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 Abstract
  Generating accurate and reliable tidal forecasts is very crucial to support routine coastal decision-making. The forecasting of univar-
iate time series behavior becomes more challenging and requires state-of-the-art techniques to achieve realistic forecasting outcome. 
However, the larger the initial hyperparameters space that must be searched, the more iterations the automated hyperparameters 
tuning technique should have. As a result of the complexity to tune the deep learning architecture in producing an optimal and consis-
tent result, tuning several hyperparameters to improve deep learning results in learning time series data is highly needed. Therefore, 
it is necessary to investigate the best approach to fine tune machine learning algorithms that have multiple hyperparameters (e.g., 
deep Long Short-Term Memory (LSTM)) to learn and gather collective knowledge about time series sea water tidal shift data that 
could be used to make better forecasts for the individual time series. Thus, the aim of this paper is to investigate the effects of varying 
the values of the hyperparameters of the LSTM architecture on the forecasting accuracy of the sea water tidal height variation under 
nonextreme conditions. In this paper, we empirically evaluate the proposed LSTM forecasting framework to model the tidal dataset 
based on the RMSE measurements as the hyperparameters change. These hyperparameters are divided into static hyperparameters 
(e.g., mini batch size, number of epochs, number of iteration and percentage of neuron dropout) and dynamic hyperparameters (e.g., 
number of layers, number of hidden units, learning rate and L2 regularization). The initial static hyperparameters are used to esti-
mate the optimal values of the dynamic parameters using the Bayesian Optimization method. Based on the results, we highlighted 
some findings that will aid in improving the performance of the LSTM model for tidal forecasting for hourly short term sea water level 
and these allow users to choose the best static and dynamic hyper-parameters combination that can produce the optimum outcomes. 
Finally, the paper is concluded by suggesting some of the extended works that can be performed to improve the results of forecasting 
the sea water tidal shift. 
Keywords: Forecasting Sea Water Tidal Shift; Long Short-Term Memory; Time-Series Data; Hyperparameters Setting; Deep Learning; 
Bayesian Optimization

Introduction
In the recent years, there have been several efforts made in 

designing and investigating the performance of several models 
in learning and forecasting sequential or time series dataset. The 
evolution of Industry 4.0 and the Internet of Thing [1,2] have pro-
duced abundant large data that makes the application of multivar-

iate time series more widespread in many fields [3]. Therefore, this 
have established a significant computational challenge in shallow 
machine learning method to identify time series behaviour pre-
dictions which become more complex [2]. For instance, a realistic 
forecasting method for tidal height variation under non-extreme 
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conditions (e.g., storm surges are not captured) is very crucial to 
support routine coastal decision-making and provide a benchmark 
for potential Mean Sea Level forecasts [4]. 

One of the deep Learning algorithms, Long short-term memory 
(LSTM), is popularly used in research areas with complex solutions 
of time-series data to resolve long-term dependency problems in 
its cell structure (logic cell or sigma) [5]. LSTM was designed to 
deal with the vanishing gradient problems that classic Recurrent 
Neural Networks (RNNs) have while learning long-term dependen-
cies using sequential data [6]. Deep learning modules like LSTM, 
on the other hand, use a few hyper-parameters variables to solve 
problems related to learning time series data. 

The LSTM architecture consists of many hyper-parameters that 
may affect the generalization efficiency, posing a difficult tuning 
problem for human users. The hyperparameters are critical for 
machine learning algorithms because they directly influence the 
behavior of the training algorithm and thus affect the accuracy per-
formance of machine learning models [7]. The level of accuracy of 
the data prediction results is related to the parameters used during 
the model training session and uses several standard parameter 
variables to achieve certain level of accuracy for various types of 
problems. Therefore, applying different values to each parameter 
would achieve different degree of optimized accuracy performance. 

