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Abstract

Tuberculosis caused by mycobacteria(s) of the complex of Mycobacterium tuberculosis (MTBC) nowadays represents a problem 
in public health. The scenery is worsened by comorbidities and the rise in multidrug-resistant strains (MDR). Despite this, recent 
reports have highlighted the emergence of high-throughput alternatives to potentiate diagnostic and more effective treatment, such 
as omics technologies. Indeed, current Omics technologies allow a deep analysis of the dynamics of gene expression, proteins, and 
metabolites The gene expression profiles along with the type of blood samples versus stools and sputum can make a difference in the 
diagnosis because they represent a window into the molecular signature of cell tissue or organ-specific. The integration of omics data 
with artificial intelligence methodologies (i.e., machine learning, deep learning, big data analytics, and neural networks) can generate 
algorithms as a biological language model to evaluate, and predict embed numerical representation of the data generated from omics 
technologies addressing the host-pathogen interface. The objective of the present review is to pinpoint how the omics technologies 
has been contributing to the dissection and understanding on this. At the same time, emphasize the use of AI to accelerate this. This 
review was based on searches and data from the PubMed database from 2020 to 2025. The result was a landscape of the milestones 
of omics and AI in TB. These advances in both or individually can support and potentiate enormously the diagnostic and treatment 
in TB.
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Introduction

Tuberculosis (TB), is an ancient infectious disease dated from 
Egyptian mommies [1], caused by the etiologic agent M. tuberculosis 
(Mtb). It represents a health problem in underdeveloped countries 
as well as in developed countries. It is one of the 10 leading causes 
of mortality worldwide caused by a single pathogen [2]. The most 
recent mortality registered ranged from 1 to 5 million, while 
approximately 10 million individuals developed active TB [1,2]. A 
quarter of the world’s population develops latent tuberculosis 
with a probability percentage of 3 to 10% of reactivation [2,3]. 
According to recent data from WHO [1] in 2023-2024, people who 
develop Tuberculosis accounted for 87% of the global amount. The 
scenery is worse because of the emergence and increase in multi 
drug resistance (MDR) and super extensive drug resistance (XDR) 
to the first line and even second line of antibiotics [7]. On the other 
hand, the only vaccine against human tuberculosis is the Bacillus 
Calmette Guerin-based vaccine or BCG-vaccine, the only effective 
and officially approved prophylactic measure [8]. However, the 
BCG vaccine protect children from different forms of TB. Memory 
fades as they grow and, practically in adulthood, there is no 
immunological memory, and therefore the risk of developing active 
TB is high [8-11]. A hotspot in the TB vaccine (TBVAC) development 
is the route of administration. If the bacillus enters via the upper 
airways, the mucosal and the systemic immune system is activated 
and triggered [9-13]. However, in a recent report it has been 
reported that intravenous BCG vaccine administration to Macaques 
rhesus and aerosol challenge with Mtb have induced protective 
antibodies [13,14]. On referring specifically to how to potentiate the 
diagnosis of human TB is necessary to gain knowledge of the Mtb 
susceptibility of the host to mycobacterial infections [14,15]. The 
success of transmission could reflect pathogen adaptation to the 
host, strengthening the theory that there has been a co-evolution 
of the pathogen with its host at molecular and immunological 
level, and thus, the eradication of the pathogen is not an easy task 
and require the understanding and elucidation of the molecular 
mechanism of pathogenicity for the development and design 
of vaccine and immunotherapies to halt the transmission and to 
hamper the antimicrobial resistance [15-17]. Indeed, the Mtb 
strain genotypes could also influence the multidrug-resistant 
capability of the strains and, indirectly, antibiotics-based treatment 
[18-20]. The host genetic variability to mycobacterial infections 
leads to the establishment of a framework in the dissection and 

knowledge of the immune pathogenesis of TB [21].On the other 
hand, omics technologies in conjunction with immunological 
parameters can aid to dissect blood cells subsets that are playing a 
role in the host immune response against Mtb [5,8,22,23]. Studies 
using single-cell transcriptomics and T cell receptor sequencing 
are being contributed and highlight that all major cell clusters 
(mononuclear cell populations) are present in both, pleural fluid 
and peripheral blood of Extra Pulmonary Tuberculosis (TPE) 
patients [22-24]. Another contribution of the omics technologies 
is toward the biology of the TB infection and the host pathogen 
interaction, specifically referring to the bio signatures, in non-and 
immune cells, i.e., monocytes, and granulocytes at transcriptional, 
and epigenetic level (DNA methylation, and microRNA) [24,25]. 
Furthermore, the integration of omics technologies such as 
metabolomics and transcriptomics can inform us about the 
physiological level of the metabolites and signalization pathways 
at the immunological level of the host response and this can be 
used either as basic or applied knowledge [22,18-20]. Moreover, 
it can provide information about the capabilities of Mtb to escape 
and transverse the harsh, stringent, heterogeneous niches, and 
the microenvironment in humans, as well as the expression 
of virulence factors for the extra pulmonary dissemination 
[3,5,7,26,27]. It can provide information of the virulence factor 
involved in the molecular mechanism of pathogenesis, such as 
the analysis of the secretory system in the pathogen, the efflux 
bombs, the cell wall composition, in the genetic variability of the 
different clinic isolates which can provide valuable information of 
the resistance mechanism [2,6-8,27]. Overall, these technologies 
can aid in the identification of correlates of immune protection 
(biomarkers) and progression of TB disease. Along with the multi 
omics integration approach can be facilitated through the use of 
AI-based approaches, to integrate large amounts of quantitative 
and omics data. Artificial intelligence (AI) methodologies such 
as deep learning (DL)(simple interconnected units), machine 
learning (ML)(based on algorithms for the processing of many 
parameters, e.g., images, biomarkers, immunological), Big Data 
Analytics (BDA) and Artificial Neural Networks (ANN), might 
give input to the processing and analysis of the data and images 
to potentiate the prognostic, diagnostic, and vaccine development 
[22-27], of paramount importance, for the development of rational 
TB treatment regimens especially novel host response-directed 
therapeutics [22-27]. In the present review, it is pinpointed 
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both the advancement and development of the omics and the 
AI, in addressing the mechanism of TB immunopathogenesis to 
potentiate enormously diagnostic and prophylactic/therapeutic 
vaccines. Therefore, after the introduction to the three main issues, 
Tb, omics and AI, we pursued to first pinpoint the main aspects 
of the host response upon infection with M. tuberculosis, the main 
target to be deal with, followed by the milestones of omics and AI, 
and the implication on diagnostic and development of treatments. 

The host-pathogen interaction interface in Tuberculosis

•	 The general hallmark of the host immune response upon Mtb 
infection is the co-existence with the host immune response 
that results in an inflammatory response induced by the 
pathogen. Several studies in the different animal models 
and clinical studies have proposed that there are some basic 
requirements for the molecular mechanism of Tuberculosis 
[8,14,26,27-29] that includes the molecular and cellular 
components of the host immune system, innate and adaptive. 

•	 The initial molecular recognition, upon air droplet entrance 
and ingestion by upper airway cells, bacilli is internalized 
by the alveolar macrophages [14,29-34], with a molecular 
recognition in first term. The molecular interaction between 
the pathogen-associated mediated patterns (PAMPS) and the 
patterns of recognition receptors surface (PRRS) on antigen 
presenting cells (Macrophages, and Dendritic cells). 

