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Abstract

Escherichia coli is a common host for metabolite production and genome-scale metabolic models (GSMs) is an important com-
putational tool to aid in such experimental design. As of September 30, 2021; 58 GSMs have been registered with BiGG database. 
However, these GSMs had been built for different applications and no large-scale comparative study had been performed to-date. In 
this study, we examine the media components and predicted growth rates of these 58 GSMs using flux balance analysis across various 
glucose uptake rates. Only 5 out of 29 uptake rates (as proxy for media components) are common in all 58 GSMs; namely, proton, wa-
ter, ammonium, oxygen, and phosphate. 74.25% (2370 of the 3192) pairwise comparisons of predicted growth rates show significant 
differences (p-value < 0.05) and 34 of 42 pairwise comparisons of predicted growth rates within the same strain are significantly dif-
ferent. Hence, our results demonstrated substantial differences in media components and significant differences in predicted growth 
rates between the GSMs and even within GSMs constructed for the same strain.
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Introduction

Escherichia coli is a fast-growing bacterium in chemically de-
fined media and with extensive molecular tools available [1], it 
has been the linchpin in discovering many important findings in 
molecular biology and cell physiology [2]. The emergence of E. 
coli as a notable host for natural product biosynthesis [2] also led 
to successful engineering of E. coli for metabolite production [3]. 
However, a challenge faced by metabolic engineering is the com-
plexity of pathway optimization [4,5]. This is due to the myriad of 
regulatory systems that control natural metabolic pathways. The 
precise control required over the expression of several natural and 
heterologous genes to avoid limiting the desired product yield [6] 
is an arduous process when done manually. Furthermore, each op-
timization is dependent on multiple factors such as the pathway 
and compound, making this a multivariate problem that poses as a 
difficulty to many researchers [7,8].

A solution to this challenge involves the usage of a Genome-
Scale Metabolic Model (GSM), which is a fundamental framework 
built upon extensive collection and curation of biological data of 
gene annotation, gene functions, metabolites, metabolic reactions, 
enzymes, and their interactions inside a targeted organism [9-12]. 
These GSMs can be analyzed using computation algorithms such 

as constraint-based flux balance analysis (FBA) to comprehend the 
functions and objectives of the metabolic network [13]. Therefore, 
GSMs can be an in silico platform for lessening the difficulty and 
burden on the researchers [7], and had been used in many stud-
ies [12]. For example, iBsu1144 (a Bacillus subtilis GSM) was used 
to identify the effects of oxygen transfer rates on the production 
of serine alkaline protease and recombinant proteins [14], and 
iEK1101 (a Mycobacterium tuberculosis GSM) was used to study the 
metabolic status of M. tuberculosis under hypoxic conditions [15]. 

Since the 1st E. coli GSM, iJE660 [16], many E. coli GSMs have 
been developed with increasing availability of experimental data. 
The most recent E. coli GSM is the iML1515 model, which has been 
used to maximize lysine production [17]. Another commonly used 
model is iAF160 which had been used in various studies [18-20] 
including to optimize the yield of violacein [21]. As of September 
30, 2021; BiGG database [22] lists 58 E. coli GSMs1. Hence, it is diffi-
cult to know which model to use, and what the similarities and dif-
ferences are in terms of media components and predicted growth 
rate. Here, we review, and differentiate these 58 E. coli GSMs. Our 
results demonstrated substantial differences in media components 
and significant differences in predicted growth rates between the 
GSMs and even within GSMs constructed for the same strain.
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Materials and Methods
Models

