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Abstract

DOI: 10.31080/ASMI.2022.05.1162

A classic autoimmune connective tissue disease, Systemic lupus erythematosus (SLE), causes injury to multiple organ systems. It 
has been demonstrated that tumor necrosis factor-induced protein 3 (TNFAIP3), typically represented as A20, is associated with the 
progression of SLE. However, it hasn’t been revealed how A20 is involved in modulating the role of A20 in SLE. In the current study, 
we determined that A20 was reduced in B cells collected from SLE patients, while the responsiveness of B cells was considerably 
elevated in SLE patients. Further investigation indicated overexpressing A20 in B cells restricted their proliferation and initiated 
their apoptosis. Moreover, trimethylation of histone H3 Lysine 4 (H3K4me3) was decreased in the A20 promoter of SLE B cells. Lysine 
demethylase 5A (Kdm5a) was significantly increased in B cells from SLE patients and negatively correlated with A20 expression. 
Further, Kdm5a knockdown increased the H3K4me3 level and A20 expression. More importantly, Kdm5a promoted the proliferation 
and inhibited the apoptosis of B cells in SLE via downregulation of A20. In general, Kdm5a promoted the proliferation and inhibited 
the apoptosis of B cells in SLE via downregulation of A20 by decreasing H3K4me3 enrichment level in the A20 promoter, suggesting 
a novel mechanism underlying SLE progression, and providing a promising therapeutic target for SLE.
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Introduction

Systemic lupus erythematosus (SLE) is characterized as one 
of the classic autoimmune connective tissue diseases which 
has detrimental effects on the injury of numerous organs, 
including muscles, joints, skin, and internal organs [1,2]. It has 
been elucidated that alongside being a multi-gene hereditary 
disease, SLE encompasses a high degree of clinical heterogeneity. 

Moreover, SLE is characterized by anomalous induction of T 
cells and response cell-mediated immunity, which deploys the 
immunopathological injury in various organs [3]. It was depicted 
that females, especially those in their childbearing age, exhibit a 
higher incidence of SLE than males [4]. Various factors, including 
genetic, environmental, and hormonal factors, are accountable for 
SLE [5]. Despite the extensive advances in medical and biological 
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sciences, the deep understanding of the pathological mechanism 
and effective therapies for SLE need further studies [6].

As an essential regulator of the immune response, B cells are 
pivotal in both acquired and natural immunity. B cells induce 
specific immune responses by acting as antigen-presenting cells 
(APCs) upon exposure to the abnormity of the environment. 
Meanwhile, B cells also exhibit themselves as the effector cells of 
humoral immunity by producing antigen-specific antibodies [7]. 
Thus, B cells are generally associated with the pathogenesis of 
SLE [8]. With the development of SLE, T cell dysfunction promotes 
uncontrolled B cell proliferation [9]. In contrast, over-hyperplasia 
of B cells enhances the autoantibodies production, which can bind 
the complement factors and corresponding autoantigens to form 
the immune complex [10,11]. Accumulation of these immune 
complexes in the vital organs can lead to immunopathological 
injuries in multiple organ systems [12]. Thus, altering the biological 
function of B cells is vital to medicate SLE.

Tumor necrosis factor-induced protein 3 (TNFAIP3), generally 
named A20, is recognized as a ubiquitin editing enzyme that 
acts as an essential player in modulating the pathogenesis of 
deregulatory immune diseases [13]. By employing the inhibition 
of A20, it has been well established that a decrease in A20 
leads to the overactivation of B cells [14]. Remarkably, A20 was 
apparently reduced in the PBMCs (peripheral blood mononuclear 
cells) collected from the SLE patients [15]. In addition, A20 gene 
polymorphisms are testified to be firmly related to the vulnerability 
of SLE [16]. Considering these indications, we affirm that A20 plays 
critical role in the pathogenesis of SLE. However, in-depth studies 
describing the role of A20 in the progression of SLE are still limited. 

