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Review Article

Microorganisms have the capability to survive in all extremity’s 
environments. The most preferred range of environmental condi-
tions for microorganisms are temperature (20 - 40oC), pH (nearly 
neutral), pressure (1atm), adequate amount of oxygen, water sup-
ply, nutrients and salts concentration. But there are a few organ-
isms which survive in extremely harsh conditions where normal 
life fails to flourish these organisms are known as "Extremophiles". 
In order to differentiate different forms of microorganism there is 
still optimal range where most of the organism grows they are the 
termed as mesophiles [1]. The name "Extremophiles" term was 
coined by R D Mac Elroy in 1971 after the discovery of the first 
extremophile discovered was Thermus aquaticus in Yellow stone 
park by microbiologist. 

Extensive studies on thermophiles has shown similarity with 
the last universal common ancestor (LUCA) found in hot water or 
hot springs. This has drawn the conclusion that life on earth may 
have been originated from hot water springs and its surrounding 
environments with geological chemical compositions [2].

A previous report released from NASA, reflects the existence of 
these extremophiles in virtually every corner of this planet, celes-
tial bodies and extra-terrestrial space. This supports the specula-
tions that these invaluable creature extremophiles have on life, 
evolution and their presence beyond this planet [3].
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In mid 60’s and 70’s the discovery of Thermus aquaticus from Yellowstone National park in USA which could survive at extremely 
high temperatures of 80°C, opened gates towards exploration of extremophiles that emerged as a new field of microbiology. 
The microorganisms that can thrive at extreme environmental conditions where normal organisms fail to sustain are known as 
extremophiles. These microorganisms are found mainly in hot water springs, deep ocean vents, volcano pits, deep ice zones, deserts, 
saline lakes, mines, rocks beds and radiation zones etc. Since last two decades, the research data on extremophiles has increased 
exponentially as the enzymes extracted from the extremophilic microorganisms have shown potency in various industries like 
paper and pulp, leather, detergent, diary textiles, food and beverages, pharma, medicines and biotech industries. The current review 
encapsulates the knowledge about various extremophiles and their potential therapeutic and biotechnological applications.

Introduction Extremophile term is derived from Latin word ‘Extremus’ mean-
ing 'extreme' and Greek word ‘philia’ meaning ‘love’. Extremophiles 
are characterized in all three domains of life archaea, prokaryotes 
and eukaryotes. Most of the known extremophiles are microorgan-
ism.

Extremophiles were previously unknown, but the exploitation 
of extremozymes at an industrial scale emerged as promising field 
that had various industrial application [4]. After development in 
the field of extremophiles number of societies and forum were es-
tablished. The first International Congress on Extremophiles was 
convened in Portugal (1996) and establishment of scientific journal 
on “extremophiles” in 1997. An International society for extremo-
philes (ISE) was also formed (2002) to share the ideas, information 
and development in the field of extremophiles all over the world.

At the global level, since the discovery of extremophiles, many 
societies and union have been formed to investigate extremophiles 
and their role in various industries as well as their mechanisms, 
which may provide therapeutic insights in the field. Alkaline pro-
teases isolated from Turkey and Malaysia have shown enormous 
potential in detergent industry such as bleach and thermal stabil-
ity [5]. In addition, novel thermoalkalophilic such as Anoxybacillus 
sp strain KB4 from Turkey have been identified in [6], Zimbabwe 
[7], Antarctica and Mexico [8] that have an application in protein 
processing [9] and bioenergetics of ATP synthesis [10]. At genome 
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Contribution towards isolation, characterization and industrial 
application of novel enzymes derived from extremophiles and 
polyextremophiles has gained momentum since last decade which 
is shown in table 1. Some of the most significant studies are men-
tioned here in this review [19].

Novel bacterial species such as Bacillus alkalitelluris twi3 was 
reported to produce a metalloprotease from leather waste [20]. Ex-
tremophiles act as bio factories for novel antimicrobial agents and 
cytotoxins [21].