58 GSMs from BiGG database [22]; namely, (A) iJR904, 
(B) iAF1260, (C) e_coli_core, (D) iAF1260b, (E) iJO1366, (F) 
iEC042_1314, (G) iECP_1309, (H) iEC55989_1330, (I) iECABU_
c1320, (J) iAPECO1_1312, (K) iEcolC_1368, (L) iECB_1328, (M) 
iB21_1397, (N) iECD_1391, (O) iECBD_1354, (P) iBWG_1329, 
(Q) ic_1306, (R) iECDH1ME8569_1439, (S) iEcDH1_1363, (T) 
iECED1_1282, (U) iETEC_1333, (V) iEcHS_1320, (W) iECIAI1_1343, 
(X) iECIAI39_1322, (Y) iECOK1_1307, (Z) iEKO11_1354, (AA) 
iLF82_1304, (AB) iECNA114_1301, (AC) iECO103_1326, (AD) 
iECO111_1330, (AE) iE2348C_1286, (AF) iEcE24377_1341, (AG) 
iECH74115_1262, (AH) iZ_1308, (AI) iECs_1301, (AJ) iECSP_1301, 
(AK) iECO26_1355, (AL) iG2583_1286, (AM) iNRG857_1313, 
(AN) iECS88_1305, (AO) iECSE_1348, (AP) iECSF_1327, (AQ) 
iEcSMS35_1347, (AR) iECDH10B_1368, (AS) iY75_1357, (AT) 
iEC1372_W3110, (AU) iUMN146_1321, (AV) iECUMN_1333, 
(AW) iUMNK88_1353, (AX) iUTI89_1310, (AY) iWFL_1372, (AZ) 
iECW_1372, (BA) iEC1349_Crooks, (BB) iEC1356_Bl21DE3, 
(BC) iEC1344_C, (BD) iEC1368_DH5a, (BE) iEC1364_W, and (BF) 
iML1515; were used.

Comparison of media components

Media components for each GSM could be extracted using Cam-
eo [7], which was available via cameo-medium-cpds command 
from AdvanceSyn Toolkit [8], and compared across GSMs for com-
monality.

Comparison of growth rates

Predicted growth rates at various glucose intakes (10, 9, 8, 7, 6, 
5, 4, 3, 2, and 1 millimole per gram dry weight per hour of glucose 
intake) were given as proxy as output from the objective function 
[23] after flux balance analysis [24] using Cameo [7], which was 
available via cameo-medium-fba command from AdvanceSyn Tool-
kit [8], by changing the glucose uptake rates (EX_glc__D_e) while 
maintaining the rest of the media components unchanged. Predict-
ed growth rates from each GSM were normalized into normalized 
predicted growth rates by calculating each predicted growth rate 
as a ratio of predicted growth rate at 10 millimole per gram dry 
weight per hour of glucose intake. Normalized predicted growth 
rates between any two GSMs were compared using paired t-test 
to identify differences in predicted growth rates across different 
glucose uptake rates under the null hypothesis of no average dif-
ferences in predicted growth rates. 

Results and Discussion

A cursory examination suggests that these 58 GSMs were built 
for specific purposes (Table 1), such as metabolite production [25] 
or examining gene essentiality [26], or for specific strains, such as 
E. coli APEC O1 [27] or E. coli W3110 [28]. However, a review of the 
applications of each GSM is likely to be extensive not the intent of 
this study as we are interested only in similarities and differences 
of each GSM in terms of media components, predicted growth rate 
and fluxes.
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GSM Model IDs Purposes and Applications
(A) iJR904 Integrate and analyze the diverse datasets, such as ‘omics’ data and to provide a more chemically accurate 

description of E. coli metabolism over GSM iJE660a [29].

Investigating the predictive power of the constraint-based modelling approach of flux distribution in com-
parison to the kinetic modelling approach [30].

Test DEF, an automated gap filling approach based on the endosymbiosis theory to fill gaps and gain more 
insights for the genomic annotation and modelling [31].

(B) iAF1260 Based off iJR904, iAF1260 serves as a BIGG database as it contains the current knowledge of E. coli metabo-
lism and this GSM is also a framework for mathematical analysis and computational predictions. iAF1260 

showed an overall increase of 4 and 16% over iJR904 predictions provide a broader perspective of cellular 
metabolism for E. coli [32].

Investigate the efficiency of GridProd [33], a method of calculating parsimonious metabolic networks and the 
production of metabolites while involving several reactions that were included in the iAF1260 model.

Repurposed into an extended version of the model, iAF1260vio, to include violacein production [21].
(C) e_coli_core Subset of the iAF1260 containing the central metabolism of E. coli [34].

Repurposed as a stoichiometric model by adding eight different pathways to produce butanol [35].

Used in comparison to the iAF1260 model to test a new pessimistic optimization framework for the identi-
fication of the optimal knock out strategies for maximum targeted bio-production under model uncertainty 

and have derived the robustness and stability of the metabolic strain perturbation through the modelling 
[36].