•	 The PAMPS on the pathogen surface such as the mycobacterial 
glycolipids (lipoarabinomannan (LAM), lipomannan 
(LM), 38-kDa and 19-kD mycobacterial glycoproteins, 
phosphatidylinositol mannosidases (PIM), tri-acylated or di-
acylated, lipoproteins, recognized by (TLR2/TLR1) or (TLR2/
TLR6) [27-29]. 

•	 The PRRS on the antigen presenting cells as -TLRs receptors 
located on cell membranes or intracellularly (TLRs),TLR2, 
TLR4, TLR9, and possibly TLR8. TLR2 can form heterodimers 
with both TLR1 and TLR6 [29-34]. -Receptors are the C-type 
lectin receptors (CTLRs) (e.g. mannose receptor): -Receptors 
located in the cytoplasm, NLRs, the CD207, and the IPAFs 
[28-34].-the cytoplasmic proteins such as the Retinoic acid-
inducible gene,(RIG)-I-like receptors (RLRs),-The receptor 
on the Dendritic cell-specific intercellular adhesion molecule 

grabbing non-integrin (DC-SIGN) and Decti-1), The phagocytic 
receptors, such as FC-γg receptors, the complement receptors, 
and the scavenger receptors [29-34]. 

The host innate immune response upon M. tuberculosis 
infection

After the initial molecular interaction as pinpointed above 
[71,73,87-89], the recruitment of the innate immune cells at the 
site of infection allows control of Tuberculosis infection at very 
early times, maturation, migration of APC, and the expression of 
the costimulatory molecules, but it also allows the infected APCs 
to maintain an inflammatory state that is like a depot effect for 
clearance and elimination of Mtb [29,30,34,35]. 

Microbicides innate mechanism of the host response, such as 
phagosome-lysosome fusion, autophagy, oxidative stress, antigen 
processing, inflammasome activation, antigen presentation by 
MHC class I, class II, and CD1 (glycolipids presentation, cross-
priming) [31,32], production of nitric oxides [92]  and other 
reactive intermediates that eventually will favor an inflammatory 
state to continue in a replicative state (active infection) [29,31,34]. 
Innate mechanisms of the host response, such as phagosome-
lysosome fusion, autophagy, oxidative stress, antigen processing, 
inflammasome activation, antigen presentation by MHC class I, 
class II, and CD1 (glycolipids presentation, cross-priming) [31,32], 
production of nitric oxides and other reactive intermediates 
that eventually will favor an inflammatory state to continue in a 
replicative state (active infection) [29,34], while in macrophage 
infection, there are mainly pro-inflammatory cytokines, and the 
activation of the macrophages elicited several other cytokines, 
IL-18 and IL-12, for continuous activation of macrophages and 
naïve CD4+ lymphocytes, the Th (helper T cells). Th1 cells that 
upon activation induce the production of IFN-γ and TNF-α at the 
same time, macrophages produce oxide nitric (NO) [30-34] (Figure 
1A), granulocyte-macrophage colony-stimulating factor (GM-
CSF), chemokines (CXCL1, CXCL5, CCL2, and CCL7), antimicrobial 
peptides, which mediate the activation and recruitment of 
inflammatory cells [35,36]. In addition, the innate mechanism 
includes reactive O2 species and the activation of the proteasome 
for antigen processing [30,36-38] (Figure 1A). 
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Figure 1a: Upon infection, M. tuberculosis enters via the upper airways as particle droplets, followed by the uptake by the alveolar mac-
rophages, which reach the local bronchi alveolar(s) in the lung, and replicate. The recruitment of the innate immune cells at the site of 
infection allows in principle control of Tuberculosis infection at very early times, maturation, migration of APC, and the expression of the 
costimulatory molecules, microbicides innate mechanism of the host response, such as phagosome-lysosome fusion, autophagy, oxida-
tive stress, antigen processing, inflammasome activation, antigen presentation by MHC class I, class II, and CD1 (glycolipids presentation, 
cross-priming), production of nitric oxides and other reactive intermediates that eventually will favor a inflammatory state to continue in 
a replicative state (active infection). Moreover, the production of antimicrobial peptides, such as beta-defensins and cathelicidins by the 
airway epithelium and alveolar macrophages, play a role not only in the bacterial elimination but also in the recruitment and activation 
of diverse immune cells(human {beta}-defensin-2, expressed and associated with Mycobacterium tuberculosis during infection of human 
alveolar epithelial cells. The cytokines, like the chemokines, influence the behavior of the innate cells and their recruitment of innate cells 

to the site of infection, linked with adaptive immunity. 

The activation and the production of a set of cytokines reach 
and allow the differentiation of the helper T cells to T helper 17 
(Th17) cells interleukin-17 (IL-17) producers [39-43].

In latency, the granuloma can sterilize the infection, 
becoming sclerotic and calcified, whereas in active Tuberculosis, 
granulomas are necrotic and have a caseous appearance. Latent 
bacilli coexist for survival with immune and nonimmune cells, 
including fibroblast and epithelial cells [18,29,30,44]. Myeloid 
cells continue to provide a safe, persistent, and survival niche for 
the establishment of the bacilli in the granuloma in the lung and 
tissues [18,29,30,31,34,35,44,45]. The bacilli remain quiescent in 
a non-replicative state [32,38] at the level of the lung, and occupies 
the majority of its decades-long life cycle in a state of slowed or 
arrested replication [1,4,7] (Figure 2B). However, the role of other 
targeted tissues targeted is the inducible bronchus-associated 
lymphoid tissue (BALT), a lymphoid tissue that contains B-cell 
follicles found in inflammatory lung diseases [41,45]. A recent 
report proposed that the proximity of BALT to the lung granuloma 

could influence the B cell follicles in BALT for protection against TB 
in addition to interferon-gamma (IFN-γ) [17-19,29]. While TNF-α is 
a pro-inflammatory cytokine required for an organized formation 
of granuloma [29,34,46] (Figure 1B). Furthermore, besides the 
cellular and molecular components that can be followed and 
detected, the dormancy regulon, and especially those dedicated 
to providing energy, the encoded phospholipases [46], the two-
component system, Pho P, and Pho Q[47], the phosphate-binding 
proteins Pst1 and PstS2 [48]and the proteins encoded by operons 
[46,47] could be targeted [36]. Thus, the host immune response 
could be raised at glance by the tuberculin skin test (TST) and the 
delayed hypersensitivity test (DHT) to mycobacterial antigens 
[22,48-56]. These tests is the extent to which these might reflect or 
predict the likelihood of developing active disease. This possibility 
remains a mystery because the subtle molecular balance between 
the bacilli and the host interaction is such that the latent bacilli are 
maintained, under certain conditions, and for cell cycle replication, 
and is lauded to reenter the cell cycle to ensure its propagation as a 
species [3,7,14,28,29,35,45,46].
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Figure 1b: The latent stage of the TB infection, is featured by the activation of the cellular response, once after the Mtb have triggered a 
pro-inflammatory response, with the induction of pro-inflammatory cytokines important to keep an activated state of the macrophages, 
and for the differentiation of the naïve CD4+T cells toward Th1, Th2, Th3, Th17. In this stage the host response is toward the balance to 
bacterial killing, avoid tissue damage and bacilli persistence through the formation of the granulomes. The different subsets of CD4+, the 
CD8+ T cells, the NK cells, the      -T cells all are involved in the production of the IFN-     , and other cytokines that are important to initiate, 
activate and control the cellular response to Mtb (IL-23, IL-27). The balance in the levels of the induction of for example TNF-     , IL-17, 

IL-12, IL-18, are pivotal for fitness of Mtb while keeping a molecular off switch of the host response. 

