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Crude oil is a mixture of hundreds of hydrocarbon compounds 
comprising of the n-alkanes, isoprenoides and the cyclics. These 
are the saturated fractions and they are the most studied because 
they constitute the greater percentage in composition [1,2]. Other 
fractions which are unsaturated include aromatic hydrocarbons, 
nitrogen, sulfure and oxygen (NSO) containing compounds and the 
very large highly branched asphaltene molecules. These unsaturat-
ed fractions are regarded as the most toxic and persistent. Biodeg-
radation sequence proceeds from the n-alkanes, followed by the 
isoprenoids and then the stearenes, hopanes and higher molecular 
weight aromatics [2,3]. Whereas degradation of hydrocarbons by 
oxygen respiring microorganisms has been known for more than 
a century, utilization of hydrocarbons under anoxic conditions has 
been investigated properly only during the past 20 years [4-8].

Introduction 

Introduction: Biodegradation of hydrocarbons under methanogenic conditions has been widely investigated for a variety of crude 
oil components but the influence of various substrates during methanogenic biodegradation is scanty in literature.

Objective: The main objective is to evaluate the role of metabolic substrates in methanogenic biodegradation

Materials and Methods: Methanogenic biodegradation of crude oil sludge was investigated using chemical and molecular approach-
es. 

Results: 16S rRNA gene sequences recovered from the samples revealed significant presence of Marinobacterium (63%), Pseudomo-
nas (3%) alongside with acetotrophic Methanosaeta (16%) and hydrogenotrophic Methanobacterium (5%). The resident microbial 
community was able to reduce the gravimetric weight of residual oil by 65.5% (with complete degradation of C5-C17 n-Alkane frac-
tions) in non-amended samples and 94.13% (with complete degradation of C5-C25 n-Alkane fractions) in substrate amended samples 
during the 60-day incubation period. As biodegradation progressed, acetotrophs consume acetate at the rate of 0.41 Mm/day-1 while 
hydrogenotrophs consume hydrogen at the rate of 0.59 Mm/day-1. 

Conclusion: Our results showed that the resident methanogenic archaea that dominated the anaerobic microbial community were 
largely responsible for the anaerobic degradation of hydrocarbons in crude oil sludge and degradation rates were enhanced with 
substrate amendment. Considering the relatively high number of facultatively anaerobic Marinobacterium and significant presence 
of Pseudomonas in the sequenced data, we speculate that the bacteria were at least partially responsible for biodegradation of crude 
oil components potentially acting as syntotrophic organisms with methanogens to convert crude oil to methane.

In hydrocarbon bearing and impacted subsurface environments, 
oil components can be anaerobically biodegraded via a number of 
anaerobic electron accepting processes including nitrate, iron and 
sulfate reduction, however when available electrons are depleted or 
not available, hydrocarbon biodegradation may proceed via metha-
nogenesis [9]. Methanogenic hydrocarbon metabolism involves 

the interaction between syntrophic bacteria and methanogens. 
During the interaction, syntrophic bacteria degrade hydrocarbon 
substrates to products such as acetate and or hydrogen and carbon 
dioxide which are then used by methanogens to produce methane 
[10,11]. Biodegradation of hydrocarbons under methanogenic 
conditions has been widely investigated for a variety of crude 
oil components such as n-alkanes [12-14], iso-alkanes [15], ben-
zene [16], toluene [17,18] and Polycyclic aromatic hydrocarbons 
[19,20]. Recently reports have emerged demonstrating the suscep-
tibility of whole crude oil components to methanogenic biodegra-
dation [10,21-23]. Though the recent studies demonstrated that 
methanogenic hydrocarbon metabolism are usually dominated 
by the acetotrophic and hydrogenotrophic methanogenic species, 
none has clearly demonstrated how enrichments with individual 
growth substrates can influence methanogenic hydrocarbon deg-
radation and methanogenesis. Considering the accumulation of 
huge amounts of growth substrates in oil storage tank sediments, 
wide varieties of hydrocarbon utilizing microorganisms and the 
anoxic environment, availability of required substrates may play 
some active roles in the biodegradation of petroleum hydrocar-
bons by the resident microbial community. This speculation pro-
vided strong incentives and motivation to investigate the roles of 
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In this paper, we investigated how substrate enrichments can 
enhance biodegradation of petroleum hydrocarbons in crude oil 
storage tanks by the resident anaerobic microbial flora dominated 
by methanogens.

