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Abstract
    Stutzerimonas balearica (formerly, known as Pseudomonas balearica) is an environmentally tolerant bacterium with denitrification 
and bioremediation capabilities. Hence, it has been studied for industrial applications; such as, high-value chemical production using 
metabolic engineering or synthetic biology approaches. Mathematical modelling has the potential to predict biological phenotypes 
under metabolic perturbations, which can be used to guide engineering approaches. However, there is no mathematical model of S. 
balearica to-date. In this study, we present a whole cell simulatable kinetic model of S. balearica DSM 6083, pbmKZJ23, constructed 
using ab initio approach by identifying enzymes from its published genome. The resulting model consists of 737 metabolites, 533 
enzymes, and 802 reactions; which can be a baseline model for incorporating other cellular and growth processes, or as a system to 
examine cellular resource allocations necessary for engineering.
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Introduction

Stutzerimonas balearica [1] (formerly, known as Pseudomonas 
balearica [2]) is an environmental Gram-negative bacilliform bac-
terium found in diverse environments with denitrifying capabili-
ties [3,4] and the ability to degrade several organic compounds; 
such as, naphthalene [2] and thiosulfate [5]; suggesting potential 
applications in bioremediation [6]. Due to its presence and toler-
ance in diverse and stressful environments [7], such as heavy metal 
stress [8]; S. balearica has been studied for biosurfactant produc-
tion [9], bioleaching of electronic waste [10], enzyme production 
[11], and novel chemical production [12].

It is plausible that potential applications of S. balearica may 
capitalize on its diverse environmental tolerance for novel or high-
value chemical production using metabolic engineering or syn-
thetic biology approaches [13,14]. Mathematical modelling is an 
important aspect in both metabolic engineering and synthetic bi-
ology [15] as it can predict biological phenotypes under metabolic 
perturbations, which can be used to guide engineering approaches 
[16]. The two main paradigms [17] are kinetic models (KMs) and 
constraint-based models (also known as genome-scale metabolic 
models - GSMs or GSMMs). GSMs are based on reaction stoichiom-
etries and reversibilities to provide steady-state production rates 
of metabolites [18]. Kinetic models (KMs) generally use ordinary 
differential equations (ODE) that defines the rate of change of 

concentrations of the substrates involved [19], which offers a tran-
sient dynamic approach as it provides specific solutions in time for 
steady-state fluxes from the initial concentration of the substrates 
[20]. KMs and GSMs have their own advantages and disadvantages 
[21] - more specifically, KMs can address relationship between flux, 
enzyme expression, metabolite levels, and regulation; and this en-
ables KMs to provide time-course profile of modelled metabolites 
[22] which are notx` possible in GSMs. However, KMs require high-
er accuracy for parameters than GSMs [20]; hence, more demand-
ing and as a result, there are fewer large-scale KMs than GSMs [23]. 
Therefore, tools to draft a KM from existing GSM has emerged [24].

However, there is no GSM of S. balearica to-date. As such, this 
study aims to construct a KM of S. balearica DSM 6083 using ab 
initio approach by identifying enzymes from its published genome 
[25], and identifying the corresponding reaction from KEGG [26]. 
The result is a whole cell KM of S. balearica DSM 6083, named as 
pbmKZJ23 using the nomenclature proposed by Cho and Ling [22], 
which consists of 737 metabolites, 533 enzymes, and 802 reactions.

Materials and Methods
Identification of reactome

The genome of Stutzerimonas balearica DSM 6083 (Accession 
number NZ_CP007511.1) [25] was used as source to identify en-
zymatic genes. Each enzymatic gene was identified as a presence 
of complete Enzyme Commission (EC) number. Each complete 
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EC number was matched to the corresponding entry in Enzyme 
nomenclature database (https://enzyme.expasy.org/) [27], 
and linked to the corresponding entry in KEGG Ligand Database 
for Enzyme Nomenclature [26]; which served as an intermedi-
ate to link to the corresponding KEGG reaction entry or entries. 
From each KEGG reaction entry, substrate(s) and product(s) for 
the reaction can be identified. For example, adhP gene (protein 
ID WP_041107839.1) corresponded to alcohol dehydrogenase 
with EC number of 1.1.1.1, which can be used to match against 
as Enzyme nomenclature database https://enzyme.expasy.org/
EC/1.1.1.1. Hence, the corresponding entry in KEGG Ligand Da-
tabase for Enzyme Nomenclature was https://www.genome.jp/
dbget-bin/www_bget?ec:1.1.1.1, showing two reactions for this 
enzyme (R00623 and R00624). From KEGG Reaction R00623; me-
tabolites C00226, and C00003 were substrates while metabolites 
C00071, C00004, and C00080 were products (See Figure 1 for il-
lustration of steps). From KEGG Reaction R00624; metabolites 
C01612, and C00003 were substrates while metabolites C01450, 
C00004, and C00080 were products.