Omics technologies to address the host immune response to 

Mycobacterium tuberculosis infection

Omics technologies represent a key technological advance that 
have led the development of personalized medicine by providing 
an unprecedented amount of data enabling to dissect the molecular 
basis of many diseases and tracing detailed patients ‘molecular 
signatures on a system biology scale [22-24,57]. The technologies 
that follow the signature and imprinting of the interaction host-
pathogen, spatial, and multidimensional analysis include single-

cell RNA-sequencing (scRNA-seq) and combinatorial multimodal 
analysis of surface proteins and cellular transcriptomics [57,58]. 
Examples are the cellular indexing of transcriptomes and epitopes 
(CITE-seq) and accessibility analyses throughout transposase-
accessible chromatin (ATAC-seq) assay [46]. In terms of infectious 
diseases, elucidate the mechanism of pathogenicity [14,21,27,56-
58] and the imprinting of the signature at the interface host-
pathogen [23,24,59-63], and thus, gain insight and integrate the 
knowledge at the interface of the interaction that leads to disease 
[29,61-63]. 
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The Human Tuberculosis study, through the perspective of 
One Health [1,2], consists of, 1) the unification and integration 
of cellular and molecular tools applied to animals [29,45,54], 2) 
the integration of the factors that affect the progression of the 
disease, 3) the identification of genetic markers, and biomarkers 
for diagnostic and prognostic purposes [27,29,59,61-63]. 

One health to integrate the “ome” host response rather than 
isolated features of the adaptive immune response through new 
generation high-throughput sequencing to obtain the complete 
transcriptome (RNA Ome) [63,64] or complete quantification using 
microarrays [65] in cells from blood samples and mucosal fluids 
[27,29,62-64].

The use of the multi-omics technologies allows a deep insight of 
several processes such as:

•	 The dynamics of cells and molecules, of the signaling 
pathways [56,57] involved in the interaction host-pathogen 
interface, the architecture, the topography of the immune 
cells in the lymphoid tissues (primary, secondary, and 
tertiary) 

•	 The quantification of the repertoire of antibodies and 
receptor(s) in T and B cells, and

•	 The profile of the subset of antigen-presenting cells and 
lymphocytes under specific settings

The technology of the siRNA-seq analyses allows the 
determination of the identification and characteristics of clonal 
populations of T and B cells toward an antigen (a pathogen, 
microbial, fungi, viral to a vaccine candidate, and their association 
with different disease susceptibilities or states, as well as their 
capacity to migrate into tissues lesions [22,23,28,29,58]. A pioneer 
work on this has been the role of type I interferons signature in 
neutrophils of active TB patients [60]. A milestone in terms of 
new-generation Sequencing (NGS) is that millions of genomic 
or transcriptomic sequences can be analyzed at the same time, 
speeding the analysis of different organisms and different 
experimental and clinical settings [64-67] (Figure 2A). RNA-Seq 
technique allows transcriptomic profiles from cDNA libraries with 
the advantage of not reference genome for bioinformatics analysis, 
or no prior information on the transcriptome of either of the two 
species that are going to be analyzed [62,64] with higher levels of 
reproducibility [27,29,66,67]. It allows the identification of a large 
number of highly informative molecular markers. A set of expressed 
sequence tag (EST)-derived simple sequence repeat (SSR) and SNP 
EST-SSR and SNPs), associated with functional genes, making them 
applicable to adaptation studies. The identification of mutations 
and polymorphisms represent potential genetic markers for 

molecular diagnosis of human TB [14,15,21,29,60,63,68-70]. As it 
is outlined in Figure 2A, the contribution of each omics technology 
started in 1998 with the Mtb sequencing and the human genome 
sequencing (2003) allowing to unveil for one side the molecular 
components involved in the immune pathogenesis and for the other 
side, to dissect the genetic susceptibility to mycobacterial diseases 
(e.g., mutations in the interferon gamma receptor, MyD88, NEMO, 
and many other components in the pro-inflammatory pathway). 
From to 2015 of the use of the different omics technologies in TB 
mechanism of pathogenicity increased significantly, specifically 
at the level of epigenetics and how this is modulated by Mtb for 
success and long term survival in the lung [21,29,70]. 

Genomics

Since its introduction in 2010, next-generation sequencing 
(NGS) has become a foundational technology in genomics by 
providing detailed structural information about genomic variants 
[21,72,73]. Building on this foundation, NGS enables the detection 
of mutations and polymorphisms, which serve as genetic markers 
for the molecular diagnosis of human TB. Structural genomics 
supports the identification of single-nucleotide polymorphisms 
(SNPs) for strain typing of MTBC lineages and for determining 
drug resistance profiles. These applications facilitate the 
development of targeted diagnostic tools and inform treatment 
strategies in clinical research. Furthermore, to inform about how 
structural genomic information can influence and modulate the 
host-pathogen interaction, WGS using a DNA platform provides 
a more complete account of the genomic features of the Mtb-
infected resistance population [64,72,73]. Moreover, using WGS 
analysis, several gaps are being approached: the evolving nature 
of drug resistance in TB, the resistance population to both first-
line and second-line anti-TB drugs, and the genetic susceptibility 
to mycobacterial infections in humans through genome-wide 
studies [14,21,72-75]. Under this context, WGS-based approaches 
are quickly moving from research laboratories to clinical care and 
public health applications [64,71,76]. Thus, WHO is already using 
WGS for drug resistance surveillance and is scheduled to evaluate 
sequencing technologies for routine genotypic DST [1,76] and for 
accurate predictions for resistance to pyrazinamide, ethionamide/
prothionamide, and para-amino salicylic acid, respectively [77-
81]. The impact of this is that bona fides of NGS allow millions of 
genomic or transcriptomic sequences at lower time and reduced 
cost [77-83] (Figure 2A). 

Metagenomics

Next-generation sequencing (mNGS). One of the most significant 
milestones of metagenomics is that, despite rapid molecular 
methods such as PCR and LAMP, rapid advances in NGS technology 
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are allowing increasingly rapid and accurate sequencing of 
entire bacterial genomes at ever-decreasing cost, providing 
unprecedented depth of information [84-87]. mNGS under different 
settings can provide information about significant dynamic 
changes in the clinical manifestation of TB in the progression of 
the disease, and recurrent antibiotic treatment. A significant 
advantage of mNGS is its ability to sequence microorganisms that 
cannot be cultured under standard laboratory conditions. This 
method has improved the detection of pathogenic infections, such 
as Non-Tuberculous Mycobacterial (NTM) and in severe cutaneous 
TB cases [88-91]. In addition, similar to targeted next-generation 
sequencing (tNGS), mNGS enables the identification of specific 
pathogens in clinical samples through multiplex polymerase 
chain reaction (PCR) amplification or probe capture, resulting in 
high sensitivity and greater efficiency [92]. Indeed, it has been 
reported that through the use of mNGS is that it has been possible 
to confirm conventional metagenomics in 101 of 123 TB patients 
[19,85,86,88-90], with bacteriologically and clinically, supporting 
thus, the notion that NGS stands to revolutionize the diagnosis and 
epidemiological study of TB. Furthermore, to address the role of 
the lung microbiota in the immunomodulation of the host response 
in TB [84], especially in active or severe patients [85]. Thus, using 
BALF samples and sequencing shotgun metagenomics, it has been 
possible to assess alterations in the lung microbiota associated 
with TB infection. It has been observed that anti-TB treatment 
significantly affects the alpha and beta diversity in patients with 
PTB [85]. Moreover, determination of lung microbial signatures 
in cells from the upper airways provides unique features of lung 
microbial dynamics and clinical characteristics of TB patients, 
providing thus new insights for medicine of precision [19,85-90]. 
From the milestones, metagenomics have advanced in the last 
decade (Figure 2A) favoring the microbiome analysis in the host 
immune response to different external insults. 