Lysine demethylase 5A (Kdm5a) is a gene belonging to Jumonji 
family, AT-rich interactive domain 1 histone demethylase protein 
family. Kdm5a is responsible to control numerous cellular processes 
through demethylase-dependent regulation of gene expressions 
[17,18]. Additionally, Kdm5a is well described to employ a definite 
impact on the trimethylation of histone H3 Lysine 4 (H3K4me3). 
Briefly, Kdm5a catalyzes the H3K4me3 demethylation of the 
targeted gene promoter, thereby reducing the targeted gene 
expressions [19].

In the current study, we aimed to explore the role of A20 
in the progression of SLE as along with the detailed molecular 

mechanism underlying its functions. These data revealed that A20 
was repressed in the B cells collected from the SLE individuals, 
and the overexpression of A20 controlled the growth of B cells 
and enhanced the apoptosis in the B cells. More prominently, 
Kdm5a overexpression elevated the growth of B cell and 
diminished the apoptosis of B cells in SLE individuals by subsiding 
the A20 via reducing H3K4me3 amelioration level in the A20 
promoter, signifying an un-described mechanism underlying SLE 
pathogenesis.

Materials and Methods

Cell isolation and culture

In this study, blood samples from 23 SLE and 15 healthy 
individuals were collected. All the patients met at least four of 
the classification standards of SLE as anticipated by the American 
College of Rheumatology. All the samples were attained after 
informed consent was obtained from each individual patient. The 
ethics committee of Handan Central Hospital approved the study.

PBMCs were isolated by Lymphoprep (Axis-Shield) using 
the density gradient centrifugation of heparinized blood. Later, 
PBMCs were proceeded for B cell separation by utilizing the CD19 
Dynabeads from Dynal (Oslo, Norway). The purity of the collected 
B cells was over 90%, as specified by flow cytometric analysis. The 
collected B cells were cultured in the cRPMI-1640 growth media 
supplemented with 10% FBS, 1% penicillin/streptomycin, and 1% 
L-glutamine, and activated by CpG ODN 2006 (1 µM; InvivoGen, 
San Diego, CA, USA) for 48 hours. B cells were discretely cultured 
from three SLE patients, which were all labeled as SLE B cells. 
While normal B cells cultured were collected from three healthy 
individuals.

Cell transfection

The full-length coding sequence of human kdm5a or A20 was 
cloned into the widely available mammalian overexpression 
pcDNA3.1 plasmid vector to create pcDNA-kdm5a and pcDNA-A20 
plasmids, respectively. For experimental control, empty pcDNA3.1 
plasmid was utilized. Meanwhile, si-A20, si-kdm5a, and si-negative 
control (NC) were purchased from GenePharma (Suzhou, China). 
Lipofectamine 3000 was utilized for the transfection of these 
siRNAs or plasmids into normal B cells or SLE B cells (Invitrogen, 
San Diego, CA, USA) following the manufacturer’s description.
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Quantitative reverse transcription-polymerase chain reaction 
(qRT-PCR) analysis

RNA isolation was done by utilizing the TRIzol reagent 
(Invitrogen), following the indications of the reagent. The 
isolated RNA was checked for integrity and quantity and 
utilized to investigate the expression of A20, Kdm5a, CD40, 
CD80, and CD86 by using the One Step PrimeScriptTM RT-
PCR kit (Takara, Dalian, China). The following primers used 
in our study: A20 (F: 5’-CACGCTCAAGGAAACAGACA-3’, 
R: 5’-CATGGGTGTGTCTGTGGAAG-3’), CD40 
(F: 5’-CCTCGCCATGGTTCGTCTGCC-3’, R: 
5’-AGCCAGGAAGATCGTCGGG-3’), CD86 
(F:5’-GGACTAGCACAGACACACGGA-3’, R: 
5’-CTTCAGAGGAGCAGCACCAGA-3’), CD80 
(F: 5’-GCAGGGAACATCACCATCCA-3’, R: 
5’-TCACGTGGATAACACCTGAACA-3’), kdm5a 
(F: 5’--GATGACAGCATGGAAGAGAAAC-3’, R: 
5’-GCCAGTTTATTCAGCTCCTTTG-3’) and 
β-actin (F: 5’-CGCGAGAAGATGACCCAGAT-3’, R: 
5’-GCACTGTGTTGGCGTACAGG-3’). Gene expression was analyzed 
by using the 2−ΔΔCt method, while β-actin was used as housekeeping 
control.