Genomic DNA was extracted from 40 ml of sample using the 
FastDNA Spin kit (MP Biomedical, Santa Ana, CA). Extracted DNA 
(2 ng μL−1) was then amplified through 25 PCR cycles [31]. The 16S 
rRNA genes were amplified by PCR (95°C, 3 minutes; 25 cycles of 
95°C 30s, 55°C 45s, 72°C 90s; 72°C 10 minutes; final hold at 4°C) 
using the FLX Titanium amplicon primers 454T-RA and 454T-FB 
(20 pmol μL-1) that have the sequences for 16S primers 926f (aaa 
ctY aaa Kga att gac gg) and 1392r (acg ggc ggt gtg tRc) as their 3′-
ends. Primer 454T-RA had a 25 nucleotide A-adaptor sequence of 
CGTATCGCCTCCCTCGCGCCATCAG, whereas primer 454T-FB had a 
25 nucleotide B-adaptor sequence of CTATGCGCCTTGCCAGCCC-
GCTCAG. PCR product quality was verified on an 0.7% agarose gel 
and PCR products were purified with a QIAQuick PCR Purifica-
tion Kit (Qiagen) following which their concentrations were de-
termined on a Qubit Fluorometer (Invitrogen), using a Quant-iT 
dsDNA HS Assay Kit (Invitrogen) as described elsewhere [32]. PCR 
products (typically 100 ng) were sent to the Genome Quebec and 
McGill University Innovation Centre for pyrosequencing with an 

The pH was analyzed with an Orion pH meter (model 370). The 
concentration of dissolved sulfide was analyzed by the diamine 
method [24]. Sulfate was assayed by ion chromatography using a 
conductivity detector (Waters 423) and an IC-PAK anion column 
with borate/gluconate buffer at a flow rate of 2 ml/min (4.6 x 150 
mm, Waters). Ammonium was assayed with the indophenol meth-
od. Key organic acids (lactate, acetate, propionate and butyrate) 
were determined using an HPLC equipped with a UV detector (Wa-
ters, 2487 Detector) set at 220 nm and an organic column (Alltech, 
250 x 4.6 mm) swept with 25 mM KH2PO4 (pH 2.5) as described in 
[25]. Total petroleum hydrocarbons were measured as described in 
standard methods of [26].

Chemical Analysis

Gas chromatographic analysis of oil samples

DNA extraction, amplification, sequencing and bioinformatic 
analysis

1 µl of the extracted oil was injected by an auto injector (7683 
B series, Agilent technologies, Santa Clara, CA) into a gas chro-
matograph (7890 N series, Agilent) that was connected to a mass 
selective detector (5975 C inert XL MSD series, Agilent). The gas 
chromatograph was equipped with an HP-1 fused silica capil-
lary column (length 50m, inner diameter 0.32 mm, film thickness 
0.52m, J&W Scientific) with helium as a carrier gas. The GCMS sys-
tem was operated as described in [29].

Materials and Methods
Sample collection

substrate availability in the anaerobic biodegradation of crude oil 
components by the resident anaerobic microbial flora

Oil sludge samples were collected from oil storage tanks due 
for cleaning in 1 Liter sterile Nalgene sample bottles. They were 
all filled to the brim to exclude air. Samples were transported to 
the laboratory within 48 hrs of collection in iced bags for analysis. 
Samples for DNA analysis were shipped to the University of Calgary 
under low temperature and upon arrival to the laboratory were 
kept in a CO2 anaerobic hood with an atmosphere of 90% N2 and 
10% CO2 (v/v) for further analysis.

Minimal salt media was prepared as described in Mills., et. al 
(1978) [27]. The medium was anaerobically dispensed in 150 ml 
aliquots into 250 ml serum bottles with a gas phase of 90% nitro-
gen and 10% carbon dioxide and closed with sterile butyl rubber 
stoppers. The experiment was carried out in three sets and each set 
was in triplicates to allow periodic measurements of oil content and 
methane production in individual bottles. Only one set was amend-
ed with substrates (10 mM acetate + 15 mM hydrogen) while 50 ml 
of sample was added in all the three sets. Methanogenic activity was 
inhibited in the control tube (minimal salt broth+ sample only) by 
addition of 2 mM of 2-bromoethane sulfonate as described in [28]. 
The media were anaerobically incubated for 60 days and at every 
30 day interval, samples were withdrawn for estimation of residual 
hydrocarbon content and gas chromatographic analysis. 