Multifactorial level of extreme stability of proteins can be ex-
ploited for protein engineering potentials [22]. Alkaline proteases 
from Bacillus sp were reported to be important in leather, textile 
and food industries [23]. Cold active alkaline proteases that are 
screened and characterized have a potential use in the various 
industries like detergents, textiles and leather. Production of xy-
lanase using polyextremophilic Bacillus HX-6 strain which is opti-
mized with respect to carbon and nitrogen source. It can optimally 
grow on high temperature and high pH high which make them good 
product for industries. Proteolytic enzyme is isolated from polyex-
tremophiles which have potential in industrial sector [24]. Further 
application of these proteases was exploited following rigorous 
standardization procedures in bioreactor to produce at an indus-
trial scale. Proteases have been used extensively in formulation of 
efficient detergents that offer an advantage for a safer environment 
in the polluted cities [25]. In addition to proteases, xylanase isolat-
ed from geothermal spring in Maharashtra, India was reported to 
be important for pulp industry. Thus, the study of micro-organism 

Isolation, characterization and industrial applications

level, transcriptional mechanisms regulating gene expression in 
most proteases are unknown, some specific protease are of great 
relevance for human disease, such as Yersinia pestis and Legionella 
pneumophila or in the malaria parasite Plasmodium falciparum 
[11].

Many natural environments pose two or more extremities such 
as acidic hot springs, alkaline hypersaline lakes and dry sandy des-
erts. These environments harbour acidothermophiles, halo ther-
mophiles, haloalkaliphilic, and UV/radiation resistant oligotrophs, 
respectively [12]. Many halophiles are also alkaliphiles and ther-
mophiles which are studied in different species of bacteria at dif-
ferent temperature, pH and salt concentration. Polyextremophiles 
from Bacillus sp produce various industrially important enzymes 
such as alkaline and serine proteases, amylases, pectinases, cel-
lulases, lipases and xylanases [13]. A psychrophilic and slightly 
halophilic methanogen Methanococcoides burtonii was isolated 
from perennially cold, anoxic hypolimnion of Ace Lake, Antarctica. 
Furthermore, several new species in known genera of Sulfolobales 
(Acidianus, Metallosphaera) have also been reported, as well as 
a new member of the Thermoplasmatales, Thermogymnomonas 
acidicola have been reported [14]. In the last decade, an extracellu-
lar thermostable acid protease from a thermoacidophilic archaeon 
Thermoplasma volcanium was discovered. 

As we know extremophiles are very difficult to culture in labo-
ratory but by using metagenomics tool it can reveal the different 
aspects of extremophilic organisms [15].

Humans have been continuously exploiting enzymes for their 
use. Since long they are evolving regularly from their old and tradi-
tional processes to trending new process and ideas that are more 
robust. From the discoveries of novel enzymes and their proper-
ties it can be screened and give desired product for the biotechno-
logical and industrial purpose. 

By following old and traditional ways to stabilize enzymes to 
adapt in harsh conditions by using basic and biotechnological ap-
proaches [16].

The chemical reactions carried out in these processes are not 
optimized because enzymes from mesophiles are using at different 
extreme conditions like salt concentration, pH, temperature and 
pressure etc. 

These processes suffer various drawbacks like being more cost 
affecting and less efficient. But the use of readily available forms 
of enzymes extracted from extremophiles are more promising and 
efficient because they are already stable under extreme environ-
ments. Each microorganism is different and they have their own 
mechanisms to adapt in extremes of environments [17].

The organisms which survive in extreme environments are 
called as ‘extremophiles’ and the enzymes produced by extremo-
philes are known as ‘extremozymes’ due to presence of these en-
zymes extremophiles can withstand extreme environments (high 
temperature, high salt concentration and high pressure) where 
normal enzymes begin to degrade even without consumed in the 
biochemical or physio-chemical reactions. The chemical, genetic 
and immobilization modification can be made to improve the ef-
fectiveness of enzymes in order to obtain upgraded biocatalysts 
with higher stability and activity in various industrial processes. 
After discovery of various enzymes which has been engineered 
and isolated from different sources to get desired product, which 
has advantages in various biotechnological industries like paper 
and pulp industry, textiles industry, soap and detergents industry, 
leather processing industry, dairy industry, food and beverages, 
dairy industry, baking industry, meat industry, pharmacology and 
drug manufacturers, biofuel production, biomining, medicines, 
bioremediation, anti-inflammatory, antimicrobial, anti-cancer and 
also exploitation for different therapeutic applications [18].
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S.No. Types of Extremophiles Enzymes Applications References
1 Thermophiles Amylases, α-Amylases, glucoamylase, 

α-glucosidase, pullulanase, amylopul-
lulanase and xylose/glucose isomerases

Glucose and fructose for  
sweeteners, Starch processing. 