Western blot

Protein was extracted using RIPA buffer (KeyGEN BioTECH, 
Nanjing, China), and quantification was done by using the BCA 
Protein Assay kit (Solarbio, Beijing, China), by following the 
instruction of the company’s manual. The isolated proteins were 
subjected to electrophoresis using sodium dodecylsulphate 
polyacrylamide (SDS-PAGE) gel, followed by allocation onto 
polyvinylidene fluoride (PVDF) membranes. Then membranes 
were blocked with 5% skim milk, and probed with the primary 
antibodies against A20, IκBβ, IκBε, kdm5a and β-actin for 14 h 
at 4°C, followed by immunoblot with horseradish peroxidase 
(HRP)-conjugated second antibody. Antibodies used here were 
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 
The blots were established with an ECL chemiluminescence kit 
from Beyotime (Shanghai, China) and examined employing Image 
J software.

Chromatin immunoprecipitation (ChIP)-qPCR

ChIP assay kit (Millipore, Billerica, MA, USA) was programmed to 
reveal the relationship between A20 promoter and trimethylation 

of histone H3 Lysine 9 (H3K9me3), histone 3 acetylation (H3Ac), 
and trimethylation of histone H3 Lysine 4 (H3K4me3). B cells were 
separated as described early, and fixed with 37% formaldehyde. 
After 10 min of incubation, the cells were dealt with glycine for 
quenching formaldehyde. Then cells proceeded for centrifugation 
and incubation with SDS-Lysis Buffer. The cell lysates were 
sonicated to achieve the DNA fragments of 200-1000 bp sizes. 
Sheared chromatin was centrifuged to the pellet and treated with 
the antibodies against H3Ac, H3K4me3 and H3K9me3 for 14 
h at 4°C. Subsequently, reaction mixture was precipitated with 
protein-A agarose beads. Beads were centrifuged, and Precipitated 
DNA was eluted and recovered using phenol/chloroform. DNA 
quantification was achieved by real-time PCR by using the A20 
promoter region primers, as previously described [20], and 
assayed for H3Ac, H3K4me3 and H3K9me3 levels.

Determination of nuclear factor-kappaB (NF-κB) activity

The NF-κB activity was calculated by using the luciferase 
assays through a Dual-Luciferase reporter assay system (Promega, 
Madison, WI, USA). In brief, B cells were plated in 6-well plates, 
and transfected with Renilla luciferase vector, pRL-TK, and NF-
κB reporter plasmid using Lipofectamine 3000 reagent. After 
incubating in media containing Lipofectamine 3000 reagent, we 
replaced the media containing Lipofectamine 3000 reagent, and 
then transfected cells with pcDNA-A20, pcDNA-kdm5a, si-A20, si-
kdm5a or the matched controls. After 48 h of incubation, the cells 
were used to calculate NF-κB activity using the Dual Luciferase 
reporter assay system.

5-ethynyl-2’-deoxyuridine (EdU) assay

B cells were harvested after transfection, and incubated with 
EdU solution (Solarbio) for 2 h. Later, B cells were fixed for 30 
min by using 4% paraformaldehyde, followed by incubating with 
glycine for 5 min with vigorous shaking. Afterwards, cells were 
washed with PBS and incubated for 10 min with 0.5% TritonX-100. 
This was followed by incubation with Apollo dye in the shady 
place, and washed with 0.5% TritonX-100 twice. Finally, cells were 
incubated with DAPI for 30 min, washed with PBS, and analyzed 
using a fluorescence microscope.