Biodegradation studies

The estimation of the oil content of the sample was by partition 
gravimetric method as described in standard methods of [26], with 
little modifications in our laboratory. Fifty (50) ml of the sample 
was extracted with 100 ml of the solvent (Freon) and the solvent 
was allowed to evaporate in the oven after the extraction. If the or-
ganic solvent is free of residues, the gain in weight of the tarred 

Estimation of residual hydrocarbon content

flask is mainly due to the oil content and is calculated thus;

Oil content (ppm) = 
(A-B) X 1000

ml sample

A= Weight of tarred flask+ residue; B= Weight of residue

Determination of nC17/Pristane and nC18/Phytane ratios

Pristane and Phytane are low molecular weight isoprenoids 
used as biomarkers in the experiment to prove that biodegradation 
by microbial action actually took place. They have a retention time 
of 30 - 40 minutes are resistant to biodegradation. Hence measure-
ment of the decreasing trends in the ratio of n-alkane peaks clos-
est to pristane (n17) and that of phytane (n18) respectively is an 
indication of biodegradation and the rate of decrease indicates the 
severity of biodegradation. Measurement of nC17/Pristane and 
nC18/Phytane ratios were carried out as described in [30].

Measurement of Methane production

Maximum methane concentration at the head space was mea-
sured monthly by GC-FID using a Carlo ERBA HRGC 5160 fitted 
with Chrompak plot fused silica capillary column (30 m x 0.32 
mm) using helium as a carrier gas. Methane was quantified on the 
basis of the peak area and calibrated using CH4 standards (Scien-
tific and Technical Gases Ltd. New Castle, UK) as described in [30].
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Results

Substrate utilization tests

Serum bottles (125 ml Wheaton) containing 70 ml of sulfate 
free CSB-K medium (composition in g/L: NaCl, 1.5; CaCl2.H2O, 0.21; 
MgCl.H2O, 0.54; NH4Cl, 0.3; KCl, 0.1; KH2PO4, 0.05; resazurin (0.5 
ml); trace elements solution, 1 ml and tungstate selenite (1 ml) 
were inoculated with 5 ml of oil sample under anaerobic condi-
tions. The bottles were closed with butyl stoppers, crimp sealed 
and purged with oxygen free nitrogen. Triplicate microcosms were 
amended with methanogenic substrates (10 Mm of acetate and H2). 
Control tubes do not have oil samples. Mild steel coupons (50 x 5 x 
1 mm) were used as source of metallic iron. The coupons were pre-
treated with HCl for 2 minutes to remove surface corrosion prod-
ucts and rinsed immediately with distilled water. Coupons were 
then washed with acetone, dried, carefully weighed and two were 
placed in each serum bottles. Methane concentration at the head 
space was measured weekly by GC-FID using a Carlo ERBA HRGC 
5160 fitted with Chrompak plot fused silica capillary column (30 m 
x 0.32 mm) using helium as a carrier gas. Methane was quantified 
on the basis of the peak area and calibrated using CH4 standards 
(Scientific and Technical Gases Ltd. New Castle, UK). Residual con-
centrations of acetate and hydrogen were also measured weekly 
and the consumption rate were as described in [28].

FLX Instrument, using a GS FLX Titanium Series Kit XLR70 (Roche 
Diagnostics Corporation). Data analysis was conducted with Phoe-
nix 2, a 16S rRNA data analysis pipeline, developed in house [32,33]. 
High quality sequences that remained following quality control and 
chimeric sequence removal were clustered into operational taxo-
nomic units at 3% distance by using the average linkage algorithm 
[34]. A taxonomic consensus of all representative sequences from 
each of these was derived from the recurring species within 5% of 
the best bitscore from a BLAST search against the SSU reference 
data set SILVA102 [35]. Amplicon libraries were clustered into a 
Newick-formatted tree using the UPGMA algorithm with the dis-
tance between libraries calculated with the thetaYC coefficient 
[36] as a measurement of their similarity in the Mothur software 
package [37]. The Newick format of the sample relation tree was 
visualized using Dendroscope [38]. The entire set of the raw reads 
is available from the Sequence Read Archive at the National Cen-
ter for Biotechnology Information (NCBI) under accession number 
SRR1508445.

Chemical characterization of oil sludge samples

Results of some relevant chemical parameters of oil sludge 
sample are shown in table 1. Sample pH was 8.25 with low salin-
ity (2.76 mM) and zero sulfate but with significant values of accu-
mulated volatile fatty acid substrates especially acetate (2.96 mM). 
Total petroleum hydrocarbon content of the oily sludge was 4890 
ppm.

Parameter measured Value obtained
pH 8.25
Sodium chloride 2.76
Conductivity 23.03
Sulfate 0
Sulfide 0.045
Ferrous iron 0
Ammonium 0.65
Acetate 2.96
Propionate 0.40
Butyrate 0.14
Total Petroleum Hydrocarbon 
(TPH)

4890

Table 1: Physicochemical analysis of oily sludge sample 
in (mM), conductivity in (mS/cm) and total petroleum 

hydrocarbon in (ppm).