.
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(D) iAF1260b A slightly improved and updated version of the iAF1260 to address incorrect model predictions and most 
genes in the iAF1260b model were experimentally determined for conditional essentiality [26,37].

(E) iJO1366 Updated version of iAF1260 to include newly characterized genes and reactions where gaps in iAF1260 
network were identified [26].

Used to evaluate RIPTiDe (Reaction Inclusion by Parsimony and Transcript Distribution), a method that 
utilizes the transcriptomic abundances and parsimony of overall flux for the identification of the most cost-

effective usage of metabolism reflecting the cell’s investment into transcription with further addition of iden-
tifying the activity of context-specific metabolic pathways without knowledge of the media conditions [38].

Comparison with its repurposed versions created from different methods and tool developments to iden-
tify key properties and differences; thus, emphasizing the importance of considering enzyme constraints in 

enhancements [39].
(F) iEC042_1314 GSM for E. coli 042 [27].

(G) iECP_1309 GSM for E. coli 536 [27].
(H) iEC55989_1330 GSM for E. coli 55989 [27].
(I) iECABU_c1320 GSM for E. coli ABU 83972 [27] and used to analyze probiotic E. coli Nissle 1917 [40].
(J) iAPECO1_1312 GSM for E. coli APEC O1 [27].
(K) iEcolC_1368 Predicting growth and acetate production rate of E. coli strains and adjusted to minimize errors in acetate 

production and growth rates [25].
(L) iECB_1328 GSM for E. coli B str. REL606 [27] and used to examine adaptive evolution of carbon source utilization [41].
(M) iB21_1397 Model growth rates of the E. coli strain BL21(DE3) [42].
(N) iECD_1391 GSM for E. coli BL21(DE3) [43].
(O) iECBD_1354 GSM for E. coli ‘BL21-Gold(DE3)pLysS AG’ strain [27].

(P) iBWG_1329 GSM for E. coli BW2952 [44].
(Q) ic_1306 GSM for uropathogenic E. coli CFT073 [27].

(R) 
iECDH1ME8569_1439

GSM for E. coli DH1 [27].

(S) iEcDH1_1363 GSM for E. coli DH1 [27] for fatty acids production [45].
(T) iECED1_1282 GSM for E. coli ED1a [27].
(U) iETEC_1333 GSM for E. coli ETEC H10407 [27].
(V) iEcHS_1320 GSM for E. coli HS [27].

(W) iECIAI1_1343 GSM for E. coli IAI1 [27].
(X) iECIAI39_1322 GSM for E. coli IAI39 [27].
(Y) iECOK1_1307 GSM for E. coli IHE3034 [27].
(Z) iEKO11_1354 GSM for E. coli KO11FL [27].
(AA) iLF82_1304 GSM for E. coli LF82 [27].

(AB) iECNA114_1301 GSM for E. coli NA114 [27].
(AC) iECO103_1326 GSM for E. coli O26:H11 str. 11368 [27].
(AD) iECO111_1330 GSM for E. coli O111:H- str. 11128 [27].
(AE) iE2348C_1286 GSM for E. coli O127:H6 str. E2348/69 [27].

(AF) iEcE24377_1341 GSM for E. coli O139:H28 str. E24377A [27].
(AG) iECH74115_1262 GSM for E. coli O157:H7 str. EC4115 [27].

(AH) iZ_1308 GSM for E. coli O157:H7 str. EDL933 [27] and has been utilised in gene knock out optimization and is compa-
rable quantitatively with the model iJO1366 [46].

(AI) iECs_1301 GSM for enterohemorrhagic E. coli O157:H7 str. Sakai and has been used to test the robustness of the GSMs 
[47].

(AJ) iECSP_1301 GSM for enterohemorrhagic E. coli O157:H7 str. TW14359 [27].