Flow cytometry

Cells were isolated and centrifugated for 5 min at 1000 g after 
transfection. The supernatant was wasted, and the pellet was taken 
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and softly dissolved in PBS solution. Subsequently, the cells were 
pelleted and dissolved in Annexin V-FITC 5solution (Beyotime). 
After incubation, cells were stained with propidium iodide for 15 
min at 25°C in the dark to analyze the apoptosis rate. Additionally, 
to evaluate the levels of CD40, CD86, and CD80 in B cells, flow 
cytometry was carried out using anti-human CD40, anti-human 
CD86, or anti-human CD80 antibody (Abcam, Cambridge, MA, 
USA). A flow cytometer (BD Biosciences, San Jose, CA, USA) was 
applied to analyze the CD40, CD80 and CD86 levels.

Statistical analysis

Our data were scrutinized through SPSS 22.0 software (SPSS, 
Inc., Chicago, IL, USA) by employing student’s t test for two groups 
or one-way ANOVA followed by Tukey post-hoc test for various 
groups. All the data are presented as the mean ± standard error of 
the mean, and a significant difference was established as P < 0.05.

Results

A20 is significantly declined in B cells from SLE patients

As assessed by qRT-PCR, the level of A20 was evidently 
reduced in B cells at both transcriptional and translational level B 
cells isolated from SLE patients as compared to B cells collected 
from healthy individuals (Figure 1A and B). In addition, we also 
established that there was an increase in the activity of NF-κB in B 
cells from SLE patients compared to B cells from healthy individuals 
(Figure 1C).

Figure 1: A20 is significantly decreased in B cells from SLE 
patients. (A and B) qRT-PCR and western blot assay were 

separately undertaken to examine the expression of A20 mRNA 
and protein in B cells from SLE patients and healthy volunteers. 
(C) The NF-κB activity was detected using a PiccaGene Lucifer-

ase Assay Kit. ***P < 0.001.

B cell reactivity was suggestively elevated in SLE individuals

As represented in Figure 2A, the mRNA expression of CD40 and 
CD86 were outstandingly amplified in B cells from SLE individuals 
when compared with the healthy individuals, while no noteworthy 
alteration was observed in CD80 expression in B cells from SLE 
patients and healthy individuals. Similar results were attained 
after the flow cytometry assay (Figure 2B).

Figure 2: B cell responsiveness was significantly elevated in 
SLE patients. qRT-PCR assay (A) and flow cytometry (B) were 

conducted to determine the expression of CD40, CD80 and 
CD86 mRNA in B cells from SLE patients and healthy 

volunteers. *P < 0.05 and ***P < 0.001.

A20 reduces proliferation and activates apoptosis of B cells

To understand the role of A20 in the pathogenesis of SLE, we 
performed gain- and loss-of-function analysis by transfecting A20 
overexpression plasmid or si-A20 into SLE B cells or Normal B cells. 
The results of qRT-PCR and western blot analysis indicated that the 
A20 expression was downregulated in normal B cells transfected 
with si-A20 compared to cells stimulated with si-NC, but was 
noticeably augmented in B cells from SLE patients transfected with 
pcDNA-A20 than that pcDNA-NC transfected B cells (Figure 3A 
and 3B). Furthermore, an increase in A20 led to an elevated NF-κB 
activity in Normal B cells; however, knockdown of A20 caused the 
decrease of NF-κB activity in B cells from SLE patients (Figure 3C). 
Consistent with this, forced downregulation of A20 decreased IκBβ 
and IκBε expression in Normal B cells, while A20 overexpression 
enhanced the level of IκBβ and IκBε in SLE B cells (Figure 3D). 
Simultaneously, loss of A20 increased the growth of Normal B cells 
(Figure 3E), as evaluated by EdU assay. Besides, overexpression of 
A20 hindered the growth of SLE B cells (Figure 3F). Meanwhile, 
we also found that a decrease in A20 restrained the Normal B cells 
apoptosis, but forced upregulation of A20 increased the apoptosis 
of SLE B cells, as determined by flow cytometry analysis (Figure 
3G and 3H).
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Figure 3: A20 inhibits proliferation and induces apoptosis of B 
cells. We transfected pcDNA-A20 into SLE B cells and 

introduced si-A20 into Normal B cells. (A) qRT-PCR and (B) 
western blot assays were performed to examine the expression 

of A20 in SLE B cells and Normal B cells. (C) The activity of 
NF-κB was detected in SLE B cells and Normal B cells. (D) 