Epigenomics

Epigenetic processes refer to modifications in gene expression 
that are regulated by distinct microenvironments within the 
body, such as neuroendocrine alterations, oncogenic activity, 
and exposure to chemical substances. These mechanisms are 
particularly significant in the context of host-pathogen interactions 
during the development and progression of tuberculosis. 
Epigenetic regulation of host chromatin facilitates granuloma 
formation, thereby promoting the survival and persistence of Mtb 

[89-92]. Consequently, this intracellular pathogen has developed a 
mechanism to modulate and regulate the host’s epigenetics, which 
facilitates the pathophysiology of tuberculosis and contributes to 
host susceptibility to the pathogen while also activating the host 
immune response against the invading organism, resulting in active 
disease. Under this scenery infected macrophages subsequently 
enhance their effector functions through epigenetic changes, 
making DNA more accessible for transcription [89-92]. Expression 
of these markers occurs in host-infected macrophages during 
pathogen recognition, phagocytosis, and degradation within the 
phagolysosome, activation of the inflammasome, and proteasome-
mediated antigen processing and presentation [93-95]. Epigenetic 
studies in active disease have indicated that infected macrophages 
enhance their effector functions through epigenetic alterations 
(increased hyper-methylation of IL6R, IL4R, and IL17R) that 
render DNA more accessible for transcription [19,96-102]. In 
addition, the shift in metabolism towards glycolysis and the 
secretion of pro-inflammatory cytokines are effector functions that 
are also regulated by epigenetic modifications. This plays a crucial 
role in the macrophage’s capacity to effectively respond to Mtb 
infection, and represent promising biomarkers for diagnostic and 
therapeutic strategies in infectious diseases. In addition, it has been 
shown that suberanilohydroxamic acid (SAHA), an FDA-approved 
oral drug inhibiting histone deacetylase enzymes (HDACi), can 
alter epigenetic mechanisms prior to the metabolic switch and 
enhance immune responses during Mtb infections [93,96,99,102]. 
Furthermore, modifications such as histone acetylation, changes 
in non-coding RNA, DNA methylation, and variations in miRNA 
play significant roles in the pathophysiology of tuberculosis and 
influence the infection’s outcome [93,95]. The challenge lies in 
identifying the key host proteins, non-coding RNAs, or secretory 
proteins produced by Mtb that either directly or indirectly induce 
epigenetic modifications in the host chromatin, as a strategy to 
navigate and coexist with the immune response [25,26,93-98], 
thus promoting its survival and spread. Thus, the integration 
of this research with other omics technologies has facilitated 
the identification of various molecular genetic markers and 
biomarkers related to both active and latent infections (Figure 2A). 
To the identification and recognition of host proteins, non-coding 
RNAs, and secretory proteins that directly or indirectly contribute 
to epigenetic modifications [25,26,95,96]. In resistant individuals 
there is a latency stage characterized by epigenetic regulation of 
host chromatin that promotes the development of granulomas, 
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which are comprised of immune and non-immune cells. 

It is a strategy to coexist with the host immune system and long-
term persistence and survival of Mtb [93,94]. Studies conducted 
to study the mechanisms involved in the suppression of various 
immune genes, epigenetic studies included the identification of 
microRNAs and the analysis of regions upstream of the transcription 
start sites of these genes for common sequence motifs. This insight 
sheds light on the survival strategies of Mtb within infected cells, 
characterized by a sophisticated immune “molecular switch off” 
regulated by both microRNAs and Alu sequence repeat elements 
transposable. 

Transcriptomics

Transcriptomic analysis can be conducted to investigate the 
spectrum of the disease, the regulation of gene expression during 
host-pathogen interaction, and the host immune response. This 
can inform about patterns and signatures to predict outcomes of 
the disease severity and progression, and henceforth be a tool for 
diagnosis and treatments [103-106]. The fundamental scientific 
principle of transcriptomics involves the analysis of RNA, utilizing 
methods such as exome sequencing and microarrays to quantify 
RNA transcripts in specific cells or peripheral blood during 
active, severe, or latent infections. This understanding provides 
insights into how the host’s immune response is modulated 
during and across different stages and clinical sub-stages of Mtb 
infection. The RNA-Seq technique facilitates the generation of 
transcriptomic profiles from cDNA libraries, offering the benefit of 
not requiring a reference genome for bioinformatics analysis, even 
in cases where there is no prior knowledge of the transcriptome 
for either of the two species under investigation. Additionally, 
RNA-Seq does not have a maximum quantification limit and 
demonstrates greater reproducibility [141,145,146]. It facilitates 
the identification of a wide array of highly informative molecular 
markers [63,65,103,104]. This method allows us to explore the 
host-pathogen interaction through the analysis of transcripts and 
transcriptional signatures at the interface of systemic and mucosal 
compartments [103-109]. For instance, during an active or primary 
infection, the bacteria localize to specific sites (typically the 
lungs) and are associated with clinical symptoms [103,104]. The 
transcriptional signature can serve as a valuable tool for diagnosing 
and predicting the progression of active TB disease [108,109]. 

In terms of the host immune response, the integrated analysis 
of single-cell transcriptomes and T cell receptor profiling during 
the immune response reveals the presence of T cell exhaustion 
deficiencies in patients with pulmonary tuberculosis [107] in both 
CD4+ and CD8+ and in clonally expanded CD4+ and CD8+T cells 
that also expressed the cytolytic markers granzyme (GZMK) and 
perforin [107]. In addition, this study provided insights into the 
transcriptional signature associated with the type I IFN pathway in 
neutrophils of active TB patients compared to healthy individuals, 
contributing to understanding the intricate immune pathogenesis 
involved in active TB (Figure 1B,2A). 

The transcriptome that provides insights into the non-
invasive and quiescent phenotype, contrasting active infection 
with dormancy, reveals changes when the bacteria reach an 
extra pulmonary site, such as the ocular environment. The genes 
associated with active replication, aerobic respiration, and lipid 
metabolism are either significantly downregulated or show no 
differential expression. Thus for example, it has been reported 
that in AIOF (a specific cell or niche environment) exhibits a 
downregulation of genes from the DosR regulon, suggesting a 
suppression of dormancy, similar to what is observed within RPE 
cells [47,48,105-109]. 

Of note is that when M. tuberculosis infects human whole blood, 
there is suppression of gene transcription rather than activation, 
affecting the spatial and functional effector functions. This reveals 
their role in the mechanism of host immune response, such as 
uptake, phagocytosis, activation of the proteasome, and antigen 
presentation. Interestingly, when clusters of alveolar macrophages 
in the lung are infected, a different landscape has been observed. 
Instead of a transcriptional signature, an epigenetic pattern of 
restrictive response to infection has been found. Furthermore, 
through transcriptomics, it has become possible to identify immune 
protection correlates, particularly emphasizing the importance of 
cells expressing the IFN-γ receptor in protective immunity [105-
109]. 