Number of metabolites and reactions

The average number of metabolites (Figure 1A, and 1B; 5% 
trimmed mean) is 1898. Models iWFL_1372 [27] and iECW_1372 
[27] have the highest number of metabolites, 1973 metabolites; 
while e_coli_core has the lowest number of metabolites, 72 me-
tabolites. The average number of reactions (Figure 1C, and 1D; 5% 
trimmed mean) is 2697, with the highest (n = 2782) in iWFL_1372 
[27] and iECW_1372 [27], and lowest (n = 95) in e_coli_core [34]. 
Model e_coli_core is the subset of iAF1260 [32], containing only the 
central metabolism of E. coli [34], which is often used for educa-
tional purposes [51] and tool testing [52-54]. Another notable left 
skewed number would be 761 metabolites found in iJR904 [29], 

which was used to integrate and analyse the diverse datasets and 
to provide a more chemically accurate description of E. coli me-
tabolism over GSM iJE660a. The average number of genes (Figure 
1E, and 1F; 5% trimmed mean) is 1322, with iML1515 [49] being 
the highest (n = 1516) and e_coli_core [34] being the lowest (n = 
137). Model iML1515 [49] is the most recent E. coli GSM model 
catalogued in BiGG [22], and there is a trend of increasing number 
of genes over the years – from 904 genes in iJR904 [29] to 1515 
genes in iML1515 [49]. Hence, it is likely that this trend will con-
tinue as iML1515 [49] contains only 34.4% of the 4401 genes in E. 
coli K-12 genome [55].
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(AK) iECO26_1355 GSM for E. coli O26:H11 str. 11368 [27].
(AL) iG2583_1286 GSM for E. coli O55:H7 str. CB9615 [27].

(AM) iNRG857_1313 GSM for E. coli O83:H1 str. NRG 857C [27].
(AN) iECS88_1305 GSM for E. coli S88 [27].
(AO) iECSE_1348 GSM for E. coli SE11 [27].
(AP) iECSF_1327 GSM for E. coli SE15 [27].

(AQ) iEcSMS35_1347 GSM for E. coli S-M-S-3-5 [27].
(AR) iECDH10B_1368 GSM for E. coli K-12 str. DH10B [27].

(AS) iY75_1357 GSM for E. coli K-12 str. W3110 for production of 2-keto-4-hydroxybutyrate and 1,3-propanediol [28].
(AT) iEC1372_W3110 GSM for E. coli K-12 str. W3110 [27].
(AU) iUMN146_1321 GSM for E. coli UM146 [27].
(AV) iECUMN_1333 GSM for E. coli UMN026 [27].

(AW) iUMNK88_1353 GSM for E. coli UMNK88 [27].
(AX) iUTI89_1310 GSM for E. coli UTI89 [27].
(AY) iWFL_1372 GSM for E. coli W [27].
(AZ) iECW_1372 GSM for E. coli W [27].

(BA) iEC1349_Crooks GSM for E. coli ATCC 8739 [48].
(BB) iEC1356_Bl21DE3 GSM for E. coli BL21 (DE3) [48].

(BC) iEC1344_C GSM for E. coli C [48].
(BD) iEC1368_DH5a GSM for E. coli DH5a [48].

(BE) iEC1364_W GSM for E. coli W [48].
(BF) iML1515 Most complete genome-scale reconstruction of the metabolic network in E. coli K-12 MG1655 to carry 

out a comparative structural proteome analysis of 1122 E. coli strains and identify multi-strain sequence 
variations, as well as providing a knowledge base for integrating modelling framework bridging systems and 

structural biology linked to 1515 protein structures.

Investigate the creation of extended metabolic models through augmenting the iML1515 model with reac-
tions from promiscuous enzyme activity using PROXIMAL and EMMA as a prediction tool and a way to com-

pare the generated putative derivatives with a set of metabolites documented in ECMDB [50].

Repurposed as an enzyme-constrained model, ec_iML1515, using GECKO method to assist in the clarifica-
tion of intracellular mechanisms and improve the production titre of lysine while accurately predicting and 

designing cellular phenotypes [17].

Table 1: Purposes and Applications of Each GSM.

.
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Five media components are common in All GSMs

Five media components are common in all GSMs (Table 2) out 
of 29; namely, EX_h_e (proton), EX_h20_e (water), EX_nh4_e (am-
monium), EX_o2_e (oxygen), and EX_pi_e (phosphate); all of which 
can be found in M9 minimum media [18] under oxic environments. 
This suggests that these 5 components are critical for aerobic func-
tions of E. coli. Not taking account of core metabolism (e_coli_core) 
and the earliest GSM (iJR904), 14 other media components are 
common in the remaining 56 GSMs.