Western blot was conducted for the detection of IκBβ and IκBε 
in SLE B cells and Normal B cells. (E and F) EdU assay was un-
dertaken to assess the proliferation of SLE B cells and Normal 
B cells. (G and H) Flow cytometry was applied to measure the 

apoptosis of SLE B cells and Normal B cells. *P < 0.05, **P < 0.01 
and ***P < 0.001.

H3K4me3 was reduced in A20 promoter of SLE B cells

To assess the effect of histone amendment on the A20 expression 
in SLE B cells, we achieved ChIp-qPCR assay, and examined the 
H3Ac, H3K4me3 and H3K9me3 expressions in association with A20 
promoter in B cells from SLE and healthy individuals. As expected, 

the level of H3K4me3 in the promoter region of the A20 gene 
considerably decreased in B cells from SLE individuals compared 
to B cells from healthy individuals. Whereas, no considerable 
difference was observed in H3Ac and H3K9me3 levels in B cells 
from SLE patients and healthy individuals (Figure 4).

Figure 4: H3K4me3 was decreased in A20 promoter of SLE B 
cells. ChIp-qPCR assay was carried out to measure the levels of 
H3Ac, H3K4me3 and H3K9me3 at A20 genomic loci in B cells 

from SLE patients and healthy volunteers. *P < 0.05.

Kdm5a was significantly increased in B cells from SLE patients 
and negatively correlated with A20 expression

To verify if the decrease of H3K4me3 is due to the decrease of 
H3K4 methyltransferase or the elevated H3K4 demethylation, we 
resoluted the level of 14 H3K4 methyltransferases (Mll1, MII2, 
Mll3, Mll4, Mll5, Setd1a, Setd1b, Setd7 and Ashl1) and H3K4 
demethylations (Kdm1a, Kdm5a, Kdm5b, Kdm5c and Kdm5d) in 
SLE B cells and Normal B cells by employing qRT-PCR assay (data 
not shown). qRT-PCR data indicated that the mRNA level of Kdm5a 
was clearly augmented in SLE B cells than Normal B cells (Figure 
5A). Meanwhile, a negative correlation was noticed between the 
A20 expression and Kdm5a expression in SLE B cells and Normal B 
cells (Figure 5B and 5C).

Kdm5a knockdown enhanced the H3K4me3 level and A20 
expression

To further evaluate the effect of Kdm5a on the levels of H3K4me3 
and A20, we used pcDNA-Kdm5a and si-Kdm5 to transfect Normal 
B cells and SLE B cells, respectively. As determined by qRT-PCR 

42

Histone Lysine Demethylase 5A Promotes the Proliferation and Inhibits the Apoptosis of B Cells in SLE

Citation: Fan Pan., et al. “Histone Lysine Demethylase 5A Promotes the Proliferation and Inhibits the Apoptosis of B Cells in SLE". Acta Scientific 
Microbiology 5.11 (2022): 38-46.



Figure 5: Kdm5a was significantly increased in B cells from 
SLE patients and negatively correlated with A20 expression. 
(A) qRT-PCR assay was done to measure the levels of Kdm5a 

in SLE B cells and Normal B cells. (B) The association between 
A20 expression and Kdm5a expression was determined in SLE 

B cells. (C) The association between A20 expression and Kdm5a 
expression was determined in Normal B cells. ***P < 0.001.