Consequently, to achieve the highest degree of optimized ac-
curacy performance of predictions in historical time-series per-
formance, a tuning experiment is needed to be carried out to un-
derstand the effects of each parameter individually. It is necessary 
to understand the characteristics of each parameter to get an opti-
mum model for learning time series data for a particular problem 
(e.g., sea water tidal shift). This can be considered as a fine-tuning 
experiment to find the best combination of parameter values that 
achieves the highest degree of accuracy. The tuning of these hyper-
parameter values is not straightforward task, particularly in time 
series applications. There are, on the other hand, several common 
computational methods and search techniques for optimizing hy-
per-parameters. For instance, Recurrent Neural Networks (RNNs) 
have become competitive forecasting methods [8]. 

This is due to the fact that LSTM neural network algorithms 
are well known to be dominated by several layers, rendering deep 
learning neural network computation more complex and difficult. 
Hyper-parameters are important for deep machine learning algo-
rithms because they directly influence the training behaviours and 

have a significant effect on the performance of the deep learning 
model. The hyperparameters are those variables for which we 
provide the value “manually” to the model to aid in learning and 
estimating model parameters, and which are then used to predict 
unobserved data [7]. In other words, in machine learning, a hy-
perparameter is a parameter whose value is used to control the 
learning process. Tuning these hyper-parameters is difficult when 
it comes to optimizing the performance of the deep learning for 
time series applications [8]. 

Generally, the larger the initial hyper-parameter space that 
must be searched, the more iterations the automated hyper-pa-
rameter tuning technique should have. As a result of this difficulty 
of fine-tuning deep learning architecture in producing an optimal 
and consistent result, tuning several hyper-parameters to improve 
deep learning results in time series applications is needed [8]. 
Therefore, it will be useful to train an algorithm on multiple similar 
datasets and gather some collective knowledge that could be used 
to make better forecasts for the individual time series [9,10]. 

Thus, the aim of this paper is to investigate the effects of vary-
ing the values of the hyperparameters of the LSTM architecture on 
the forecasting accuracy of the sea water tidal height variation un-
der non-extreme conditions (e.g., storm surges are not captured). 
These hyper-parameters include the learning algorithms, opti-
mizer, number of training epochs, initial learning rate, number of 
hidden units, L2 Regularization, number of Layers, batch size and 
dropout. The effects of varying the combination of the hyper-pa-
rameter values will be evaluated based on the time series forecast-
ing accuracy using the Root Mean Square Error (RMSE) measure-
ments. 

The rest of the paper is organized as follows. Section 4 describes 
related works on the application of machine learning methods in 
learning time-series datasets (e.g., sea water tidal height variation) 
and the experimental setup and configuration will be described in 
Section 5. Section 6 provides the detailed result analysis and dis-
cussion. Finally, Section 7 draws the conclusions. 

Related work 

LSTM models are found to be used effectively in learning time-
series data in many applications [11]. These tasks include fore-
casting of flood [12], prediction of sea surface temperature (SST) 
[13], forecasting El Nino-Southern Oscillation (ENSO) climate phe-
nomenon [14], forecasting model for wave height [15], prediction 
of electricity usages [16] and prices [17], forecasting tourist arriv-
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als for efficient allocation of tourism resources [18], forecasting 
of future agriculture load [19], time series forecasting in Crypto-
currency (Bitcoin) daily price prediction [20], flow forecasting of 
high-speed railways [21], forecasting spot instance price [22], esti-
mating and predicting COVID-19 outbreak in Asia Pacific [23], and 
finally in forecasting the numbers of reservations [24]. 

Individual statistical models such as ARIMA cannot compete 
with deep learning model (e.g., LSTM) in learning time series data. 
For instance, LSTM deep-learning model was found to be more suit-
able and outperformed the ARIMA model when predicting Solar 
Cycle 25 based on the value of SunSpot Number (SSN) with RMSE 
of 35.9 [25], forecasting network traffic and displaying updates in 
real-time to convey the information [26], forecasting covid19 cases 
in Turkey [27], and also predicting the number of patients visit to 
hospital [28]. 

Among the machine learning models, LSTM models have been 
found to outperform other six machine learning (ML) models 
which include Decision Tree, Multilayer Perceptron, Lasso, Linear 
Regression, Random Forest, and Ridge, in forecasting the numbers 
of reservations [24]. The empirical result shows that LSTM models 
improved 3.0% over ML models. In another work, LSTM models 
have also been found Support Vector Machine (SVM), ANNs and 
Hidden Markov Machine models in predicting the high-frequency 
stock trend of a short-term [29]. 