Various factors (environmental, genetics, age, and co-infections) 
can influence these cells’ ability to respond to IFN-γ, affecting their 
cytokine response capacity and, henceforth, a decreased immune 
response to MTb infection. On other hand, in comorbidities of TB 
and DM, transcriptional data have shown that several molecules, 
including lipocalin (LCN2), defensin alpha 1 (DEFA 1), and 
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integrin subunit alpha 2b (ITGA2B), were notably upregulated, 
while chloride intracellular channel 3 (CLIC3) was significantly 
downregulated. Moreover, interleukin 17 (IL-17) and other 
signaling pathways such as phosphatidylinositol 3-kinase (PI3K)-
AKT, and peroxisome proliferator-activated receptor (PPAR), have 
been found to play significant roles in the management of post-
infection with DM. Thus, the transcriptional profile can be utilized 
to monitor the progression of tuberculosis disease and to discover 
novel immune mechanisms [47,48,92,105-109].

Proteomics

In recent years, research has focused on understanding how the 
proteome is affected during host-pathogen interactions in TB. It 
has been suggested that gaining a deeper insight into how genome-
encoded functions are carried out and adjusted at the proteomic 
level could greatly aid in the development of therapies targeted 
specifically at TB [109-112]. The modulation of the proteome 
through epigenetic alterations, commonly referred to as post-
translational modifications (PTMs), these include processes like 
phosphorylation, particularly in proteins linked to chromosomal 
instability. Notably, protein acetylation (Ac), especially lysine 
acetylation, plays a role in regulating cellular metabolism [92,93]. 
Ac is recognized as a modification affecting numerous proteins, both 
histone and non-histone, found in various cellular compartments, 
including the nucleus, cytoplasm, and mitochondria, and it is 
involved in a range of functions from gene regulation and cell 
signaling to metabolism in both normal and pathological contexts 
[47,113-115]. A recent innovation involves the integration of 
diverse omics technologies to offer a comprehensive synthesis 
of genomic, transcriptomic, and proteomic data, ultimately 
elucidating functional relationships between genes and proteins 
[112,113]. Nevertheless, this technology faces certain constraints, 
particularly because proteomic data is not as plentiful as genomic 
data. To address these challenges, three methodologies have 
emerged: 1) Techniques like reverse phase protein arrays (RPPA) 
that enable the simultaneous collection of semi-quantitative data 
for a larger number of proteins in biological and clinical samples 
[111]. 2) This process entails the application of protein lysates to 
nitrocellulose, allowing for the quantification of selected proteins 
or phosphoproteins across multiple samples under identical 
experimental conditions. 3) The SOMA scan assay serves to quickly 
quantify a specific set of proteins, primarily aimed at identifying 

biomarkers for two significant purposes: facilitating preclinical 
and clinical drug development, and supporting clinical diagnostic 
applications related to various diseases and conditions [110-112]. 
Mass spectrometry-based proteomics (MSP) can provide insights 
into the quantitative status of a proteome by accurately identifying 
the primary chemical structures of proteins or peptides, including 
various post-translational modifications that may go undetected. 
This technology has played a significant role in deciphering cellular 
signaling networks, clarifying the dynamics of protein-protein 
interactions in numerous cellular activities, and improving the 
understanding and diagnosis of disease mechanisms [114,115]. 
Therefore, mass spectrometry (MS)-based methods have become 
the preferred choice over the last twenty years for reliable 
and nearly comprehensive identification and quantification 
of proteins in biological samples. One of the advantages of the 
MSP ) is that it offers valuable information regarding the true 
biochemical environment of the specific cell or tissue, as it enables 
the quantification of small molecules [112], and it can identify 
the primary chemical structures of proteins or peptides that 
contain multiple PTMs. The limitations of discovery proteomics 
are currently being addressed by targeted proteomics using two 
methodologies, a selected/multiple reaction monitoring (S/
MRS) [112] and parallel monitoring (PRM) [112]. These allow for 
consistent and precise quantification at low abundance levels and 
in complex mixtures. It is particularly effective for personalized 
medicine when measuring a small number of proteins across 
a large volume of patient samples [47,48,113]. Additionally, 
discovery proteomics can be utilized to explore the interactions 
between hosts and pathogens, particularly concerning the impact 
of PTMs during the interactions. This involves the use of both top-
down and bottom-up approaches. Top-down proteomics examines 
the complete sequence of the proteins being studied, aiming to 
minimize any alterations to the sample. Bottom-up proteomics 
relies on the pre-digestion of samples (usually using trypsin) 
followed by the examination of peptide fragments through high-
throughput analytical techniques [47,48,113]. It is crucial to gather 
comprehensive data on the proteins being monitored throughout 
the interaction, both in the early and late stages after infection, 
as these may serve as potential targets for specific quantification, 
necessary for diagnostic purposes [89-112].

On the other hand, proteomics to explore host’s immune 
response upon in TB, offer an in-depth understanding of protein 
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dynamics to clarify their roles and functions in this interaction. 
By analyzing data computationally, various potential T and B 
cell epitopes were identified, which were subsequently tested 
in vitro and demonstrated immunogenicity with the ability to 
influence innate immune responses [15-17]. This particular 
protein enhances the maturation of dendritic cells by elevating the 
expression of activation markers such as CD80 and HLA-DR while 
reducing DC-SIGN expression, with this interaction being facilitated 
by the innate immune receptor TLR2. Mining the human proteome 
in TB infection has led to findings such as: 1) a protein capable of 
influencing innate immune responses and promoting dendritic cell 
maturation by enhancing the expression of activation markers like 
CD80 and HLA-DR, while reducing DC-SIGN expression through 
the innate immune receptor TLR2,2) the immunodominant Mtb 
antigen, MPT70, was found to be upregulated in macrophages 
infected in vitro in response to gamma interferon (IFN-γ) or 
conditions of nutrient and oxygen deprivation. In vivo studies 
indicated that the serum levels of MPT70 in tuberculosis (TB) 
patients revealed higher IgG reactivity or detection in comparison 
to healthy controls. Furthermore, the changes and immunogenic 
properties of the Mtb proteome has been reported to be linked with 
the dormancy survival regulator (DosR) and the resuscitation-
promoting factor (Rpf) [22,29,47,48,113]. 

Among the proteins that contribute to the evasion of Mtb is 
Rv2626c, also referred to as hypoxic response protein 1 (HRP1) or 
dormancy safety regulator protein. These antigens can suppress 
TLR4 inflammatory signaling in macrophages by binding to the 
RING domain of TRAF6, thereby hindering lysine (K) 63-linked 
polyubiquitination of TRAF6, which affects E3 ubiquitin ligase 
activity [22,29,34,115]. It has been observed that this provoke a 
robust serum antibody response in cases of active tuberculosis. 
Moreover, a peptide that encompasses the C-terminal region of 
amino acids 123-131 has demonstrated significant therapeutic 
effects in a mouse model of sepsis induced by cecal ligation and 
puncture, targeting macrophages and effectively penetrating the 
cell membrane. These peptide-based treatments exhibit anti-
inflammatory and antibacterial effects for sepsis management 
[115].