Methanogenic biodegradation of crude oil

The indices used in this study to evaluate methanogenic bio-
degradation of crude oil are the gravimetric loss in oil weight as 
biodegradation progressed and also the volume of methane pro-
duced during biodegradation (Figure 1). Evidence of biodegra-
dation were also revealed in the gas chromatographic analysis 
of residual oil and the decreases recorded in the values of nC17/
Pristane and nC18/Phytane ratios as biodegradation progressed 
without substrate enhancement (Figure 2) and with substrate 
enhancement (Figure 3). Biodegradation studies showed 65.5% 
reduction in the gravimetric weight of oil and degradation of C5-
C17 n-Alkanes in non- amended samples and 94.13% reduction in 
the gravimetric weight of oil and degradation of C5-C25 n-Alkanes 
in substrate amended samples. Control samples showed no ob-
servable reduction in the gravimetric weight of oil and none of the 
hydrocarbon fractions were degraded in the control samples. Gas 
chromatographic analysis also showed reduction in the values of 
nC17/Pristane from 1.47 at day 0 to 1.10 and 0 at day 30 and 60 re-
spectively while nC18/Phytane ratios decreased from 3.30 at day 
0 to 2.31 and 0.81 respectively in unamended samples. Substrate 
amended samples showed drastic decrease in the ratios of both 
the nC17/Pristane and nC18/Phytane as both biomarkers and the 
n-alkanes were degraded during the 30 day incubation period. To-
tal methane produced in non-amended samples at the end of the 
60 day incubation period was 0.68 mM while substrate amended 
samples produced about 1.60 mM of methane at the end of the in-
cubation period.
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Figure 1: Methanogenic degradation of crude oil sludge showing a. Gravimetric loss in oil weight and b. 
Volume of methane produced with and without substrate enhancement during the 60 day incubation period.

(a)

(b)
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Figure 2: GC Chromatograms of oil sample subjected to anaerobic methanogenic degradation without substrate enhance-
ment at day 0 (A; oil content = 4,800 ppm), day 30 (B; oil content = 3,600 ppm) and day 60 (C; oil content = 1,800 ppm).

Figure 2: GC Chromatograms of oil sample subjected to anaerobic methanogenic degradation with substrate enrichment 
(acetate + H2) at day 0 (A; oil content = 4,800 ppm), day 30 (B; oil content = 1,670 ppm) and day 60 (C; oil content = 285 ppm).

(a)

(b)

(c)

(c)
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Ability of methanogens to utilize acetate and hydrogen as 
growth substrates and produce methane

Ability of methanogens in sample to utilize acetate and hydro-
gen as growth substrates are shown in figure 4. About 57% of ace-
tate concentration present in the medium was utilized while 83.3% 
of hydrogen was utilized by methanogens present in the medium 
during the 14 day incubation period. Substrate consumption rate 
were 0.41 mM/day-1 for acetate and 0.59 mM/day-1 for hydrogen. 
Total volume of methane produced by methanogens during the 14 
day incubation period was 1.25 mM.

Figure 4: Utilization of acetate and hydrogen by methano-
gens present in the sample to produce methane.

Microbial communities of oil sludge sample

Phylogenetic classification of pyrosequencing reads for the oil 
sludge sample showed total reads of 4077, numbers of OTUs and 
taxa were 97 and 96 respectively. Bacterial taxa (75.82%) however 
dominated archaeal taxa (24.18%). Relative abundances of major 
bacterial and archaeal groups among sequences recovered from 
oil sludge samples as shown in figure 5 include; Marinobacterium 
(63%), Methanosaeta (16%), Methanobacterium (5%), Petrobacter 
(4%), Kosmotoga (4%), Pseudomonas (3%), Methanomicrobiales 
(3%) and Desulfuromonadaceae (2%).

Discussion

According to [6], under natural environmental conditions, bio-
degradation of oil reservoirs takes place over long geological time 
scales with the process taking millions of years to degrade up to 
50% or more of light crude oil accumulation but in crude oil stor-
age tanks, oil biodegradation is expected to be faster under anoxic 
conditions as a result of huge accumulation of organic nutrients 
and abundance of hydrocarbon degrading microbial communities. 
To date there is no clear consensus regarding the length of time oil 
can stay in storage tanks before it can undergo significant biodeg-
radation but it is expected that when oil stays a reasonable length 
of time in the storage tank, it can undergo some degree of biodeg-
radation which can lead to decrease in saturated and aromatic 
hydrocarbon fractions and API gravity (a measure that correlates 
with oil value). Sulfur content, acidity, viscosity and metal content 
of the oil also decreases and all these have negative impacts on the 
economic value of oil [14,39]. Some reports have also shown that 
severe light crude oil biodegradation can be fuelled by increasing 
organic matter availability [18,28].

