiple
studies, identifying DL methods such as convolutional neural
networks (CNNs) and their ability to significantly improve the
accuracy and efficiency of TB diagnosis. These techniques, applied
to Ziehl-Nielsen-stained images, offer a promising solution to

address the limitations of traditional microscopy, making TB
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diagnostics more accessible and reliable, especially in resource-
limited settings. Furthermore, prediction model for drug resistance
[113,129,133,137,138] developed models

for predicting resistance in the genes coding for target proteins

has been developed

affected by first-line TB drugs. These models use various sequence
and structural features of single nucleotide variations (SNVs) to
capture the impact of mutations. The study focuses on mutations
in key genes such as rpoB, inhA, katG, pncA, gyrA, and gyrB that
are associated with resistance to drugs like rifampicin, isoniazid,
pyrazinamide, and fluoroquinolones. The models were developed
using several ML algorithms, including naive Bayes, k-nearest
neighbor, support vector machine, and artificial neural network,
achieving an average accuracy of 85% across all examined genes
[134-141]. In another study it has been emphasized the importance
of accurate and rapid diagnostics to manage MDR-TB and XDR-TB
strains [133]. It is proposed that a combination of phenotypic and
molecular DST methods to tackle challenges such as resistance to
new drugs, hetero resistance, and low-level resistance mutations.
For this aim, three DL-based prediction models (PMs) using
longitudinal CT images were developed to TB treatment outcome
[134-139].

On the other hand, the use of natural language processing NLP,
and large language models (LLMs) in the diagnosis and prediction
of infectious disease highlights how these technologies can extract
valuable insights from large volumes of unstructured clinical data,
such as electronic health records (EHRs). Thus, to support early
diagnosis and personalized treatment strategies discuss how LLMs
can be trained on vast amounts of EHR data to predict disease
progression and identify high-risk patients. This approach can be
particularly useful in TB-endemic regions, where resources for
extensive testing may be limited [113,131,133,136,142,143].

Discussion

The host-pathogen interaction in particular referring to the
interaction of the M. tuberculosis at the interface of the epithelial
and mucosal surfaces offer the possibility to study and to dissect
the molecular mechanism of pathogenesis that can be approached
at different scales, molecular and cellular (Figure 1A-B). The
host immune response at this first line of defense plays a key
role that involves to the antigen presenting cells of the innate

immune response, macrophages, dendritic cells, neutrophils,
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NK cells[27;28]. One activated this response that also involves to
the complement system, there is a connection with the adaptive
immunity, in which the B and T cells iNKT, and the gamma delta
lymphocytes respond to the infection producing products for the
differentiation and homing of subsets of lymphocytes to distal
mucosal sites. One of the question pinpointed by several authors,
is how MTB inducing a state of molecular off/Switch to overcome
the host immune response and survive? [27,30,48]. At which level
is the regulation, epigenetic, transcriptomic, proteomic? From
the milestones depicted in Figure 24, it is clear that the use of the
different omics has been step by step along and in conjunction with
the development and advancements of devices and equipment to
have better resolution, precision and mode of interpretation of the
data. In other words, approaching the epigenetics of the interaction
host-pathogen did not limit to the use of the metabolomics as a
diagnostic test or the transcriptomics. The limitation that reside
in one of the other omics technology might be the compartment
analyzed, the methods used to obtain the sample, the sensibility
of the equipment, the technique and the methodology. By the
scientific part depends enormously how close we can study and
analyze the interaction and the living of Mtb in the host, specifically
with the innate and adaptive immune cells [30,35,36,38]. All this
before can be traduced in biomarkers of the spectrum of the Mtb
disease (active, clinic sub stages, latent). Biomarkers translated
as metabolites, as proteins, glycoproteins, lipids, transcription
factors, downstream key genes of the pro-inflammatory response,
or anti-inflammatory response, methylation patterns, autophagy,
ubiquitination, and many more molecular components that has
been analyzed since the first approaches using omics technologies
(Figure 2A). Moreover, the cross talk with the microbiome at the
lung can also give a cue in the immunomodulation of the host
response against TB. In addition, the genetic variability plays a
key role in the fate of the infection and in the host susceptibility
to the TB infection. Overall the milestones described in figure 2A
either in omics technologies focused in TB shed light in the efforts
to understand and how is being approached the success of MTB
for long term survival and evasion of the host immune response
[16-18]. Finally, how the development of algorithms can aid to the
omics analysis, can aid in different ways, not only in speeding the
analysis of the images but in the speeding the processing of data,