(55)

Alkaline phosphatase Detergents, stereo-specific  
reactions, dairy products

(56)

Alcohol dehydrogenase Chemical synthesis (57)
Antibiotics Pharmaceutical (58)
DNA ligase Ligase chain reaction (LCR) 

Diagnostics
(59)

DNA polymerases Genetic engineering (59) 
Dehydrogenases, Oxidation reactions (60) 
Glycosyl hydrolases (amylases, pullula-
nase, glucoamylases, glucosidases, cel-
lulases, xylanases),

Diagnostics Starch, cellulose, chi-
tin, pectin processing, textiles Hy-
drolysis of starch, Cellulose and 
related poly- and oligosaccharides

(55)

Oil degrading microorganisms Surfactants for oil recovery (61)
Proteases and lipases 

Lipases, pullulanase, amylopullulanase, 
and proteases, esterases 

Baking and brewing and amino 
acid production from keratin, De-
tergents, Hydrolysis in food and 
feed 

(58)

S-layer proteins and lipids Molecular sieves (62)
Sulphur oxidizing microorganisms Bioleaching, coal, and waste gas 

desulfurization
(63)

Thermophilic consortia Waste treatment and methane 
production

(64)

Xylanases Paper bleaching (65)
2 Psychrophile Alkaline phosphatase Molecular biology (66)

Amylases Detergents, (67)
Cellulases, Hemi cellulases Detergents, formation of ethanol, 

feed, textiles 
(68) 

β-galactosidase Lactose hydrolysis (69, 70)
Lipases Detergents, food, cosmetics (71)
Methanogens Methane production (72) 
Proteases, Renin, Lipases Dehydroge-
nases 

Cheese maturation, dairy produc-
tion, detergents Biotransforma-
tion’s, biosensors 

(59)

3 Acidophile Amylases, Glucoamylases Starch processing (55, 73)
Chalcopyrite concentrate Valuable metals recovery (74, 75)
Proteases, Cellulases Feed component (66)
Sulfur oxidation Desulfurization of coal (64, 76)

4 Alkaliphile Alkaliphilic halophiles Oil recovery (77)
Cellulases, proteases Polymer degradation in  

detergents, food and feed 
(55, 78-81)

Cyclodextrins, Collagenase Hide dehairing (82) (83)
Pectinases Pulp bleaching  

Fine papers and degumming 
(55, 65, 84)
(85) (86) 

Proteases, cellulases, xylanases, lipases 
and pullulanases 

Detergents (87)

Proteases, Elastases, keratinases Gelatin removal on X-ray film (88)
Various microorganisms Antibiotics (89)
Xylanases Foodstuffs, chemicals and pharma-

ceuticals
(22, 90)

Citation: Jagdish Parihar and Ashima Bagaria. “The Extremes of Life and Extremozymes: Diversity and Perspectives". Acta Scientific Microbiology 3.1 
(2020): 107-119.



110

The Extremes of Life and Extremozymes: Diversity and Perspectives

5 Halophile Proteases Peptide synthesis (91)

Dehydrogenases Biocatalysts in organic media (92) 

Polyhydroxy alkanoates Medical plastics (93)
Rheological polymers Oil recovery (94)
Compatible solutes Protein and cell protectants in 

a variety of industrial uses, e.g. 
freezing, heating 

(95)

Whole microorganism Hypersaline waste transformation 
and degradation. 

Ion exchange resin regenerate dis-
posal, producing poly (β -glutamic 
acid; PGA) & poly (β-hydroxy bu-
tyric acid; PHB) 

(96)

Bacteriorhodopsin  Optical switches and photocurrent 
generators in bioelectronics

(97) 

Eukaryotic homologues (e.g. myc onco-
gene product) 

Cancer detection, screening anti-
tumor drugs

(98) 

Lipids Liposomes for drug delivery and 
cosmetic packaging 

(99) 

Lipids  Heating oil  (100)
Compatible solutes Protein and cell protectants in 

a variety of industrial uses (e.g. 
freezing, heating)  

(101)

(102)

Various enzymes (e.g. nucleases, 
amylases, proteases) γ-Linoleic acid, 
β-carotene and cell extracts (e.g. Spiru-
lina and Dunaliella) 

Various industrial uses (e.g. fla-
vourings agents) 

(103) (104)

Microorganisms  Health foods, dietary supplements, 
food colouring, and feedstock

(105) 

Microorganisms 

Membranes 

Fermenting fish sauces and modi-
fying food textures and flavours

Waste transformation and deg-
radation (e.g. hypersaline waste 
brines contaminated with a wide 
range or organics) 

(106) (83) 
(80) (81) 

6. Piezophile Whole microorganism Formation of gels and starch gran-
ules. Food processing and antibi-
otic production 

Microbially enhanced oil recovery 
process

(58)