and western blot, the level of Kdm5a was significantly upregulated 
in Normal B cells transfected with pcDNA-Kdm5a compared with 
the controls. However, level of Kdm5a was noticeably decreased in 
SLE B cells transfected with si-Kdm5 (Figure 6A). ChIP-qPCR data 
indicated that overexpression of Kdm5a downregulated the level 
of H3K4me3 in Normal B cells, while silencing of Kdm5a enhanced 
the expression of H3K4me3 in SLE B cells (Figure 6B). Additionally, 
enhanced Kdm5a led to the reduced A20 expression in Normal B 
cells, while si-Kdm5a led to an elevated A20 expression in SLE B 
cells (Figure 6C). Besides, increased Kdm5a upregulated the NF-
κB activity in Normal B cells, while reduced Kdm5a expression 
declined the NF-κB activity in SLE B cells (Figure 6D). Consistent 
with this, we revealed that the IκBβ and IκBε levels were decreased 
in Normal B cells after transfection with pcDNA-Kdm5a, but was 
enhanced in SLE B cells which were transfected with si-Kdm5a, as 
examined by western blot (Figure 6E).

Kdm5a promotes proliferation and inhibits apoptosis in B 
cells via downregulation of A20

To further verify the role of Kdm5a in promoting the proliferation 
and inhibiting the apoptosis of B cells via targeting A20, we used 
pcDNA-Kdm5a or si-Kdm5a and NCs pcDNA-A20 or si-A20 to 
transfect Normal B cells and SLE B cells. EdU assay exposed that 
upregulation of Kdm5a endorsed the growth of Normal B cells, 
which was restricted by the forced increase in A20 expression 

Figure 6: Kdm5a knockdown increased the H3K4me3 level and 
A20 expression. we transfected pcDNA-Kdm5a into Normal B 
cells to overexpress Kdm5a in Normal B cells and transfected 

si-Kdm5 into SLE B cells to knock Kdm5a in SLE B cells. 
qRT-PCR assay was done to measure the levels of Kdm5a (A) 

and A20 mRNA (C) in SLE B cells and Normal B cells. (B) 
ChIp-qPCR assay was carried out to measure the level of 

H3K4me3 in SLE B cells and Normal B cells. (D) The activity 
of NF-κB was measured in SLE B cells and Normal B cells. (E) 

Western blot was conducted for the detection of IκBβ and IκBε 
in SLE B cells and Normal B cells. *P < 0.05, **P < 0.01 and ***P 

< 0.001.

along with the overexpression of Kdm5a (Figure 7A). Conversely, 
inhibiting Kdm5a suppressed the proliferation of SLE B cells, and 
this suppression was alleviated by inhibiting A20 in the presence 
of si-Kdm5a (Figure 7B). Likewise, increased Kdm5a decreased 
the apoptosis of SLE B cells, and this phenomenon was overturned 
after pcDNA-A20 co-transfection with pcDNA-Kdm5a (Figure 7C). 
Silencing of Kdm5a endorsed the apoptosis of SLE B cells, which 
was revoked by A20 silencing in the cells co-transfected with si-
Kdm5a (Figure 7D).

Discussion and Conclusion

A20 has been well established to serve as the negative mediator 
of NF-κB in response to numerous stimuli. A20 acts as ubiquitin-
editing enzyme which has capability to undo K63-linked ubiquitin 
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Figure 7: Kdm5a promotes proliferation and inhibits apoptosis in B cells via downregulation of A20. We transfected Normal B cells 
and SLE B cells with pcDNA-Kdm5a or si-Kdm5a and pcDNA-A20 or si-A20. (A and B) EdU assay was conducted to assess the 

proliferation of Normal B cells and SLE B cells. (C and D) The apoptosis of Normal B cells and SLE B cells was determined by flow 
cytometry. *P < 0.05 and **P < 0.01.