The hyper-parameters settings used for training the LSTM al-
gorithms vary in a variety of problem domains and these hyper-
parameters settings are outlined in Table 1. Table 2 shown below 
summarizes the values of hyper-parameters used in the deploy-
ment of LSTM in learning time-series data in real-world applica-
tions. These problem domains include forecasting wave height 
[15], forecasting future agriculture load [19], forecasting service 
blocking probability [21], forecasting cryptocurrency daily price 
[20], flood forecasting [12], stock price forecasting [16], prediction 
of electricity price [17], forecasting Covid-19 cases [27], predict-
ing number of patients [28], and using a common ADAM (Adaptive 
Moment) to handle real-time, large datasets, and high dimensional 
parameters as momentum optimizer compared to ADAGRAD for 
forecasting sea surface temperature [13] and RMSPROP for short-
term stock prediction [29]. 

Short Notations Hyperparameters
LR Learning Rate
HU Hidden Units
NI Number of Iterations
NL Number of Layers
EP Number of Epochs

MBS Mini Batch Size
TTR Training Testing Ratio
DO Percentage of Dropouts

Table 1: The hyperparameters settings used for training the LSTM 
algorithms.

Ref LR HU NI NL EP MBS TTR DO
[11] - 180 - - 500 - 80:20 0.3
[12] 0.0001 20;30 ;50 - - 100,000 - - -
[13] 0.1 - - - - 100 - -
[14] 0.0005 50 - 2 200 2;4;8 85:15 -
[15] 0.0001 - 125 - 250 - - 0.2
[16] 0.001 50 - 2;4 15;25;50; 

100
32 - -

[17] - 64;128 150 2 150 64 - 0.2
[18] - - 300 6 300 60 - -
[19] 0.01 50 - - - - - -
[20] - 1000 - - 300 72 - -
[21] - 8 5 - 200 - - 0.6

[22] - 4 - 1 1000 - - -
[23] - - 10 - 100 1 - -
[24] 0.1 - - 1 300 15 - 0.6
[25] - - 60;120 - 100 10 - -
[27] - 32 - - 2000 1 - -
[28] 0.001 - - - 100 - - -
[29] 0.05 200 - 1 - 64 - -
[30] 0.01 200 - - 800 - - -

Table 2: Several works related to the deployment of LSTM in 
learning time-series data.
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Based on Table 2, the mini batch size ranges from 1 to 100, 
and the epoch value ranges from 15 to 100,000. An epoch’s value 
of 300, on the other hand, is frequently used in forecasting tour-
ist arrivals for efficiency [18], cryptocurrency daily price [20], and 
hotel reservation numbers [24]. The number of iterations for the 
basic and hybrid LSTM models ranges from 4 to 300. The number 
of hidden units used in most forecasting tasks ranged from more 
than 50 to 1000 neurons to extract data features [20]. Most of 
the works conducted previously used 200 hidden units or below 
[11,16,17,19,30]. 

Using single layer [22,29] or 2 layers [17,16] of hidden units is 
adequate to get good results using LSTM algorithms. It can be in-
creased to 50 to maintain data consistency. Dropout and L2 Regu-
larization parameters ranging from 0.2 to 0.6 and 0.0001.

respectively are used to avoid overfitting. The model’s conver-
gence speed is measured by the Learning Rate factor, which ranges 
from 0.1 to 0.0001. Another factor to consider is the ratio of train-
ing to test, which is not fixed in any problem domains [6] and thus 
affects the RMSE assessment [8,9]. Forecasting the El Nio-South-
ern Oscillation (ENSO) [14] and prediction based on the arbitrary 
nature of human behaviour [11] were accomplished using a split 
training and test ratio of 85:15 and 80:20, respectively. 