Of which, 6 media components (calcium, chloride, magnesium, 
potassium, sodium, sulphate] are found in M9 minimum media. 
The remaining 8 media components (copper, cobalt, ferrous ion, 
ferric ion, manganese, molybdate, tungstate, and zinc) were known 
to affect E. coli growth. Copper alone shows slight growth inhibi-
tion of E. coli O157:H7 but more pronounced growth inhibition in 
the presence of lactic acid [56]. Cobalt has been shown to induce 
stress to E. coli [57] and toxicity at high concentration [58]. An early 
study by Ratledger and Winder 1964 had demonstrated effects or 
iron (ferric and ferrous ions) and zinc on E. coli growth [59] and the 
growth supporting effects of iron had also been re-demonstrated in 
a more recent study [60]. The presence of manganese is suggested 
to have a protective effect of E. coli to high oxidative stress [61] by 
activation of manganese-superoxide dismutase [62]. Similarly, mo-
lybdate [63] and tungstate [64] has also been shown to inhibit E. 
coli growth.

Substantial differences in the media components in various 
models lends difficulties in conducting complete comparative 
study such as that of Cheong., et al. [18] across multiple GSM mod-

els. As a result, only the effects of glucose on growth across models 
is studied. However, it is surprising that glucose (EX_glc__D_e) is 
not found in iECIAI1_1343, which is GSM for E. coli IAI1 [27]. As we 
are interested in examining the predicted growth rate and fluxed 
under varying glucose condition, iECIAI1_1343 was removed from 
study as the model cannot respond to glucose.

On the other hand, Ex_leu_L_e (leucine), EX_thm_e (thiamine), 
and Ex_trp_L_e (tryptophan) is found in only one GSM each: iECD-
H10B_1368 [27], iECIAI39_1322 [27], and ic_1306 [27] respec-
tively. The reason for having these specific nutrients in the media 
is due to auxotrophic nature of these strains from experimental or 
predicted findings. Leucine is found only in iECDH10B_1368, a GSM 
for E. coli K-12 substr. DH10B [27], which lacks leucine synthesis 
pathway; thus, requires leucine for growth on minimal medium 
[65]. Thiamine is found only in iECIAI39_1322, a GSM for E. coli 
IAI39, which is predicted to lack thiamine synthesis [27]. This has 
resulted in the routine addition of thiamine into minimum media 
to support growth [66]. Tryptophan is found only in ic_1306, a GSM 
for uropathogenic E. coli CFT073, which is similarly to be predicted 
to be auxotrophic to tryptophan [27]. This is partly supported by 
an earlier study suggesting that E. coli CFT073 catalyzes trypto-
phan during serine and aspartate depletion [67].

Substantial differences between predicted growth rates from 
varying glucose uptake rates across 58 GSMs

Of the 3192 pairwise permutation of possible non-self-compar-
ison paired t-tests (Figure 2), 74.25% (n = 2370) are significant 
(p-value < 0.05); of which, 2036 paired t-tests are highly signifi-
cant (p-value < 0.01). Hence, only 25.75% (n = 822) are not sig-
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Figure 1: Statistics (Number of Metabolites, Reactions, and Genes) in Each GSM. The GSMs are arranged by year, from earliest (iJR904) 
to latest (iML1515).



nificant (p-value > 0.05). This suggests substantial differences be-
tween normalized predicted growth rates across the 57 GSMs. As a 
whole, the average number of GSMs not significantly different from 
a specific GSM in terms of predicted growth rate is 14.4 (Figure 3), 
with iECP_1309 [27] and ic_1306 [27] having the least differences 
(not significantly different with 49 other GSMs) and most differ-
ences (significantly different from all 57 other GSMs) respectively. 
In terms of phylogram analysis based on Manhattan distance [68], 
it is interesting to note that iAF1260 [32] and iAF1260b [26,37] 

are most different to the other 56 GSMs (Figure 4). However, 
iAF1260b [26,37] can be seen as a slight improvement and correc-
tion of iAF1260 [32]; hence, not surprising that they are clustered 
together. Nevertheless, these results suggest significant differences 
between the 58 examined GSMs. This suggests that GSMs of the 
same species may vary substantially, which is supported Nouri., et 
al. [69] compared the prediction of 3 GSMs for Zymomonas mobi-
lis ZM4 and reported demonstrating differences between various 
models of the same species.