evaluation of clinic test in vivo and in vitro, the animal models
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(Figure 2B), favoring thus, importantly, the establishments of
models of prediction either of the host-pathogen interaction as
well as behaviors of drugs/candidate vaccine, the adjuvants, or
enhancers of the immune response (Figure 3) [16-18,48]. Taking
in account what it has been pinpointed above, it is noteworthy to
mention that current present in diagnostic and treatments that
New guidelines concerning TB diagnostics and a corresponding
operational handbook included recommendations for targeted
next-generation sequencing. These guidelines recommend the use
of the uridine lateral flow lipidoarabinomannan (LF-LAM) assay
[1] for adults and adolescents with HIV,conducting molecular
tests on respiratory specimens and stool samples in children,and
simultaneously utilizing molecular tests on respiratory samples,
stool, and the LF-LAM assay on urine from children living with
HIV. Many studies with pipelines for TB treatment encompass
translation studies from in vitro to in vivo performance in animal
models such as zebrafish embryos. In the treatment guidelines
for individuals with MDR/RR-TB have been incorporated a new
6-month treatment regimen that includes bed aquiline, delamanid,
and linezolid, along with either levofloxacin or clofazimine, or a
combination of both. Six new tuberculosis vaccines are in phase III
clinical trials as of August 2024, demonstrating safety and efficacy
[1-3]. In terms of the development of candidate’s vaccines and
delivery systems, small-molecule chemical libraries can effectively
identify chemo types active againsttuberculosis through phenotypic
whole-cell-based assays [46-48,60,90,161,80,114]. The application
of mycobacteriophages when effectively formulated in Nano-
vehicles targets resistant strains, including MDR, XDR, or slow-
growing mycobacteria [67,80,95,115]. Additionally, innovations
in micrometric and Nano metric drug delivery methods, such as
colloidal (both vesicular and particulate) carriers. Despite that
for a global TB drug development pipeline, the DST [4-6] and the
incorporated urine drug susceptibility test (UDST), identify active
TB with precision, and is accessible in low-income nations, these
studies can be complemented with different omics, among them,

metabolomics, proteomics, for medicine of precision [1,2].

Conclusions

The omics technologies, translating structural genomics
information into molecular signatures (transcriptional, proteomic,

epigenetic, metabolomics) as profiling patients phenotypes and
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genotypes (immune genetic disorders associated to mutations
(expressed as single nucleotide polymorphism) leading to a
medicine of precision to a personalized medicine, with implication
in novel immunotherapies. In the pursuit of accelerating the
development of new targets for diagnostic and preventive
treatments, it is well recognized that bioinformatics tools can
play a significant role. This has been demonstrated in recent years
through the application of Al to streamline and expedite data
analysis and processing. Artificial intelligence which started sixty
years ago has become a smart tool that can speed up the analysis
of big data, process data thorough machine learning and deep
learning, in cases in which huge amount of such in epidemics,
pandemics be necessary. It addition it can also be predictive of
novel drugs, biomolecules, predict even action mechanism and
even host response to external stimuli. The multiple diverse task
of Al in conjunction with the omics technologies is to accelerate
the input of processing, evaluation, modeling and prediction of the
outcomes of the host pathogen interaction in Tuberculosis. The
current present is that WHO is being try to harness from Al tools to
obtain the maximum benefit in keep under control the outbreaks
of M. tuberculosis infection in different geographical TB endemic

regions.
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