7. Metalophule Whole microorganism Ore-bioleaching, bioremediation, 
biomineralization 

(29)

8. Radiophiles Whole microorganism Bioremediation of radio-nuclide 
contaminated sites

(107)
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Degradation of organo-pollutants 
in radioactive mixed-waste envi-
ronments

(108)

9. Toxitolerant Proteases Lipases Peptide synthesis, enzymatic ca-
talysis in non-aqueous solvents 
Esterification/ transesterification 

(80)

Cyclodextrin glucanotransferase Synthesis of non-reducing cyclo-
dextrins

from starch, utilized in food, phar-
maceutical, and chemical indus-
tries

(109)

Whole microorganism Solvent bioremediation and bio-
transformation 

(103)

10. Micro-aerophile Catalase, Superoxide dismutase  Produce toxic substances like su-
peroxide free radicals and perox-
ides 

(110)

11. Oligotrophs/oligophiles Bioassay of assimilable organic 
carbon in drinking water

(68) 

12. Organic solvent tolerant 
microbes 

Bioconversion of water insoluble 
compounds (e.g. Sterols), biore-
mediation, biosurfactants

(103)

Table 1: Different types of Extremophiles, Enzymes and their Applications.

Thermophiles are the microorganism having optimal growth 
temperatures ranging from 45oC to 60oC [32]. Thermophiles are 
found mostly in hot spring and deep ocean hydrothermal vents [1]. 
Thermophiles grows in the high temperatures and this property 
to stand in high temperatures make them more important and the 
enzymes extracted from these organisms are more stable at higher 
temperature. Due to their thermostable activity (ability to oppose 

Thermophiles

They are further classified into three sub classes: 1. Simple 
thermophile which thrive in the temperature range of 45oC to 60oC. 
2. Extreme thermophiles capable to survive in the temperature of 
60oC to 80oC. 3. Hyperthermophiles in which temperature adaptive 
range is from 80oC to 120oC [34].

Classification of thermophiles

Halophiles are the microorganisms which can grow in higher 
salt concentration (> 0.3 M) of NaCl. Halophiles are divided into 
sub-classes based on their survival in different salt concentration 
[35]. Extreme halophiles which can survive at a salt concentration 
of 1.5 to 5.2 M; Moderate halophiles can grow at 0.2 to 0.5 M salt 
concentration whereas non-halophiles shows best growth at a low-
er concentration (<0.2 M NaCl). Halophiles have different mecha-
nism to survive in different saline environments. It is found in all 
three domains archaea, bacteria and eukaryotes Halophiles play an 
important role in biotech industries like detergent, textile and pulp 
and paper industries [36].

Halophiles 

from extreme conditions offers huge technical and economic ad-
vantages [26]. These organisms are also exploited in production 
of antimicrobials which have an impact on health sector [27]. Ex-
ploration and characterization of agriculturally and industrially 
important halo alkalophilic bacteria from hyper saline Sambhar 
lake, India [28]. Recently, alkaline proteases were discovered in 
Bacillus circulans which is compatible with many detergent, thus 
have high potential in detergent industries. Moreover, recent stud-
ies are directed towards production of more powerful and precise 
novel enzymes using computational biology [29]. Studies carried 
out on phylogenetic profiling of niche-specific Bacilli from extreme 
environments of India, have also shown diversity among the spe-
cies [30].

On the basis of different parameters like pH, temperature, salt 
concentration, pressure and water availability etc. Extremophiles 
are divided into many categories like alkaliphiles, acidophiles, 
thermophiles, psychrophiles, barophiles, xerophiles, radiophiles 
and halophiles etc [31].

thermal inactivation which is irreversible and indicates half - life of 
enzyme at particular temperature), these are widely used in many 
biochemical and biotechnological processes in various industries. 
They can increase the rate of reactions and lower the risk of con-
tamination and other modifications due to rise in temperatures 
[33]. Therefore, it is the most explored class of extremophiles due 
their thermostable enzymes. 
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Metallophiles are the organism that grows in the environment 
possessing high metal concentration. The increasing pollution 
level on land and in water produce immense threat to every living 
being. In order to remove heavy metal toxicity from soil and water 
we need to exploit more metallophiles [42]. Metallophiles can be 
helpful in different processes like biomining, bioleaching, bioac-
cumulation, biomineralization, bioremediation etc. to lower down 
the concentration of heavy toxic metals [43].