Epitope analysis of PE/PPE Rv1705, part of the five type VII 
secretion systems (ESX-1 to ESX-5), revealed a dominant epitope 
located in its N-terminal domain. Epitopes associated with a 

peptide TLR4 agonist RpfE-like adjuvant at the N-terminus elicit 
a robust helper and cytotoxic CD8+ T-cell immune response, 
resulting in elevated levels of IFN-γ [114-116]. This results in 
macrophage activation and the production of cytokines necessary 
for the differentiation of naive CD4+ T-cells [37,47,48,67]. 

Metabolomics

Metabolomics is used to examine the alterations in the body’s 
metabolites across various conditions, which can be a significant 
method to determine variations in metabolites, identifying disease-
related metabolic biomarkers, mechanisms behind drug action/
metabolism, drug toxicity, microbial drug resistance, and the role 
of carbohydrate metabolism during Mtb infection. This might 
serve as indicators of the host-pathogen interaction [115,116]. 
These peptide-based treatments exhibit anti-inflammatory 
and antibacterial effects for sepsis management Metabolomics, 
alongside genomics, proteomics, and transcriptomics as part of 
systems biology, helps clarify the functionality of the genome 
of the pathogen in the context of host-pathogen interactions 
[116,117]. This approach aims to provide a better understanding 
of the mechanisms of drug action, drug toxicity, and microbial drug 
resistance. Additionally, it highlights how metabolite biomarkers 
can act as prognostic indicators for predicting treatment outcomes.

The contributions of metabolomics to the characterization of 
tuberculosis have been significant, particularly in enhancing the 
understanding of Mtb regarding (1) metabolism, (2) growth and 
replication, (3) pathogenicity, and (4) drug resistance [116-119] 
(Figure 2A). To accomplish these various tasks and objectives, 
liquid chromatography tandem mass spectrometry (LC-MS/
MS) in conjunction with comprehensive bioinformatics analysis 
has facilitated the identification of metabolites in the serum 
of patients with osteoarticular TB [116,117], to uncover new 
metabolic biomarkers for diagnosis [119]. It can also be possible 
to determine metabolites involved in several lipid metabolic 
signaling pathways, including choline metabolism, sphingolipid 
signaling, retrograde endocannabinoid signaling, as well as 
sphingolipid and glycerophospholipid metabolism [118]. To 
explore how metabolism is influenced during the interaction 
between host and pathogen in active TB, and DM [119], the 
multimodal metabolomics and lipid omics approach used to 
analyze plasma metabolic profiles revealed disturbances in 
lipid metabolism through the C18 metabolomics and lipid omics 
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Figure 2a: The timeline of the research milestones in the use of omics technologies in addressing host pathogen interaction in the 
context of Tuberculosis (A-C). It is pinpointed several of them, which allow to delineate the increasing usage of the single and combined 

omics technologies. The details of each research is delineated with the author, the year and the milestone. 

assessment [119;120]. In comparison to TB alone, the comorbidity 
with DM demonstrated increased levels of bile acids and 
compounds associated with carbohydrate metabolism, along with 
decreased levels of glutamine, retinol, lysophosphatidylcholine, 
and phosphatidylcholine [120]. Additionally, arachidonic acid 
metabolism was identified as a potentially significant component 
in the pathophysiological relationship between TB and DM, and 
within a correlation network of the markedly altered molecules, 
chenodeoxycholic acid emerged as a key node. The fatty acid (22:4) 
was present in all major modules [119,120], while various amino 
acid (phenylalanine/histidine,citrulline/arginine,kynurenine/
tryptophan) ratios differentiated TB from the control group. While 
amino acid levels (i.e., serine, glycine) and choline were lower in 
TB-DM than in TB alone [118-120]. All together, these findings 
have contributed to the discovery of new metabolite biomarkers, 
and to the understanding of metabolic alterations in TB-DM [116-

120]. On the other hand, the combination of omics, metabolomics 
and lipid omics offer a comprehensive overview of the metabolic 
transformations linked to these infections, and autoimmune 
conditions [118,119]. Moreover, and of relevance is that using 
metabolomics and transcriptomic data from patients with PTB, 
and DM has suggested that the NOTCH1/JAK/STAT signaling 
pathway plays a crucial role [119,120]. The physiological levels of 
these metabolites could serve both for fundamental understanding 
as well as for clinical use as biomarkers for PTB in patients with 
DM [119,120].

Artificial intelligence and infectious disease

Artificial intelligence (AI) has been around for over 60 years. 
Its importance has grown with the rise of omics technologies, 
generating vast amounts of data and resulting in many real-world 
applications, particularly in medical imaging [121]. In the last 
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decade, the development of artificial intelligence methodologies 
has contributed to accelerating the processing of large amounts 
of data and reducing the error rate in image analysis. In infectious 
disease research, artificial intelligence has been used for modeling 
by combining machine learning, computational statistics, and 
information retrieval with routinely collected infectious disease 
surveillance data and data science [121-126]. A search in the 
PUBMED database currently retrieves 4,339 papers focused on the 
application and development of AI methods to accelerate research 
in this area. Infectious diseases, which the WHO cites as a major 
threat to individual and public health, are a key field where AI-
driven tools offer significant potential [121-126] (Figure 3). This 
information is used to answer key epidemiological questions, 
such as the rate of transmission and incidence, the distribution, 
frequency, magnitude, the predictions and control of factors linked 
to human health and disease, as well as the determining factors of 
diseases in defined human populations. 

Remarkably, AI is revolutionizing data analysis and the 
prediction of pathological outcomes. AI models facilitate 
disease diagnosis, condition classification, and risk prediction 
[122,123]. Integrated with systems and synthetic biology (omics 
technologies), AI accelerates anti-infective drug discovery, 
enhances the understanding of infection biology, and expedites 
diagnostic development [124]. The application of artificial 
intelligence in infectious disease research involves developing 
systems capable of interpreting complex datasets [122-126]. 
These approaches facilitate analysis at multiple biological scales, 
ranging from single cells to entire populations. Furthermore, AI 
methods integrate large-scale quantitative and omics data, thereby 
expanding research capabilities and driving advancements in 
biomedicine and biotechnology. AI has the potential to identify 
pathogens in different types of samples (such as fluids or solids) 
for accurate diagnosis [125]. This can even be more optimized 
through the combination of automation with AI algorithms, thus 
increasing productivity. Since the pandemic in 2019, in terms of 
imaging animal models, it has motivated rapid developments in 
AI and medical imaging techniques, with two main objectives: 
to improve patient care, but also to fill gaps that exist in clinical 
infectious disease research [127]. 

Furthermore, AI methodologies such as machine learning 
(ML) and big data analytics (BDA) algorithms can be applied for 
analyzing diverse datasets. Thus, for example, ML can be applied 
and addressing in several key areas, such as outbreak prediction, 
pathogen identification, and drug discovery, while the combination 
of ML and BDA can aid in the prediction of for example the 
performance of antigens as vaccine candidates, the feasibility of 
subunit antigen vaccine, at the same that be helpful in the subunit 
vaccine design, discovery and characterization [128]. ML and 
DL can be focused for a better management of human infectious 
diseases and clinical research, in terms of laboratory diagnostic 
that includes, -Digital culture plate reading,-Malaria diagnosis,-
Antimicrobial resistance profiling, -Clinical imaging analysis 
(e.g. pulmonary tuberculosis diagnosis) [129] -Clinical decision 
support tools (e.g., sepsis prediction, antimicrobial prescribing), 
-and public health outbreak management (e.g. COVID-19) [129]. 
Besides, AI can address Clinical validation, such as, research with 
translational potential, and -drug discovery and microbiome-based 
interventions.