The findings of this study suggest that the LSTM model produce 
results remarkably [15,27], highly accurate and stable [12,17], 
achieved best prediction [11,13,16,30], improved prediction out-
come compared to other methods such as Neural Network Autore-
gression (NNA), ARIMA, Naïv e, Seasonal Naïv e, Mean and Drift, 
and etc [20,24,28,29]. Apart from that, LSTM model capable of 
long-term temporal dependencies, model non-linear character-
istics [14], show suitability for time-series dataset [25], perform 
good generalization ability [21]. Furthermore, LSTM improves the 
problem of input variables selection [20], LSTM RNN efficiently 
and effectively captures seasonal patterns and long-term trends, 
and the validation works efficiently, and the results obtained much 
faster when applying k-Fold Cross [22]. 

Hybrid models also have been used effectively as forecasting 
techniques in interpreting real problems which are often complex 
in nature and outperforming a single machine learning that is un-
able to capture a complex problem and improve the prediction ac-
curacy. For instance, a hybrid deep learning using Random Forest 
(RF) and LSTM also was found to produce better results when fore-
casting tourist arrivals for efficient allocation of tourism resources 

[18]. In this work, RF was used reduce dimensionality of search 
query and LSTM was used to model the non-linear relationship. 
Next, the proposed hybrid ARIMA-LSTM model was also found to 
be very effective in achieving predictive precision and have wider 
application range compared to single ARIMA and LSTM [30]. 

Furthermore, Deep learning LSTM model also outperformed 
the GRU model, but GRU model converges faster than LSTM [19]. 
Recurrent Neural Network (RNN) helps to transform and updates 
both important and non-important dataset [32]. Nevertheless, 
above all, analysis reveal that the input data type has more influ-
ence than the quantity of the input data [12], hidden neurons and 
length of data impacted on prediction accuracy [15], increase num-
ber of epochs decrease error prediction and improve prediction 
accuracy [17]. 

Conversely, LSTM experienced several limitations that directly 
affect the performance of the LSTM model. The data resolution and 
characteristics [12,13], the independent and dependent variables 
selection [15,17], rapid changes in high-risk stock dataset [16] 
greatly influence the LSTM model performance. Deep learning per-
formed poorly in fitting data with trend for non-stationary dataset 
[19]. The accuracy also compromises with the length sequence of 
the period observation to catch value information [28], external 
factors variables [30] and insufficient data for experiment [11]. 

Technically, Deep learning neural network algorithms are domi-
nated by several layers, rendering deep learning neural network 
computation to enhance better forecasting accuracy for individual 
time series [8]. According to the review’s findings, the ranges of 
values used for each training parameters set in any deep machine 
learning approaches vary depending on the field of the problems. 
It is worth to highlight that previous research analysis had revealed 
that the accuracy of the prediction is highly dependent on the train-
ing parameter settings. These hyper-parameters are critical for 
machine learning algorithms because they directly influence the 
behaviour of the training algorithms and thus affect the accuracy 
performances of the machine learning models [7]. It was suggested 
that further experiments with sufficient data and a wider scale are 
required to provide more clarity on hyper-parameter characteris-
tic [31]. 

Materials and Methods 

The goal of the experiment that will be conducted is to inves-
tigate the LSTM model performance using different hyper-param-
eter settings for the training phase. This section describes the 
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datasets and outlines the setup of the experiments and the hyper-
parameter settings used in this work. At the end of this section, the 
metric benchmarking used to assess the performance of the LSTM 
will be discussed. Figure 1 describes the proposed research meth-
odology framework in investigating the performance of the LSTM 
performance. The processes involved include data preparation or 
preprocessing, hyperparameters setting, training the LSTM model 
using different hyper-parameter settings and finally assessing the 
LSTM model according to different specifications of the hyperpa-
rameter values. 

Figure 1: Proposed research methodology to investigate the 
performance of the LSTM model using different hyperparameter 

settings. 

Dataset preparations 

The dataset contains the sea level measurements taken hour-
ly for 4 weeks (Jan 1997) of Kota Kinabalu’s Tide gauge station 
(5.98300 Lat 116.06700 Long), which located in the west of the 
South China Sea and experiencing Semi Diurnal Tidal character-
istic. The dataset is obtained from the University of Hawaii - Sea 
Level Center (UHSLC) (https://uhslc.soest.hawaii.edu/datainfo/) 
and accessed in October 2020. The LSTM model will be used in this 
experiment as it has outperformed other algorithms as reviewed in 
the previous section.

