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Iron is the fourth most abundant chemical element by weight in 
the earth’s crust and exists in the forms of ferrous Fe(II) and ferric 
Fe(III) [1]. Its cycling on our planet is an extremely complex pro-
cess involving both abiotic and biotic components [2]. As impor-
tant members in biotic cycling of iron, iron-cycling bacteria (ICB) 
including iron-oxidizing bacteria (IOB) and iron-reducing bacteria 
(IRB), and magnetotactic bacteria (MTB) can convert iron to bio-
composites such as oxides, hydroxides [4-6]. 

BCM can be observed in MTB such as Magnetospirillum gry-
phiswaldense, M. magnetotacticum and Desulfovibrio magneticus 
[4]. The nanometer-sized, membrane-bound crystals of the mag-
netic iron minerals magnetite (Fe3O4) or greigite (Fe3S4), i.e. mag-
netosomes are mineralized by MTB [5]. Generally, magnetosomes 
along the long axis of the cells are arranged in one, two or multiple 
chains in the majority of MTB [5]. Various morphologies of mag-
netosomes are observed including cubooctahedral, bullet-shaped, 
elongated prismatic, and rectangular morphologies [2,5,6]. Mature 
magnetosomes typically fall within a narrow size range of about 
35–120 nm which is just in stable range of a single magnetic do-
main crystal and permanently magnetic at ambient temperature 
[5, 6]. The location, size, nucleation, morphology, and arrangement 
of magnetosomes are strict controlled by the mam and mms genes 
organized within a genomic island [13]. Up till now, more than 40 
genes related to the synthesis of magnetosomes were found and 
characterized [5, 6]. These genes are organized in four gene clus-
ters mostly located in a specific chromosome section [6]. Forma-
tion of magnetosomes generally involves vesicle formation, ex-
tracellular iron uptake, iron transport and genetically controlled 
magnetosome mineralization [6]. The magnetosomes are also pro-
duced by acidophilic IOB including A. ferrooxidans and L. ferrooxi-
dans [5]. For MTB, the magnetosome chain mostly orients bacteria 
and magnetosomes can also be used as a potential storage of iron. 
For magnetosome-producing acidophilic IOB, the magnetosomes 
dispersed in cells should only be considered as a potential storage 
of elastic energy.

BIM can be observed at the surface of ICB cells and the extracel-
lular iron oxides or/and hydroxides are formed. Some neutrophilic 
IOB such as Gallionella sps., Mariprofundus ferrooxydans, Leptothrix 
sps. produce distinctive mineralized Fe-oxyhydroxide-encrusted 
stalk and sheath [4]. Other neutrophilic IOB including Sideroxydans 
paludicola, Ferritrophicum radicicola, Siderocapsa sps. are found to 
form particulate iron oxyhydroxides with amorphous morphotype. 
The precipitation of iron minerals may not only alter cellular ultra-
structures but also catalyze the production of free radicals, which 
are potentially lethal for bacterial cells [8]. However, these neutro-
philic IOB can leave large areas of the cells free of precipitates via 
localizing iron biomineralization at a distance from the cells [9]. 
The acidophilic IOB such as Acidithiobacillus ferrooxidans, Lepto-
spirillum ferrooxidans, L. ferriphilum are able to synthesize iron 
biomaterials including jarosite, schwertmannite, and akaganeite 
under the specific condition [10,11]. BIM also discover in the IRB 
like Shewanella sps., Geobacter sps. and Thermoanaerobacter etha-
nolicus [3]. It has been documented that the amorphous to poorly 

The products of iron biomineralization are form under green 
conditions without loss of functionalities. Therefore, they have 
potential application in cell isolation, tumor hyperthermia, drug 
delivery, medical imaging, information storage, wastewater treat-
ment and ground water remediation, biological catalysis [1,5]. 

Thus, biomineralization is the process by which living organ-
isms transform environmental metallic elements into inorganic or 
functional organic-inorganic biominerals [2]. Biomineralization is 
of great interest for geologists, biologist, medical scientist, envi-
ronmentalists and astronomer science it connects the living word 
of organisms with inanimate words of minerals [7]. There are two 
types of iron biomineralization, i.e., biologically induced mineral-
ization (BIM) and biologically controlled mineralization (BCM) [3]. 
BIM is documentedly governed by environmental factors such as 
pH, temperature, dissolved oxygen, and redox potential, whereas 
BCM is controlled by itself.

ordered iron (oxyhydr) oxides (e.g. ferrihydrite), more-crystalline 
Fe(III) oxides (e.g. hematite and magnetite) are the preferred 
sources of solid-phase ferric iron for these IRB [12]. It can be found 
that the amount of magnetite depends on the inorganic phosphate 
titer and Fe(III) availability in medium [3].
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Iron is regarded as an essential element for organisms in earth. Iron-cycling bacteria (ICB) including iron-oxidizing bacteria (IOB) 
and iron-reducing bacteria (IRB), and magnetotactic bacteria (MTB) can mineralize iron to functional biocomposites which have po-
tential for biomedical and environmental use. Generally, biologically induced mineralization (BIM) mainly occurs in ICB and biologi-
cally controlled mineralization (BCM) primarily exists in MTB. Iron biomineralization is a complex process and is affected by various 
environmental factors.
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