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Aim: The aim of this article is to give an overview of the current scenario related to artificial intelligence and its application in 
orthodontics and dentofacial orthopaedics. Artificial intelligence is the branch of computer science which is used to design machines 
and algorithms which mimic human intelligence. AI is a set of technologies for solving problems and its works on pre defined rules. 
AI in orthodontics have multiple applications like (a) Diagnosis based on cephalometric analysis, facial analysis by clinical imagery 
based on intraoral scan, growth prediction, skeletal age determination, (b) Treatment planning based on decision like extraction or 
orthognathic surgery, (c) Treatment outcome prediction, (d) Cleft related studies, (e) TMD Classification. In addition this article also 
touches on the existing limitations if AI. Although AI is in its most advanced phase of evolution but still it will not be able to replace 
the knowledge and experience of humans.AI aims to support practitioners in borderline cases in orthodontics or general dentist in 
choosing the ideal way of treatment thus maximizing benefit to the patients.

Introduction
In general AI system functions by consuming large amount of 

labelled training data. This data is analysed for correlation and 
pattern and finally the prediction is made using those patterns. 
Artificial intelligence system focuses on intellectual abilities like 
a) Learning b) Reasoning c) Self correction d) Creativity. Artificial 
intelligence learns by formulating rules known as algorithms from 
data which are step by step instructions to complete a task. Rea-
soning involves choosing the right algorithm to reach the desired 
outcome. Self correction means usage of algorithms to continuous-
ly learn and re-address the error to get the most accurate result 
possible. For creativity Artificial Intelligence uses neural network, 
statistical methods to generate new images, text, music and ideas 
[1]. 

History of AI
One of the 1st publication related to Artificial Intelligence was 

published by McCulloch and Pitts in 1943 which described a com-
puter model based on learning like neuron [2]. Alan Turing in 
October 1950 published a work entitled “Computing Machinery 
and Intelligence” which involves a blinded human interrogator 
questioning a human respondent and a machine respondent and 
if interrogator is not capable of discerning the two, the machine 
was considered to have passed the Turing Test [3]. In 1958 John Mc 
Carthy developed lisp programming language which became popu-
lar within AI community [4]. In 1959 Arthur Samuel introduced 
the term ‘machine learning’ in which he proposed that the com-
puter could be programmed which could surpass their creators in 
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performance [5]. In 1997 IBM’s Deep Blue defeated world chess 
champion Gary Kasparov [6]. Sepp Hochreiter and Jugren Schmid-
huber introduced long short term memory recurrent neural net-
work which could process the entire data like speech and vedio 
[7]. In 2011 Jurgen Schmidhuber, Dan Claudiu Veli Meier and Jona-
than Masci created initial CNN [8]. In 2012, Geoffrey Hinton, Ilya 
Sutskever and Alex Krizhevsky presented deep CNN structure [9]. 
In 2014, Ian Goodfellow and his team pioneered generative adver-
sarial networks (GANs), a type of machine learning framework em-
ployed for producing images, altering pictures crafting deepfakes 
[10]. In 2022, Open AI launched Chat GPT offering a chat oriented 
interface to its GPT 3.5LLM.11

Types of AI [12].
Capability based AI
•	 Narrow or weak AI.
•	 General or Strong AI
•	 Superintelligent AI

Functionally based AI
•	 Reactive machines
•	 Limited memory
•	 Theory of Mind AI
•	 Self aware AI

7 Main branches of artificial intelligence across different sorts
•	 Machine learning: Main branch of AI that enables machines 

to analyse, interpret and process data from all angles to gen-
erate correct output.

•	 Deep learning: It is a convolutional neural network consist-
ing of different layers to extract and classify different compo-
nents of data.

•	 Natural language processing: It is self evolved technology 
for basic human-computer communication. It is mainly used 
to design conversational chatbots. 

•	 Robotic process automation deals with designing, construct-
ing and operating robots that impersonate humans actions 
and converse with other humans.

•	 Expert System learn and imitate a human being’s decision us-
ing logical notations and conditional operators.

•	 Fuzzy logic or hypothesis exhibits the degree of truth of an 
output. Say if TRUE equals 0 and output says 1. It is inferred 
that the null hypothesis is untrue.