Figure 5: Relative abundances of major bacterial and  
archaeal groupings among sequences recovered in 

 sample Oil Sludge sample.

In the current work, we monitored biodegradation of light 
crude from crude oil storage tank bottom sludge by resident mi-
crobial flora over a period of 60 days under anoxic conditions. We 
also experimented on how amendments with suitable substrates 
could influence the rate of biodegradation. Pyrosequencing sur-
veys from our study indicated that the sample contained some 
fractions of both aerobic (Marinobacterium, Pseudomonas) and 
anaerobic (Methanosaeta, Methanobacterium, Methanomicrobia-
les, Desulfuromonadeceae and Kosmotoga) taxa. Marinobacterium 
and Pseudomonas though considered aerobic can also be faculta-
tive and they have always been associated with anaerobic oil en-
vironments [8,20,22,40]. Presence of methanogens alongside with 
syntrophic hydrocarbon degraders and biofilm forming organisms 
like Marinobacterium and Pseudomonas in oil storage tank is ex-
pected to facilitate degradation of petroleum hydrocarbon in the 
storage tank because it is suspected that while the syntrophic 
bacteria degrade the hydrocarbon substrates to products such as 
acetate, hydrogen or carbon dioxide, methanogens use these sub-
strates to produce methane [10,21-23].

The resident oil sludge microbial community used in the pres-
ent study which comprised of acetotrophic and hydrogenotrophic 
methanogens along with syntrophic Marinobacterium and Pseudo-
monas were capable of reducing the gravimetric weight the residu-
al oil by 65.5% in non-amended samples and 94.13% in substrate 
amended samples during the 60-day incubation period. During 
this period, we also observed the complete removal of C5-C17 n-Al-
kanes in non-amended samples and C5-C25 n-Alkanes in substrate 
amended samples. This was similar to the observations made by 
[41] where significant populations of acetotrophic and hydrogeno-
trophic methanogens in oil sludge were able to degrade progres-
sively the n-Alkane fractions of the hydrocarbon.
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Archaeal 16S rRNA gene sequences recovered from the oil sam-
ples revealed significant presence of acetotrophic Methanosaeta 
(16%) and hydrogenotrophic Methanobacterium (5%) and sub-
strate amendments with acetate and hydrogen enhanced the vol-
ume of methane produced and the rate of biodegradation. Other 
investigations have implicated the dominant roles played by ace-
totrophic and hydrogenotrophic methanogens in crude oil biodeg-
radation [18,22,41] but ours emphasized on how metabolism of 
required substrates by methanogens can enhance biodegradation. 
Our study showed the ability of methanogens to metabolize the 
required substrates and generate methane as biodegradation pro-
gressed. As biodegradation progressed, acetotrophs consume ac-
etate at the rate of 0.41 mM/day-1 while hydrogenotrophs consume 
hydrogen at the rate of 0.59 mM/day-1 and total volume of methane 
generated during the 14 day incubation period was 1.25 mM [18] 
made a similar observation during methanogenic degradation of 
petroleum hydrocarbon where substrate consumption rates were 
0.75 Mm/day-1 for hydrogenotrophs and 0.46 mM/day-1 for aceto-
trophs. Both results confirm that the rate of utilization of hydrogen 
by hydrogenotrophs were higher than that of utilization of acetate 
by acetotroph [7] also confirmed in his studies that hydrogenotro-
phic methanogenesis were dominant in systematic biodegradation 
of oil in crude oil reservoirs. Nevertheless [42] demonstrated how 
acetate consumption can enhance methanogenic degradation of 
petroleum hydrocarbons. Our results however showed that ad-
dition of acetate and hydrogen enhanced methanogenic activity 
by both acetotrophs and hydrogenotrophs but did not indicate 
which of the activities dominated. Another observation that seem 
to agree with our findings is the postulation that volatile hydro-
carbons (nC5-nC10) inhibits methanogenic alkane biodegradation 
by hydrogenotrophic and acetotrophic methanogens by [43]. We 
observed that from day 0 - 30 when some of these volatile hydro-
carbons were present, biodegradation was slower but after day 30 
when they must have been removed, biodegradation became fast-
er indication that volatile hydrocarbons might have slowed down 
biodegradation rate.
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