Model development
The reactome was modelled as a set of ordinary differential 

equations (ODEs) where each ODE represented one metabolite con-
centration as previously described [23] (Figure 1). Briefly, an ODE 
was in the form of , where pro-
duction represents a formation or synthesis of the metabolite, and 
usage represents a usage of the metabolite to form another metab-
olite. As production and usage terms are in pairs, they can be mod-
elled as a Michaelis-Menten expression, 
where kcat is the turnover number (per second) of the enzyme, Km 
is the Michaelis-Menten constant, [enzyme] and [substrate] are the 
concentrations (in molar) of the enzyme and substrates respective-
ly and N represents the number of molecules. The concentrations 
of metabolites and enzymes were set at 1 micromolar and 32 mi-
cromolar, respectively. The kcat and Km were set at 13.7 per second 
and 1 millimolar, respectively; which were the median values from 
a survey of more than 1000 enzymes by Bar-Even., et al. [28]. The 
model was written in accordance to AdvanceSyn Model Specifica-
tion [29]. 

Figure 1: Illustration of steps of reaction identification from genome to reaction definition in AdvanceSyn Model Specification [29].

Model simulation
The constructed model was tested for simulatability using Ad-

vanceSyn Toolkit [29]. Initial concentrations of ammonia (KEGG ID 
C00014), d-glucose (C00031), triphosphate (C00536), and sulfur 
donor (C17023) were set to 92600, 22000, 349100, 2000 micro-
molar, respectively; to resemble concentrations in M9 media. The 
model was simulated using the fourth-order Runge-Kutta method 
[30,31] from time zero to 1000 seconds with timestep of one sec-
ond, and the concentrations of metabolites were bounded between 
0 millimolar and 1 millimolar. The simulation results were sam-
pled every 10 seconds. 

Results and Discussion
The genome of Stutzerimonas balearica DSM 6083 is 4,383,480 

basepairs; consisting of 4004 protein coding genes and 68 pseu-

dogenes [25]. Of the 4004 coding sequences, 1044 contains EC 
numbers. Of which, 199 (19.06%) contains incomplete EC num-
bers, and 533 (51.05%) contains complete EC number that can be 
successfully matched to KEGG reactions [26] with substrate(s) and 
product(s) in KEGG compound IDs. These 533 successfully matched 
enzymes catalyze 802 reactions involving 737 metabolites (See 
supplementary materials for description of enzymes, metabolites, 
and reactions). The number of reactions and metabolites are with-
in the range listed in Microbial Metabolites Database (MiMeDB) 
[32] for Pseudomonas putida KT2440 (MMDBm0002392; 454 en-
zymes with 385 metabolites), and Pseudomonas aeruginosa PAO1 
(MMDBm0002391; 737 enzymes with 591 metabolites).

The 802 reactions involving 533 enzymes and 737 metabo-
lites were developed into a model based on AdvanceSyn Model 
Specification [29]. The resulting model, denoted as pbmZJK23, was 
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simulated using AdvanceSyn Toolkit [29]. Our simulation results 
(Figure 2) suggests that the model is free from syntax error as 
the presence of simulation results suggests that the constructed 
model can be simulated. In this case, our simulation suggests that 
coproporphyrinogen III (C03263) is being produced while alpha-
ketoglutaric acid (C00026) and 5,6,7,8-tetrahydrofolate (C00101) 

are being used. Hence, we present a simulatable whole cell KM of 
S. balearica DSM 6083, which can be a base template for incorpo-
rating other cellular and growth processes as demonstrated by 
Ahn-Horst., et al. [33] or as a system to examine cellular resource 
allocations as demonstrated by Thornburg., et al. [34] and Bianchi., 
et al. [35].

Figure 2: Selection of simulation results. KEGG compounds C00001, C00026, C00101, and C03263 are water,  
alpha-ketoglutaric acid, 5,6,7,8-tetrahydrofolate, and coproporphyrinogen III, respectively. 

Conclusion
In this study, we present an ab initio whole cell kinetic model 

of Stutzerimonas balearica built from the enzymes found in the 
genomic sequence of S. balearica DSM 6083. The resulting kinetic 
model, pbmZJK23, comprising of 737 metabolites, 533 enzymes, 
and 802 reactions.

Supplementary Materials
Reaction descriptions and model can be download from 

https://bit.ly/pbmKZJ23. 
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