•	 Random forest algorithm is often known as an “ensemble” 
or “decision tree” as it combines different decision trees to 
measure output accuracy.

Discussion
How AI works

Deep learning is a part of machine learning which imitates hu-
man brain while utilizing the computing power of graphic process-
ing unit [13]. It employs artificial neurons that work on weighted 
inputs which result in a single amalgamated output value by a sim-
ple gradation model that is identical to human style remembrance 
[14].

ANN: An ANN typically has a minimum of three layers namely an 
input layer, an output layer and a hidden layer [15]. Multilpe hidden 
layers displayed remarkable execution in tasks like classification 
and segmentation [16].

Figure 1: ANN has three layers namely an input layer, an output 
layer and a hidden layer [15].

CNN: In CNN, the hidden layers are replaced with three well de-
fined functional layers the convolutional layers, pooling layers and 
fully connected layers. Convolutional layers decrease the image 
complexity thus tasks like recognizing objects, shapes and patterns 
become easy. The pooling layers lessen the dimension of feature 
maps while keeping hold of the essential information. Following 
several repetition of convolutional and pooling layers the outputs 
are combined in fully connected layers for further decision making 
[17].

Applications
Automated landmark detection on Lateral Cephalogram

One of the drawback of manual Lateral Ceph. Landmark detec-
tion is variability across orthodontist [18]. But recent advancement 
made in the field of AI has allowed improvement in the efficiency, 
precision and replicability of cephalometric analysis [19,20].
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Figure 2: 1) Facial Photo: Four convolution, max pooling, dropout, flatten, dense, dropout, and another dense layer [17]. 

Two CNN algorithms YOLOv3 and single shot Multibox Detector 
(SSD) were compared by Park., et al. [21] to identify 80 landmarks 
in lateral cephalometric radiographs images in which YOLOv3 ex-
hibited greater accuracy. Automated detection error of 1.36 ± 0.98 
mm and 1.038 ± 0.893 mm was reported by Kim., et al. [14] and 
Yao., et al. [22] using CNN algorithm

Figure 3: Automated landmark detection [19].

Automated landmark detection on Postero-Anterior Cephalo-
gram

Use of CNN model has been reported for landmark detection 
in posterior anterior cephalograms for identification of any man-
dibular deviation [23]. According to Blum., et al. [24] a CNN based 
model exhibited 95 % reduction in processing time with mean er-
ror of 2.73 mm. Deep reinforcement learning has been utilised for 
3D landmark detection [25].

Limitations of automated 3D cephalometrics
Though automated 3D cephalometrics is widely used for land-

mark detection but it still lacks in accuracy regarding linear and an-
gular measurement. According to Schwendicke., et al. [26] a num-
ber of studies regarding AI in cephalometric showed bias. Some 
studies concluded that use of AI for cephalometric analysis should 
be accompanied with human supervision by experienced clinicians 
[27,28].

Skeletal Age Determination
Estimation of pubertal growth spurt and assessment of re-

maining growth potential is of great use in correcting any skeletal 
malformation especially in adolescents [29]. Skeletal age helps in 
determining the growth [30] as chronological age in itself is not 
sufficient for estimatingthe amount of growth remaining. 

Cervical vertebral maturation method [29,31]. which employs 
the use of the vertebral bodies and hand wrist radiographs are 
method of skeletal age estimation [32,33]. Out of the two methods 
cervical vertebral maturation method is more beneficial as it can be 
determined in lateral cephalograph and thus reducing extra radia-
tion exposure [34]. In CVM Method the vertebral bodies C2-C4 are 
analysed according to the six stages of skeletal maturation [35] but 
for inexperienced practitioners interpretation may may be difficult 
as well as there may be individual differences [36]. To overcome 
this problem artificial intelligence is being used to accurately de-
termine skeletal age [37].

According to some authors [36,38] there was 58-71% agree-
ment between the results of CVM interpretation by human and 
artificial intelligence. Maximum disagreement was found related 
to peak growth according to some studies [37,39]. But according 
to Seo., et al. [40]. agreement between AI and human interpreta-
tion was 90%. Kok., et al. [39] analysed several machine learning 
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algorithms in predicting the stages of cervical vertebral matura-
tion and concluded that ANN was most stable algorithm. According 

to Karemi., et al. [41]. CNN is more popular than ANN especially in 
cases of image related tasks.