Artificial intelligence and Tuberculosis

From the 4339 paper related to the role of the AI in infectious 
disease, 1186 are related to AI and TB [126-130]. In Figure 2 
it is depicted selected milestones of AI in TB research. Thus, the 
application of artificial intelligence to Tuberculosis has been 
explored since the development of algorithms, with the performance 
starting around 2012. Since then, it has become one of the system 
biology languages with impressive results. Artificial intelligence 
(AI) has become the most novel and powerful bioinformatics tool 
in the research of almost any field of science. The current potential 
of Artificial Intelligence (AI) in infectious disease resides in that it 
has transformed the landscape of prognostic, diagnostic, and TB 
treatment. The integration of AI tools, such as machine learning 
(ML) and natural language processing (NLP), trained with vast 
amounts of clinical data, including genomic, transcriptomic, and 
imaging data [126-128], can enhance our ability to identify at-risk 
populations, predict drug resistance, identify novel mutations, 
optimize treatment regimens, predict disease outcomes, and 
tailor therapeutic interventions [66,67,105,129-131]. It can 
enhance our ability to identify at-risk populations, predict drug 
resistance, identify novel mutations, optimize treatment regimens, 
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Figure 2b: As depicted for omics technologies, despite that AI started to be used sixty years ago, in recent years, the application and 
the use of AI through the three main methodologies, deep learning (DL), machine learning (ML) and Big Data analytics (BDA) are being 
applied as prediction, evaluation, validation, differentiation in diagnostic and to improvedimmunotherapies based on the host immune 

response.

predict disease outcomes, and tailor therapeutic interventions 
[132-134]. Indeed, AI tools, such as artificial neural networks 
(ANN)(neural networks, connectionist models to solve complex 
patterns of data without previous knowledge of the distribution 
of the data), fuzzy logic (to facilitate expression through natural 
language labels and bring us closer to that natural treatment of 
language when attempting to qualify and quantify within the 
development of information systems), genetic algorithms, DL and 
artificial intelligence simulation (AIS), have become a promising 
alternative that can aid clinicians and researchers to augment 
efficacy and specificity in the diagnostic test in different types of 
samples and in computer-assisted diagnosis for chest imaging 
radiology [135,136] (Figure 3). Since current diagnostic tests, e.g., 
Tuberculin skin test (TST), interferon gamma release (IFN-γRes), 
biomarkers and the gold standard assay can only differentiate 
infected individuals from healthy ones but cannot discriminate 
between latent TB (LTBI), and active TB infection (ATB), it has 
been proposed that the application of machine learning (ML) in 
diagnosis [137] could aid in a more effective differential diagnosis 

of healthy and LTB patients. Once optimized and validated, it can be 
amenable to large-scale screening everywhere [137]. AI machine 
learning can be combined with several other methodologies, such 
as NGS, PET-CT (Positron Emission Tomography (PET) scan and 
a Computed Tomography (CT) (a combined assay of detection of 
radiotracers –PET., and the image test scan-CT., to evaluate organ 
and tissue function and thus to detect clinic manifestations of 
disease much faster than other image methods. To track diseases, 
e.g., neurodegenerative, cancer and cardiac conditions. The X-pert 
or the Gene X-pert MTB/RIF assay, a PCR assay for the detection of 
rifampicin resistance worldwide in patients with HIV-associated, 
smear-negative tuberculosis. The determination and identification 
of blood biomarkers, can aid and potentiate the TB diagnostic and 
treatment as well [138]. The line probe assay (LPAs), based both 
in PCR and electrophoresis in gel, and is an assay for the detection 
of MDR rifampicin and isoniazid (INZ) and for the detection of 
another species of mycobacteria from sputum or medium cultures 
[1,2].
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Figure 3: The interaction host-pathogen in the context of the immune pathogenesis of the TB disease can be addressed using omics 
technologies in conjunction with artificial intelligence. As outlined in figure 1 the milestones of the omics technologies have required 
the development of a biological language to interpret in active or latent TB infection, and the subclinical stages, the expression of genes, 
proteins, and metabolites in tissues, organs, and fluids can be determined using omics technologies. This  molecular information that 
can be the source and a input for IA algorithms, to predict, to evaluate basic and applied investigations for example, on the different 
types of mycobacterial drug resistance [(MDR), single-drug resistance (SDR), and extensive drug resistance (XDR)]. AI through different 
methodologies, deep learning, machine learning, Big data analytics, and neural networks to approach mechanisms of resistance, the 
genetic variability in the host response to TB infections, the bio signature at the level of the epigenome, proteome, transcriptome, 

metabolome.  The signature that allow biomarkers determinations for diagnostic and treatment.

AI can contribute to global health in two main aspects, one is in 
chest radiography, covering from simple computer-aided diagnosis 
systems to more advanced deep learning algorithms [139] 
(Figure 3). The other is in the capacity of AI-based technologies 
to discriminate EPTB and Crohn’s disease (CD). This can be done 
through the use of multiple parameters, which results in increasing 
sensitivity and accuracy versus traditional models. Moreover, a 
test library of chest X-ray (CXR) images blindly re-read by two TB 
clinicians developed with different levels of experience and then 
processed by 12 CAD software solutions [140]. A disadvantage 
of this software is that the majority of the CAD software showed 
significantly lower performance among participants with a 

past history of TB. Another weakness was that the radiography 
equipment used to capture the CXR image was also shown to affect 
performance for some CAD software. Despite this, it is indicated 
that TB program implementers now have a wide selection of 
quality CAD software solutions to utilize in their CXR screening 
initiatives [140].

How to have a snapshot to decipher the dynamics, the profile 
of the innate and adaptive immune responses, under the external 
stimuli, pathogens, and their association with other diseases, 
with other physiologic states at specific tissue and mucosal 
compartments. To these challenges, novel technologies such 
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as multi-omics technologies have become a revolution that 
generates thousands of data to interpret them and to understand 
what is happening in health and disease [131,132]. Furthermore, 
multidimensional analyses generate such an amount of data 
that the lack of appropriate language to interpret can lead to 
misunderstanding of what is happening at the interface of the 
host-pathogen interaction and in the dynamics of a population of 
cells in a specific tissue environment. Therefore, a type of biological 
model language that has become very popular is the AI, which can 
be a valuable tool to evaluate what is happening in a particular 
experimental condition in a tissue-specific environment using 
language models. AI can learn complex patterns within sequences 
(amino acids in a protein, nucleotides in genes [131,132] and 
interactions, such as the Immunological pathways. Indeed, AI is an 
artificial neural network that can capture the interaction of amino 
acids in a protein, signaling pathway, or gene expression patterns 
across long sequences [131,132]. Another example is single-
cell gene expression data formulated sequentially by creating 
a sequence in which genes appear in the order of their RNA 
expression levels in a cell. As the language model processes the 
input sequence, it internally computes an embedding, a numerical 
representation for data analysis and visualization, and fine-tuning 
the data relevant to the desired goal. The input allows a direct 
prediction approach, which is the simplest, the language model 
is given inputs and used as is to make predictions. The transfer of 
learning, in which pre-training on a larger dataset, provides the 
model with a fundamental understanding of the data, enabling 
more efficient learning of the new objective during fine-tuning with 
novel data. A model that has already been trained (pre-trained) on 
the data and is offered further trained (fine-tuned) on new data 
[119-124,131-133]. 