Media Components Name Found or Not Found in GSMs in this Review
EX_h_e H+ exchange Found in all GSMs
EX_h2o_e H2O exchange Found in all GSMs
EX_nh4_e Ammonia exchange Found in all GSMs
EX_o2_e O2 exchange Found in all GSMs
EX_pi_e Phosphate exchange Found in all GSMs
EX_co2_e CO2 exchange Found in all GSMs except iECIAI1_1343
EX_fe2_e Fe2+ exchange Found in all GSMs except e_coli_core
EX_glc__D_e D-Glucose exchange Found in all GSMs except iECIAI1_1343
EX_k_e K+ exchange Found in all GSMs except e_coli_core
EX_na1_e Sodium exchange Found in all GSMs except e_coli_core
EX_so4_e Sulfate exchange Found in all GSMs except e_coli_core
EX_ca2_e Calcium exchange Found in all GSMs except e_coli_core, and iJR904
EX_cl_e Chloride exchange Found in all GSMs except e_coli_core, and iJR904
EX_cobalt2_e Co2+ exchange Found in all GSMs except e_coli_core, and iJR904
EX_cu2_e Cu2+ exchange Found in all GSMs except e_coli_core, and iJR904
EX_fe3_e Fe3+ exchange Found in all GSMs except e_coli_core, and iJR904
EX_mg2_e Mg exchange Found in all GSMs except e_coli_core, and iJR904
EX_mn2_e Mn2+ exchange Found in all GSMs except e_coli_core, and iJR904
EX_mobd_e Molybdate exchange Found in all GSMs except e_coli_core, and iJR904
EX_tungs_e Tungstate exchange Found in all GSMs except e_coli_core, and iJR904
EX_zn2_e Zinc exchange Found in all GSMs except e_coli_core, and iJR904
EX_cbl1_e Cob(I)alamin exchange Found in all GSMs except e_coli_core, iJR904, iML1515, and iECIAI1_1343
EX_ni2_e Ni2+ exchange Found in all GSMs except e_coli_core, iJR904, iAF1260, and iAF1260b
EX_sel_e Selenate exchange Found in all GSMs except e_coli_core, iJR904, iAF1260, and iAF1260b
EX_slnt_e Selenite exchange Found in all GSMs except e_coli_core, iJR904, iAF1260, and iAF1260b
EX_nac_e Nicotinate exchange Not found in all GSMs except iECDH10B_1368, and iECUMN_1333
EX_leu__L_e L-Leucine exchange Not found in all GSMs except iECDH10B_1368
EX_thm_e Thiamin exchange Not found in all GSMs except iECIAI39_1322
EX_trp__L_e L-Tryptophan exchange Not found in all GSMs except ic_1306

Table 2: Comparison of Media Components.
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Figure 2: 3192 Paired t-test P-values of Predicted Normalized Growth Rates Across 57 GSMs. Panel A and B are consecutive images. 
Green represents p-value more than 0.05. Yellow represents p-value between 0.01 and 0.05. Red represents p-value less than 0.01. 

Black represents self-comparison.

Figure 3: Number of GSMs Not Significantly Different to a Specific GSM by Normalized Predicted Growth Rates. The average number 
of non-significances is 14.4; hence, the green bars are GSMs with more similarity than average while the red bars are GSMs with less 

similarity than average in terms of normalized predicted growth rates.



34 of 42 pairwise comparisons show substantial differences 
between predicted growth rates from GSMs for the same strain

Paired t-test analyses between predicted growth rates within the 
same strain demonstrated 34 of the 42 paired t-tests to be signifi-
cant (Table 3). The two GSMs (iEcolC_1368, and iEC1349_Crooks) 
for E. coli ATCC 8739 shows insignificant difference in normalized 
predicted growth rate (p-value = 0.350). Of the 3 GSMs (iB21_1397, 
iECD_1391, and iEC1356_Bl21DE3) for E. coli BL21(DE3), only 
between iECD_1391 and iEC1356_Bl21DE3 is not significant (p-
value = 0.232) – the other 2 pairwise comparisons are significant 
(p-value ≤ 0.0240). The two GSMs (iECDH1ME8569_1439, and 
iEcDH1_1363) for E. coli ATCC DH1 shows significant difference in 
normalized predicted growth rate (p-value = 0.00112). Between 
the 8 GSMs (iJR904, iAF1260, e_coli_core, iAF1260b, iJO1366, 
iML1515, iY75_1357, and iEC1372_W3110) for E. coli K-12; only 