Figure 4: The experimental design of the study. Step 1: inclusion and exclusion. Step 2: data pre-processing. 
Step 3: model training and testing. Step 4: performance evaluation [37]. 

Figure 5: Anatomic landmarks that AI (points in red) and human (points in green) labelled in testing dataset. (A). AI and human 
labelled landmarks for CS 3 (B). AI and human labelled landmarks for CS6 [37].
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Facial analysis
Facial analysis was done on facial images by Rao., et al. [42] us-

ing an active shape model algorithm and 50% of the landmarks 
had an error within 3 mm. Yurdakurbau., et al. [43] used a machine 
learning software to detect facial midline and asymmetry and 
there were statistically non-significant difference between the two 
methods. 

CNN was employed by Rousseau., et al. [44] to analyse the ver-
tical dimension of patients which showed high precision and ef-
ficiency than manual method. Many AI approaches Grad-CAM and 
De ConvNet can generate heatmaps to highlight the contributing 
regions of the input images [45].

Dental analysis
Intraoral photographs were used by Talaat., et al. [46] to detect 

malocclusion (specifically tooth crowding) using VoLo algorithm. 
The results showed an accuracy of 99.99%. Ryu., et al. [47]. used 
four algorithms to assess the dental status of dental crowding by 
using intraoral images. According to him VGG19 showed minimum 

error in maxilla (0.84 mm) and mandible (1.06 mm). Im., et al. [48] 
used Dynamic graph convolutional neural network which auto-
matically segments the tooth in a digital model thereby reducing 
computational time and achieve high accuracy when compared to 
softwares like Ortho Analyser and Autolign. Besides some studies 
[49,50] have reported accurate landmark detection on teeth which 
helps in accurate dental analysis after proper segmentation of 
teeth.

Palatal shape analysis
Palate is an important anatomical structure located at the junc-

tion of oral and nasomaxillary cavities. Its shape affects a lot of 
function like mastication and speech [88,89]. Shape of palate is af-
fected by a lot of factors like developmental stage, mode of breath-
ing, tongue size and its posture and malocclusion [89,92].

According to a study by Croquet., et al. [93] maxillary cast was 
lazer scanned which created a digital 3D mesh surface which was 
used for automated landmark identification. Several software have 
been used for automated landmark identification [94-96]. AI can 
help in calculating the depth, width, surface area [97,98].

Figure 6: Flowchart summary of the automatic landmark finding process [50].
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Palatal shape analysis
Palate is an important anatomical structure located at the 

junction of oral and nasomaxillary cavities. Its shape affects a lot 
of function like mastication and speech [51,52]. Shape of palate 
is affected by a lot of factors like developmental stage, mode of 
breathing, tongue size and its posture and malocclusion [53,54]. 
According to a study by Croquet., et al. [55] maxillary cast was lazer 
scanned which created a digital 3D mesh surface which was used 
for automated landmark identification. Several software have been 
used for automated landmark identification [56].

Photographic analysis
Artificial intelligence can be used for photographic image analy-

sis by using convolutional neural network system in medical and 
dental fields. It uses artificial neurons that calculate weighted in-
puts to generate a single integrated output value by a simple clas-
sifier model similar to human pattern. CNN utilizes a hierarchical 
structure for passing information about prominent features to 
following layers and explores the local correlation between these 
structures [13,57]. According to Jiho Ryn [58] the method for pho-
tographic analysis consisted of taking digital photos by several 
doctors which included extraoral frontal, frontal smile, right pro-

Figure 7: Landmark prediction with learned hierarchical features [55]. 

file and three quarter profile. Intraoral photograph like front, left 
and right buccal, maxillary and mandibular occlusal view were 
taken. All samples were first divided into training set and testing 
set. Training set was further divided into learning set and valida-
tion set for preventing over fitting. Finally testing set were used for 
model evaluation.

The 2-D 128 by 128 pixel input data is reduced to 64 by 64 pixel 
and then transformed through a flattened layer and categorized 
into 4-5 classification with a softmax activation [59]. The pixels 
of 2-D photographs are collected to make 1 photo on which deep 
learning technology works and recognises morphological differ-
ences, lip contour or white teeth exposure during smiling [60].