Table 3: Static and dynamic hyper-parameters considered for the 
LSTM model. 

Static Dynamic
Number of Epochs No of Layers

Mini Batch Size No of Hidden Units
No of Iterations Initial Learning Rate

Dropout L2 Regularization

Hyperparameter settings 

In this experiment, the hyper-parameters are divided into stat-
ic and dynamic hyperparameters, as shown in Table 3. The static 
hyperparameters include the number of epochs, the size of mini 
batch, the number of iteration and the percentages of dropping. On 
the other hand, the dynamic hyper-parameters include the num-
ber of layers, number of hidden units, initial learning rate and the 
value of L2 regularization. The ranges of values for the static hyper-
parameters are determined and configured based on the findings 
found in literature review of related works, as it is expensive to 
compute or calculate for all ranges of hyper-parameter values. This 
is done in this manner to expediate the process of getting the best 
hyper-parameter settings for the LSTM model by using the known 
values of these static hyper-parameters obtained from literature. 
The Bayesian Optimization method is then used to find the optimal 
values of dynamic hyperparameters based on the pre-configured 
values of static hyper-parameters. Bayesian Optimization is often 
used in applied machine learning to tune the hyper-parameters of 
a given well-performing model on a validation dataset.

Thus, given series of values of the static hyper-parameters of 
the LSTM, the optimized values for the dynamic hyper-parameters 
will be generated and that will produce an optimized LSTM model 
with optimized configuration settings of the dynamic hyperparam-
eters based on the static hyper-parameters. The characteristics of 

Table 4: Ranges of values for the static hyper-parameters used 
based on literature. 

Epoch Mini Batch 
Size

Number of 
Iteration

Percentage of 
Dropout

1000 - 10000 10 - 200 10 - 400 0.1 - 0.9
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the static hyperparameters can also be investigated with respect 
to the performance of the LSTM model in forecasting the sea wa-
ter level. The ranges of static hyper-parameters used to train the 
LSTM model are shown in Table 4. Table 5, tabulates the ranges of 
dynamic hyperparameters’ values that will be used and optimized 
based on the facts found in the literature to produce the optimized 
LSTM model. 

Table 5: Ranges of values for the dynamic hyperparameters used 
based on literature. 

No of 
Layers

No of Hidden 
Units

Initial Learning 
Rate L2 Regularization

1 - 4 1 - 200 0.0001 - 1 0.000001 - 0.01

Table 6: Discretized initial values for all the static hyper-parame-
ters. 

Static Hyper-parameters 5 Discretized Bins
Mini Batch Size 10, 50, 100, 150, 200

Dropout 0.1, 0.3, 0.5, 0.7, 0.9
Number of Epochs 1,000, 3,000, 5,000, 7,000, 10,000

No of Iterations 10, 100, 200, 300, 400

Table 7: Discretized initial values for all the dynamic hyper-
parameters. 

Dynamic 
Hyperparameters 4 to 5 Discretized Bins

No of Layers 1, 2, 3, 4
No of Hidden Units 1 - 40, 41 - 80, 81 - 120, 121 - 160, 

161 - 200
Learning Rate 0.0001 - 0.001, 0.001 - 0.01, 0.01 - 

0.1, 0.1 - 1
L2 Legularization 0.000001 - 0.00001, 0.00001 - 

0.0001, 0.0001 - 0.001, 0.001 - 0.01

The values of the static hyperparameters settings will be divid-
ed or discretized into several bins (e.g., 4 or 5) to reduce the search 
space and at the same time to investigate the effects of varying the 
values of the static hyperparameters, during the training phase, 
on the performance of the LSTM model in learning sea water level 
time series. The values of the dynamic hyperparameters settings 
will also be divided or discretized into several bins to investigate 
the characteristics of the static and dynamic hyper-parameters in 
producing an optimized LSTM model. Tables 6 and 7 tabulate the 
discretized initial values for all the static and dynamic hyperpa-
rameters. 