3 comparisons, (a) iAF1260 and e_coli_core (p-value = 0.287), (b) 
e_coli_core and iAF1260b (p-value = 0.293), and (c) iJO1366 and 
iY75_1357 (p-value = 0.158); are not significant – the rest of the 
25 pairwise comparisons are significant (p-value ≤ 0.0421). The 
normalized predicted growth rates of the 3 GSMs (iWFL_1372, 
iECW_1372, and iEC1364_W) for E. coli W are not significant (p-val-
ue ≥ 0.101). Finally, the normalized predicted growth rates of the 4 
GSMs (iECH74115_1262, iZ_1308, iECs_1301, and iECSP_1301) for 
E. coli O157:H7 are significant (p-value ≤ 0.00112). 

These findings are consistent with our result comparing across 
all 58 GSMs (Figure 2 to 4). More importantly, these findings also 
show that GSMs for the same bacterial strain may not yield similar 
results. This may be a result of differences in experimental setup to 
obtain the required metabolomic data for model construction de-
spite using the same strain as Shiratsubaki., et al. [70] had demon-
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Figure 4: Phylogram of GSMs Based on Normalized Growth Rates. Distance matrix was calculated using Manhattan distance [68].



strated that GSMs built for specific developmental stages can result 
in result in different prediction results. Furthermore, differences 
between in vivo experimental outcomes and in silico predictions 
from GSMs are commonplace [18,19,69,70], which had resulted in 

methods aiming at reconciliating such differences [71]. However, 
such differences in GSMs may also provide a fertile basis for ex-
amining the differences between various E. coli strains [70] or to 
construct a strain-independent E. coli model [69,72].

E. coli Strain
Comparison of Growth Rates Across Various Glucose Uptake Rates Paired t-test

p-valueGSM 1 GSM 2

ATCC 8739 iEcolC_1368 iEC1349_Crooks 0.350
BL21 (DE3) iB21_1397 iECD_1391 0.001

iB21_1397 iEC1356_Bl21DE3 0.024
iECD_1391 iEC1356_Bl21DE3 0.232

DH1 iECDH1ME8569_1439 iEcDH1_1363 0.001
K-12 iJR904 iAF1260 0.003

e_coli_core 0.001
iAF1260b 0.003
iJO1366 0.001
iML1515 0.001

iY75_1357 0.001
iEC1372_W3110 0.001

iAF1260 e_coli_core 0.287
iAF1260b 0.022
iJO1366 1.77E-05
iML1515 1.17E-04

iY75_1357 1.71E-05
iEC1372_W3110 1.78E-05

e_coli_core iAF1260b 0.293
iJO1366 0.001
iML1515 0.001

iY75_1357 0.001
iEC1372_W3110 0.001

iAF1260b iJO1366 1.72E-05
iML1515 1.12E-04

iY75_1357 1.65E-05
iEC1372_W3110 1.72E-05

iJO1366 iML1515 0.001
iY75_1357 0.158

iEC1372_W3110 0.036
iML1515 iY75_1357 0.001

iEC1372_W3110 0.001
iY75_1357 iEC1372_W3110 0.042

W iWFL_1372 iECW_1372 0.302
iEC1364_W 0.286

iECW_1372 iEC1364_W 0.102
O157:H7 iECH74115_1262 iZ_1308 0.001

iECs_1301 0.001
iECSP_1301 0.001

iZ_1308 iECs_1301 0.001
iECSP_1301 0.001

iECs_1301 iECSP_1301 0.001

Table 3: Paired t-test Analysis of Normalized Growth Rates Within Each Strain.
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Conclusion

In this study, 58 GSMs for E. coli were compared for their me-
dia components and predicted growth rates across various glucose 
uptake rates. Substantial differences in media components were 
found and our results suggest significant differences in predicted 
growth rates between the GSMs and even within GSMs constructed 
for the same strain.

Supplementary Materials

Data files for this study can be downloaded from https://bit.ly/
CompareECO_GSM.
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