DL in enhancing TB diagnosis through the classification and 
detection of TB bacilli in microscopic images. The systematic 
review outlines various DL techniques used to assist in automating 
sputum smear microscopy, which traditionally relies on manual 
counting and is prone to human error [129] explored multiple 
studies, identifying DL methods such as convolutional neural 
networks (CNNs) and their ability to significantly improve the 
accuracy and efficiency of TB diagnosis. These techniques, applied 
to Ziehl–Nielsen-stained images, offer a promising solution to 
address the limitations of traditional microscopy, making TB 

diagnostics more accessible and reliable, especially in resource-
limited settings. Furthermore, prediction model for drug resistance 
has been developed  [113,129,133,137,138] developed models 
for predicting resistance in the genes coding for target proteins 
affected by first-line TB drugs. These models use various sequence 
and structural features of single nucleotide variations (SNVs) to 
capture the impact of mutations. The study focuses on mutations 
in key genes such as rpoB, inhA, katG, pncA, gyrA, and gyrB that 
are associated with resistance to drugs like rifampicin, isoniazid, 
pyrazinamide, and fluoroquinolones. The models were developed 
using several ML algorithms, including naïve Bayes, k-nearest 
neighbor, support vector machine, and artificial neural network, 
achieving an average accuracy of 85% across all examined genes 
[134-141]. In another study it has been emphasized the importance 
of accurate and rapid diagnostics to manage MDR-TB and XDR-TB 
strains [133]. It is proposed that a combination of phenotypic and 
molecular DST methods to tackle challenges such as resistance to 
new drugs, hetero resistance, and low-level resistance mutations. 
For this aim, three DL-based prediction models (PMs) using 
longitudinal CT images were developed to TB treatment outcome 
[134-139]. 

On the other hand, the use of natural language processing NLP, 
and large language models (LLMs) in the diagnosis and prediction 
of infectious disease highlights how these technologies can extract 
valuable insights from large volumes of unstructured clinical data, 
such as electronic health records (EHRs). Thus, to support early 
diagnosis and personalized treatment strategies discuss how LLMs 
can be trained on vast amounts of EHR data to predict disease 
progression and identify high-risk patients. This approach can be 
particularly useful in TB-endemic regions, where resources for 
extensive testing may be limited [113,131,133,136,142,143]. 

Discussion

The host-pathogen interaction in particular referring to the 
interaction of the M. tuberculosis at the interface of the epithelial 
and mucosal surfaces offer the possibility to study and to dissect 
the molecular mechanism of pathogenesis that can be approached 
at different scales, molecular and cellular (Figure 1A-B). The 
host immune response at this first line of defense plays a key 
role that involves to the antigen presenting cells of the innate 
immune response, macrophages, dendritic cells, neutrophils, 
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NK cells[27;28]. One activated this response that also involves to 
the complement system, there is a connection with the adaptive 
immunity, in which the B and T cells iNKT, and the gamma delta 
lymphocytes respond to the infection producing products for the 
differentiation and homing of subsets of lymphocytes to distal 
mucosal sites. One of the question pinpointed by several authors, 
is how MTB inducing a state of molecular off/Switch to overcome 
the host immune response and survive? [27,30,48]. At which level 
is the regulation, epigenetic, transcriptomic, proteomic? From 
the milestones depicted in Figure 2A, it is clear that the use of the 
different omics has been step by step along and in conjunction with 
the development and advancements of devices and equipment to 
have better resolution, precision and mode of interpretation of the 
data. In other words, approaching the epigenetics of the interaction 
host-pathogen did not limit to the use of the metabolomics as a 
diagnostic test or the transcriptomics. The limitation that reside 
in one of the other omics technology might be the compartment 
analyzed, the methods used to obtain the sample, the sensibility 
of the equipment, the technique and the methodology. By the 
scientific part depends enormously how close we can study and 
analyze the interaction and the living of Mtb in the host, specifically 
with the innate and adaptive immune cells [30,35,36,38]. All this 
before can be traduced in biomarkers of the spectrum of the Mtb 
disease (active, clinic sub stages, latent). Biomarkers translated 
as metabolites, as proteins, glycoproteins, lipids, transcription 
factors, downstream key genes of the pro-inflammatory response, 
or anti-inflammatory response, methylation patterns, autophagy, 
ubiquitination, and many more molecular components that has 
been analyzed since the first approaches using omics technologies 
(Figure 2A). Moreover, the cross talk with the microbiome at the 
lung can also give a cue in the immunomodulation of the host 
response against TB. In addition, the genetic variability plays a 
key role in the fate of the infection and in the host susceptibility 
to the TB infection. Overall the milestones described in figure 2A 
either in omics technologies focused in TB shed light in the efforts 
to understand and how is being approached the success of MTB 
for long term survival and evasion of the host immune response 
[16-18]. Finally, how the development of algorithms can aid to the 
omics analysis, can aid in different ways, not only in speeding the 
analysis of the images but in the speeding the processing of data, 
evaluation of clinic test in vivo and in vitro, the animal models 

(Figure 2B), favoring thus, importantly, the establishments of 
models of prediction either of the host-pathogen interaction as 
well as behaviors of drugs/candidate vaccine, the adjuvants, or 
enhancers of the immune response (Figure 3) [16-18,48]. Taking 
in account what it has been pinpointed above, it is noteworthy to 
mention that current present in diagnostic and treatments that 
New guidelines concerning TB diagnostics and a corresponding 
operational handbook included recommendations for targeted 
next-generation sequencing. These guidelines recommend the use 
of the uridine lateral flow lipidoarabinomannan (LF-LAM) assay 
[1] for adults and adolescents with HIV,conducting molecular 
tests on respiratory specimens and stool samples in children,and 
simultaneously utilizing molecular tests on respiratory samples, 
stool, and the LF-LAM assay on urine from children living with 
HIV. Many studies with pipelines for TB treatment encompass 
translation studies from in vitro to in vivo performance in animal 
models such as zebrafish embryos. In the treatment guidelines 
for individuals with MDR/RR-TB have been incorporated a new 
6-month treatment regimen that includes bed aquiline, delamanid, 
and linezolid, along with either levofloxacin or clofazimine, or a 
combination of both. Six new tuberculosis vaccines are in phase III 
clinical trials as of August 2024, demonstrating safety and efficacy 
[1-3]. In terms of the development of candidate’s vaccines and 
delivery systems, small-molecule chemical libraries can effectively 
identify chemo types active against tuberculosis through phenotypic 
whole-cell-based assays [46-48,60,90,161,80,114]. The application 
of mycobacteriophages when effectively formulated in Nano-
vehicles targets resistant strains, including MDR, XDR, or slow-
growing mycobacteria [67,80,95,115]. Additionally, innovations 
in micrometric and Nano metric drug delivery methods, such as 
colloidal (both vesicular and particulate) carriers. Despite that 
for a global TB drug development pipeline, the DST [4-6] and the 
incorporated urine drug susceptibility test (UDST), identify active 
TB with precision, and is accessible in low-income nations, these 
studies can be complemented with different omics, among them, 
metabolomics, proteomics, for medicine of precision [1,2].

Conclusions

The omics technologies, translating structural genomics 
information into molecular signatures (transcriptional, proteomic, 
epigenetic, metabolomics) as profiling patients phenotypes and 
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