Experimental setup and training of LSTM Model 

The dataset is divided into 80% and 20% for the training and 
testing dataset. The experiment will be conducted for 20 times, for 
each setting of static and dynamic hyperparameters’ values used 
to train and test the LSTM model. The performance of the LSTM 
model is then assessed using the averaged Root Mean Square Error 
(RMSE) and Coefficient of Determination (R2) between the actual 
and predicted sea water level obtained from the 20 runs. 

There are four experimental setups that will be used in this 
work. The setups are explained as follows. 

•	 In the first part of the experiments, we varied the size of the 
mini batch (e.g., 10, 50, 100, 150, 200) and we fixed the other 
static hyper-parameters settings that include the percent-
age of Dropout (0.1%), the number of Iteration (10) and the 
number of epochs (1000). For instance, the first setting of hy-
perparameters consists of 10 size of batch, 0.1 as the value of 
dropout, 1000 epochs and 10 iterations as shown in Table 4. 
Then, the value of the size of the batch will be updated to 20 
and there are no changes to the values of the remaining static 
hyper-parameters. 

•	 In the second part of the experiments, we varied the percent-
ages of dropout values (e.g., 0.1, 0.3, 0.5, 0.7, 0.9) and we fixed 
the other static hyperparameters settings that include the size 
of mini batch (10), the number of iterations (10), the number 
of epochs (1000). 

•	 In the third part of the experiments, we varied the number of 
epochs (e.g., 1,000, 3,000, 5,000, 7,000, 10,000) and we fixed 
the other static hyperparameters settings that include the size 
of mini batch (10), the number of iterations (10), the percent-
age of dropout (0.3). 

•	 In the final part of the experiments, we varied the number of 
iterations (e.g., 10, 100, 200, 300, 400) and we fixed the other 
static hyper-parameters settings that include the size of mini 
batch (10), the number of epochs (1000), the percentage of 
dropout (0.3). 

Evaluation 

In this study, the performance efficiency of the forecasting LSTM 
model in the field related to tidal variation is evaluated using the 
most common metrics to measure the accuracy of the model us-
ing the root-mean-square deviation (RMSE) statistical method and 
Coefficient of Determination (R2) [32] to compare the predicted 
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values with observed values using the following formulas: 

 
𝑅𝑀𝑆𝐸

 
𝑅

Where i is a variable, n is the number of non-missing data points, 
yi is the actual observations time series and xi is the estimated time 
series, ∑(𝑦𝑖 − 𝑥𝑖 )2, is the sum of squares of residuals and ∑(𝑦𝑖 − 𝑧𝑖 )2 is 
the total sum of squares of errors from the average model. 

All the results of the assessment can be referred from Table 8 
to Table 11. Some of the mean RMSE measurements are not avail-
able, indicated by symbol ’−‘, due to the fact that the Bayesian Opti-
mization method cannot find the optimal values of RMSE of those 
ranges of values for static and dynamic hyper-parameters based on 
the pre-configured values, as shown in Tables 6 and 7. For instance, 
in Table 8, there is no RMSE value that can be obtained using range 
of 41 - 80 number of hidden units when the mini batch size is set 
to 10. 

Results and Discussion 

In this study, a total of 4 weeks (hourly = 672) of sea level water 
datasets are used to investigate the behaviour of the training pa-

rameter using LSTM Model. The results of the LSTM model training 
are discussed in this section and presented in Table 8 to Table 11. 

Results of first experimental setup 

As mentioned earlier, in the first part of the experiments, we 
varied the size of the mini batch (e.g., 10, 50, 100, 150, 200) and 
we fixed the other static hyperparameters settings that include the 
percentage of Dropout (0.1%), the number of Iteration (10) and 
the number of epochs (1000). 