chains from receptor interacting protein-1 or TNF receptor 
associated factor 6 involved in the NF-κB signaling pathway; thus, 
terminates NF-κB signaling [21]. For instance, A20 decrease and 
UBCH7 increase synergistically persuaded the stimulation of 
NF-κB, and then led to the secretion of inflammatory cytokines, 
thereby increasing the overall SLE risk [22]. Decreasing A20 targets 
the tumor necrosis factor-α (TNF-α)-induced receptor-mediated 
inhibition of NF-κB signaling and then contributes to modulating 
autoimmunity [23]. Moreover, anomalous lessening of A20 
tempted by TNF-α triggered the reduction of A20 in SLE monocytes, 
which arbitrated the NF-κB activation, resulting in the extended 

inflammatory response in SLE [24]. However, it is not understood 
how A20 plays its role in mediating the functions of B cells from 
SLE patients. Herein, the downregulation of A20 was disclosed in B 
cells collected from SLE patients, complementary to the activation 
of NF-κB. Furthermore, enhanced A20 diminished the activation 
of NF-κB, and hindered and enhanced the growth and apoptosis 
of B cells in SLE patients, respectively. This was consistent with 
the initial studies indicating the role ofA20 in impairing the B cell 
survival and endangered against autoimmunity [25].

Even though several studies have associated A20 with the B 
cell functions in SLE patients, it is still not investigated why A20 is 

44

Histone Lysine Demethylase 5A Promotes the Proliferation and Inhibits the Apoptosis of B Cells in SLE

Citation: Fan Pan., et al. “Histone Lysine Demethylase 5A Promotes the Proliferation and Inhibits the Apoptosis of B Cells in SLE". Acta Scientific 
Microbiology 5.11 (2022): 38-46.



decreased in the B cells from SLE patients. Epigenetic modification 
is known as a heritable gene transcriptional regulation resulting 
without the changes in the sequence of genomic DNA, including 
histone modification, DNA methylation and chromatin remodeling, 
which exerts critical impact in diverse physio and pathological 
processes [26,27]. Recently, histone modification has emerged 
as an attractive subject in the epigenetic-related research [28]. 
Abnormal histone modifications have been associated with the 
development of numerous human diseases [29]. Among these 
histone modifications, lysine methylation is described as most 
illustrative histone modification until recently [30]. Precisely, 
methylation of H3K4 linked to transcriptional activation exerts 
important role in the modulation of mitosis-related genes, such as 
Hox and TBX families. Meanwhile, it has been elucidated that the 
decrease of A20 in CD4+ T cells isolated from SLE patients might 
diminish the methylation of histone H3K4 in the A20 promoter 
[31]. However, little is known about whether the decrease of 
A20 is due to histone methylation modification. In our study, we 
selected three common patterns of histone methylation (H3Ac, 
H3K4me3 and H3K9me3) to investigate the contribution of histone 
methylation in the reduction of A20 in B cells from SLE patients. 
Our results exposed that the expression of H3K4me3 in the A20 
promoter region considerably decreased in B cells from SLE 
patients, demonstrating the association of decreased H3K4me3 
in the A20 promoter with the decreased A20 in B cells from SLE 
individuals.

Additional investigation was carried out to elevate the 
decreased H3K4me3 in the A20 promoter. To verify if the lessening 
of H3K4me3 is due to the diminished H3K4 methyltransferase or 
the increased of H3K4 demethylation, we examined the level of 
H3K4 methyltransferases and H3K4 demethylations, and revealed 
that Kdm5a were enhanced in B cells from SLE individuals. We also 
revealed that the expression of Kdm5a was negatively associated 
with A20 expression in SLE B cells and Normal B cells. In addition, 
we exposed that Kdm5a knockdown considerably elevated the 
H3K4me3 levels and A20 expression, while overexpression of 
Kdm5a increased the proliferation and reduced the apoptosis of 
B cells in SLE by downregulating A20, thereby suggesting a novel 
mechanism underlying SLE pathogenesis.

Overall, we found that A20 is downregulated in B cells from SLE 
patients, and the forced expression of A20 restrains the proliferation 

and induces the apoptosis of B cells in SLE patients. Mechanistically, 
the decrease of A20 in linked with the B cells from SLE patients 
is due to the inhibition of H3K4me3 in the A20 promoter. More 
precisely, Kdm5a was enhanced in B cells from SLE patients and 
endorsed the growth and reduces apoptosis of B cells in SLE by 
downregulating A20, signifying a novel mechanism underlying SLE 
pathogenesis and providing a promising therapeutic target for SLE.
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