Upper Airway Obstruction Assessment using AI:
Adenoid hypertrophy which often is a cause of upper airway 

obstruction is critical for orthodontic diagnosis and treatment 
planning. For screening this Fujioka gave AN ratio (Adenoid- Na-
sopharyngeal) [61]. Shen., et al. [62] employed a CNN model to lo-
cate 4 key points in Fujioka’s method on lateral cephalogram and 

obtained a mean AN ratio error of 0.026 while Zhao., et al. [63] em-
ployed a similar method and obtained high accuracy (0.919), sensi-
tivity (0.906) and specificity (0.938). The volume of upper airway 
is also important for assessing upper airway obstruction. Sin., et al. 
[64] used CBCT images to calculate volume of pharyngeal airway 
and achieved a dice ratio of 0.919.

Figure 8: Method of sample division into training, testing and 
validation set.
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Figure 9: Line segment L is drawn along the straight part of the anterior margin of the basiocciput; line segment A indicates the size of 
the adenoid; line segment N indicates the size of the nasopharyngeal space) [63].

TMD classification
According to a study bu Shoukiet., et al. [65]. AI successfully 

classified condylar morphology into groups by using data of 259 
condyles (CBCT images) The temporomandibular joint osteoar-
thritis stage classified by AI was tgen compared to clinical expert 
finding and accuracy of 91.2% was achieved. 

Cleft related studies
Zhang., et al. [66] used AI by employing machine learning al-

gorithms to limited predictive models with 43 single nucleotide 
polymorphism which were detected using genome wide associa-
tion for determining the defective gene variants like MTHFR and 
RBR4 responsible for folic acid and vitamin A biosynthesis which 
lead to Non Syndromic Cleft lip/palate. Pateas., et al. [67] used a 
CNN model using >13000 face images and >17000 ratings for at-
tractiveness to compare facial attractiveness between treated cleft 
patients and control. The results showed that AI still need im-
provement in its interpretation of cleft features which affect facial 
attractiveness.

Decision making in extraction and non extraction
 Decision regarding extraction or non extraction is crucial fac-

tor for treatment. It depends upon orthodontists experience as 
a wrong decision regarding orthodontic extraction can lead to a 
number of posttreatment complications like undesirable change in 
profile, deranged occlusion and difficulty in space closure.

Jung., et al. [68] built an AI system using neural network ma-
chine to decide for extraction/non extraction case and detailed ex-
traction pattern by using 12 cephalometric variables and 6 other 
indices. The accuracy rate for extraction/non extraction decision 

was 93% where as detailed extraction pattern was 84%. A multi-
layer perceptron ANN was used by Lie., et al. [69] to predict the 
extraction and pattern in several cases. It achieved an accuracy of 
94% and 84.2% respectively. It also predicted the anchorage pat-
tern with 92% accuracy.

The three machine learning algorithm. Random forest, logistic 
regression and support vector machine were compared by Leavitt., 
et al. [70] for predicting extraction pattern. According to him their 
accuracies were not very satisfactory with SVM achieving the high-
est accuracy of 54.55%. According to some studies [71,72] random 
forest performed well as ansemble method to prevent overfitting 
but still more studies are needed to prove its effectiveness.

Use in orthognathic surgery
Support vector machine was utilized by Knoops., et al. [73] to 

predict a surgery/non surgery decision using 3D facial images 
which showed an accuracy of 95.4% while Jeong., et al. [74] used 
CNN model to predict surgery or non surgery based on frontal and 
right facial photographs which showed an accuracy of 89.3%. Lee., 
et al. [75] used random forest, logistic regression to predict the sur-
gery decision in Class III patients but only 90% and 78% accuracy 
was obtained respectively.

AI helps in setting up automated orthodontic virtual setup for 
predicting the outcome of orthognathic surgeries thereby sav-
ing time and labour as the methods proposed by Kesling involves 
tooth segmentation and repositioning which is tiring [76]. Park., et 
al. [77] predicted lateral cephalogram changes of Class II patients 
after using modified C-palatal plates by usig CNN model which 
showed an accuracy of 1.79 ± 1.77 mm. Tanikawa., et al. [78] pre-
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Conclusion
AI in orthodntics have multiple applications. Efforts should 
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accuracy and better interpretation through machine learning pro-
cess.
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