The results shown in Table 8 show that increasing the value of 
MBS parameter would result higher RMSE (loss in accuracy) and 
lower correlation between the actual against the predicted value. 
The highest performance of LSTM models was obtained when the 
Mini Batch Size’s value is 10 having test RMSE value of 0.073 (R2: 
0.9527). The test RMSE is the average overall RMSE measurement 
that is obtained from all the 20 testing phases conducted for the 
LSTM model. The results of No of Layers indicated that multiple 
LSTM layers will give higher RMSE compared to single layer. This 
means that a single layer can produce better result compared to 
multiple layers. A higher number of Hidden units also provides 
lower RMSE values. For instance, the number of hidden units hav-
ing the range of 121 - 200 provides lower RMSE. The initial learn-
ing rate ranging from 0.0001 -0.001 produced lower RMSE (0.071) 
for mini batch sizes of 10 and 150. In addition to that, the range of 
L2 regularization values between 0.00001 - 0.0001 produced bet-
ter RMSE outcome (e.g., 0.070). 

Table 8: LSTM performance with different sizes of mini batch (e.g., 10, 50, 100, 150, 200). 

Mini Batch Size 10 50 100 150 200
Test RMSE 0.073 0.077 0.083 0.092 0.106

R2 0.9527 0.9442 0.929 0.8912 0.8655
No Of Layers Mean RMSE

1 0.070 0.071 0.08 0.089 0.104
2 0.078 0.077 0.089 0.099 0.106
3 0.075 0.082 0.084 0.09 0.11
4 0.077 0.087 0.08 0.089 0.097

No of Hidden Units Mean RMSE
1 - 40 0.086 0.088 - 0.107 0.116

41 - 80 - - - - -
81 - 120 0.073 0.071 0.088 0.086 0.103

121 - 160 0.074 0.082 0.078 0.082 0.126
161 - 200 0.069 0.076 0.083 0.096 0.098

Learning Rate Mean RMSE
0.0001 - 0.001 0.071 0.077 0.082 0.085 0.111

0.001 - 0.01 0.074 0.074 0.078 0.096 0.104
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0.01 - 0.1 - 0.08 0.086 0.099 0.105
0.1 - 1 - 0.08 0.079 0.103 0.107

L2 Regularization Mean RMSE
0.000001 - 0.00001 0.076 0.082 0.085 0.084 0.106

0.00001 - 0.0001 0.070 0.077 0.083 0.096 0.108
0.0001 - 0.001 0.073 0.075 0.082 0.095 0.098

0.001 - 0.01 - - 0.080 0.111 0.130

Results of second experimental setup 

In the second part of the experiments, we varied the percentages 
of dropout values, and we fixed the other static hyper-parameters 
settings that include the size of mini batch, the number of iterations 
and the number of epochs as shown in Table 9. 

The performance of the LSTM model remains constant when the 
percentages of dropout values are varied from 0.1 to 0.9, with test 
RMSE values ranging from 0.072 to 0.076, as shown in Table 9. The 
best value of the test RMSE with 0.072 was obtained when the per-
centage of dropout is fixed to 0.3. The best result can be obtained 
when a single layer of LSTM model is used. At the same time, using 

Table 9: LSTM performance with different percentages of dropout values (e.g., 0.1, 0.3, 0.5, 0.7, 0.9). 

% of Dropout 0.1 0.3 0.5 0.7 0.9
Test RMSE 0.073 0.072 0.074 0.076 0.073

R2 0.953 0.954 0.950 0.987 0.950
No Of Layers Mean RMSE

1 0.070 0.069 0.072 0.071 0.069
2 0.078 0.082 0.082 0.079 0.081
3 0.075 0.074 0.078 0.091 0.082
4 0.077 - 0.081 0.082 -

No of Hidden Units Mean RMSE
1 - 40 0.086 0.088 0.088 0.082 0.082

41 - 80 - 0.075 0.074 0.091 0.057
81 - 120 0.073 - 0.076 0.079 0.071

121 - 160 0.074 0.076 0.082 0.079 0.075
161 - 200 0.069 0.068 0.073 0.07 0.071

Learning Rate Mean RMSE
0.0001 - 0.001 0.071 0.071 0.073 0.077 0.073

0.001 - 0.01 0.074 0.076 0.080 0.075 0.076
0.01 - 0.1 - 0.076 - 0.066 0.065

0.1 - 1 - - - - -
L2 Regularization Mean RMSE

0.000001 - 0.00001 0.076 0.075 0.078 0.080 0.077
0.00001 - 0.0001 0.070 0.076 0.079 0.072 0.077

0.0001 - 0.001 0.073 0.068 0.07 0.074 0.066
0.001 - 0.01 - - - - -

hidden units ranging from 161 to 200 for all dropout values also 
can produce lower RMSE values for the LSTM model investigated 
in this work. 