Metallophiles 

These microorganisms can thrive in high concentrations of 
heavy metals [44]. Today by use of heavy metals (Cu, Cr, Zn, Cd, 
Co, Pb, Ag, Hg) in various industries causing contamination of soil 
air and water which is consumed by wild life as well as humans 
can cause serious health hazards. In order to reduce the toxicity 
of the environment. Metallotolerant microbes can be used as they 
have great potential to use these heavy metals in their metabolism 
and convert them to less toxic or completely into new compounds 
which are harmless. Metallophiles are highly potent in extracting 
expensive metals from waste effluents of industries by use of bio-
mining. Heavy metals presence inhibits growth of microorganisms. 
But some of the microorganisms can tolerate high metal concen-
trations by accumulation of heavy metals or either develops some 
efflux pumps which can remove heavy metals outside the cells. 

Metallotolerants

Psychrophiles are those microorganisms which can grows at 
temperature of 15oC and below where other microbes cannot sur-
vive [48]. They are mainly found in deep ice zones like Arctic and 
Antarctica ice beds, polar zones, glaciers etc.

The family of microorganism showing traits of psychrophiles 
are mainly Bacillus, Arthrobacter, Pseudomonas, Pseudoalteromo-
nas, Vibrio, Penicillium Halorubrum, Methanogenium, Cladosporium 
Crystococcus and Candida etc. Proteases and keratinases from psy-
chrophiles have good use in dehairing of skin as well as in reduc-
ing the toxicity during the process. The enzymes extracted from 
psychrophiles are also used in detergents and food industries. The 
psychrophilic proteases can be used in textiles industries for stone 
washing, meat tenderizing and processing of fruit juice process-
ing using pectinase [49]. These extremozymes can also be used for 
waste management [50].

Psychrophiles

The microbes majorly grow at neutral pH but there are many 
microorganisms which can grow at low or high pH [37]. They are 
classified as acidophiles (low pH) and alkalophiles (high pH) [38] 
depending on their survival at acidic and basic pH conditions.

Alkalophiles are the organisms that shows optimal growth at pH 
8 or more and show slow growth at a pH of 6.5. Alkalophiles are 
mostly found in soda lakes and in marshy areas [39].

pH dependent

Acidophiles are the microorganisms, which grow at a pH of 3.0 
or less. Acidophiles can also adapt themselves in different envi-
ronments like high temperatures, hyper saline plains and in the 
environments with heavy toxic metal concentrations [40]. The en-
zymes that are produced by acidophilic microorganism like prote-
ases, amylases, cellulose ligases, esterase etc. these enzymes have 
the ability to survive in very low pH by maintaining the pH inside 
the cell [41].

Acidophiles

Barophiles grows at very high-pressure conditions found in 
deep ocean beds [45]. These organisms produce enzymes that are 
stable at very high pressure and temperature [46]. Deep oceans 
and sea are best place for these microorganisms to flourish and 

Barophiles

commonly found species are Pyrococcus, Moritella, Methanococcus 
and Shewanella. Barophiles have main applications in food indus-
tries. Enzymes from barophiles adapt at high pressures which can 
be used in sterilization process for packed food products. The re-
search on barophiles is mainly focusing on correlation between the 
pressure, temperature, growth of barophiles and their molecular 
mechanisms of adaptation [47].

Water is important for every living being, if it insufficient then 
it is extreme environment to particular organism. The organisms 
which adapt in desiccation develop anhydrobiosis (ability to sur-
vive from very less intercellular water and they are metabolically 
inactive) and these organisms are known as Xerophiles. Xerophiles 
grow in dry environmental conditions where water availability is 
very less and enzyme from these organisms are used in agriculture 
industry to improve the water management in desert plants [51].

Xerophiles

Radiophiles are those microbes which can tolerate to high ra-
diation dosage. These microorganisms can be used in treatment 
of nuclear wastes. They have ability to survive in high radiations, 
stress and even with regular DNA damage [52]. These organisms 
have great potential in nuclear waste remediation. Deinococcus ra-
diodurans is the toughest microorganism which can withstand high 
radiations, high temperature, high pressure and other extreme con-
ditions. Radiophiles are mostly found in bacteria as well as in some 
of the cyanobacteria [53].

Radiophiles

These microorganisms grown best where oxygen concentration 
is approximately 2 to 10% in environment it is approximately 20%. 
They do not require more oxygen for their growth. 

Microaerophiles
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The microorganisms which possess more than one extreme or 
harsh conditions are known as poly extremophiles [54]. Example, 
halophiles which can thrive in alkaline rich soil as well as in high 
temperatures like Halonatronum saccharophilum and Natranaero-
bius thermophilus high temperature as well as in high salt concen-
tration called as halo-thermophile [12]. High pH and high tempera-
tures found in hot spring water are called as acid-thermophiles.

Polyextremophiles

Thermophilic microorganism has big issue to adapt in higher 
temperatures without disrupting their biomolecules. Due to this 
ability thermophilic microbes possess many adaptive proteins 
which elevate their stability and function. The adaptation of ther-
mophilic proteins is due to elevated number of hydrophobic cores, 
disulfide bonds, ionic bonds, co-factors, prosthetic group and their 
interactions. These factors help to confine the flexibility of ther-
mostable proteins even without the denaturation at higher tem-
perature [111].

Adaptation of important extremophiles
Thermophilic proteins

Halophilic microorganisms thrive themselves under high con-
centration of many ions like sodium and potassium. To survive in 
these types of hyper ionic concentration they assimilate amino ac-
ids, sugars and other biomolecules until osmolarity inside the cell 
will be equal to ionic concentration outside. Protein produced by 
halophiles completely depends on salt to fold properly. In order to 
get properly fold they have some adaptations like large number of 
acidic residues on surface, a smaller number of hydrophobic resi-
dues and many amino acids which enhance flexibility of an enzyme 
[112-115].

Halophilic proteins

Psychrophilic protein has many problems because of confined 
motion among molecules. So, in this situation psychrophiles have 
to increase their kinetic energy in order to finish reaction in low 
energy state. To adapt themselves in low energy they need to pos-
sess large hydrophobic interface, less hydrogen bonds, disulfide 
bonds, salt bridges. So, they can get negative charge and hence it 
increases stability of proteins and flexibility. In addition, they also 
possess some surface loops and few prolines which inhibit the 
movement of protein backbone [116-122].

Psychrophilic proteins

In piezophilic microorganisms adapt in high pressure environ-
ment by reducing the molecular dynamics as well as cellular struc-
tures. They also possess few glycine and prolines which inhibit the 
flexibility of proteins by lowering the conformational space [123-
125].

Piezophilic proteins

These microorganisms thrive in highly acidic conditions. There 
are many adaptation strategies to sustain in such environments 
such as impermeable plasma membrane which resists any change 
in pH. It is mainly due to fixed nature, large isoprenoid core, mem-
brane channels internal buffers and ether linkages [126-134].

Acidophilic proteins

Alkalophiles are microorganisms that show growth at pH 8 or 
above. These microbes have special adaptive feature that they use 
their proton pump to maintain internal neutral pH. They thrive in 
extreme condition by active and passive mechanisms. In addition to 
polyamines, peptidoglycan (positive charge), they have polymers of 
cell wall (negative charge) which support strengthen the cell mem-
branes. There are many researches going on to find out the mecha-
nisms of protein adaptation in high pH. They had concluded that in 
catalytic residues they modify their hydrogen bonds which results 
in providing shield to catalytic residues and hence resist change in 
total protein charge [39,135,136].

Alkalophilic proteins

There are many microorganisms which are included in extremo-
philes like radioresistant which adapt themselves in very high radi-
ations by modifying their DNA repair mechanisms. Some extremo-
philes are able to survive in presence of heavy metals which has 
caught attention due to its important role in bioremediation either 
by consuming the heavy metals or converting them into less toxic 
compounds. 

Overall, we can conclude that for adaptation in extreme environ-
ments, extremophiles have their specific proteins, enzymes and dif-
ferent mechanisms respective to their category, which helps them 
to sustain the extremities [137-140].

Other extremophilic proteins

Conclusion
The new class of microorganisms, called as extremophiles has 

emerged in the recent past. As the name suggests these microor-
ganisms live in extreme conditions. These extreme parameters 
are mainly high or low temperatures, pH, high salt concentrations, 
low nutrient availability, low water content, heavy metals, high 
radiations and other conditions etc. The enzymes extracted from 
extremophiles are called extremozymes and are highly stable as 
compared to the other enzymes which are either inactive or un-
stable when met with extreme conditions. Extremozymes have 
high potential in many industries like paper and pulp, leather, food 
and beverages, detergents and soap, textiles, pharma, medicine and 
many biotech industries. Due to stable nature of extremozymes in 
natural form they can be exploited for betterment of humans. The 
study of extremophiles and their potential in different industries 
will be advantageous for bio-based economy and the research in 
this field has lot of potential. 
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