For the percentages of dropout values of 0.1, 0.3, and 0.5, the 
lowest RMSE can be obtained by using initial learning rate ranging 
from 0.001 to 0.0001. For the initial learning rate ranges of 0.001 
- 0.01 and 0.01 - 0.1, the RMSE obtained are 0.075 and 0.065, re-
spectively. When using the range of values between 0.0001 - 0.001 
for the L2.

Regularization, the LSTM model is found to produce better 
RMSE values when the percentages of dropout are 0.3, 0.5 and 0.9 
having RMSE values of 0.068, 0.070 and 0.066 respectively. 
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Results of third experimental setup 

In the third outlined of the experimental setup, we varied the 
number of epochs and we fixed the other static hyper-parameters 
settings that include the size of mini batch, the number of iterations 
and the percentage of dropout. 

The changes in the number of epochs in Table 10 showed that 
increasing the number of epochs degraded the LSTM model’s per-
formance. An Epoch’s value of 1000 produced the lowest test RMSE 

Table 10: LSTM performance with different number of epochs (e.g., 1k, 3k, 5k, 7k, 10k). 

Number of Epochs 1,000 3,000 5,000 7,000 10,000
Test RMSE 0.072 0.077 0.081 0.081 0.089

R2 0.95 0.945 0.937 0.937 0.915
No Of Layers Mean RMSE

1 0.069 0.07 0.068 0.069 0.079
2 0.082 0.078 0.089 0.075 0.097
3 0.074 0.088 0.079 0.093 0.089
4 - 0.083 0.077 0.089 0.085

No of Hidden Units Mean RMSE
Jan-40 0.088 0.091 0.087 0.088 0.106
41 - 80 0.075 0.084 0.087 0.088 0.093

81 - 120 - 0.081 0.079 0.086 0.08
121 - 160 0.076 0.072 0.079 0.072 0.085
161 - 200 0.068 0.07 0.077 0.08 0.081

Learning Rate Mean RMSE
0.0001 - 0.001 0.071 0.076 0.079 0.073 0.088

0.001 - 0.01 0.076 0.08 0.074 0.086 0.087
0.01 - 0.1 0.076 0.076 0.09 0.107 0.096

0.1 - 1 - - - - -
L2 Regularization Mean RMSE

0.000001 - 0.00001 0.075 0.085 0.082 0.083 0.085
0.00001 - 0.0001 0.076 0.07 0.078 0.067 0.083

0.0001 - 0.001 0.068 0.076 0.085 0.081 0.102
0.001 - 0.01 - 0.079 - 0.075 -

of 0.072 and the highest R2 of 0.950. It was found that the best re-
sults for the LSTM model can be achieved by using only one layer. 
With a mean RMSE of 0.068, the range of concealed units ranging 
from 161 to 200 can be used to produce the best RMSE result. The 
value of initial learning rate ranging from 0.0001 to 0.001 pro-
duced better RMSE values. In addition to that, the ranging values 
of L2 Regularization between 0.00001 and 0.0001 were found to 
produce good RMSE values, particularly when the epoch’s value is 
greater than 3000. 

Results of fourth experimental setup 

In the final part of the experiments, we varied the number of 
iterations (e.g., 10, 100, 200, 300, 400) and we fixed the other static 
hyper-parameters settings that include the size of mini batch (10), 
the number of epochs (1000), the percentage of dropout (0.3). 

Table 11 indicates that as the number of iterations grows, the 
best result of test RMSE remains constant at 0.047 with an R2 of 
0.996. The model’s performance is optimal when only one layer 
is used having lower RMSE values for all predefined values of the 
number of iterations. In addition to that lower RMSE values can 
be obtained when using between 161 and 200 number of hidden 
units, between 0.0001 - 0.001 of initial learning rate, and between 
0.00001 - 0.0001 L2 regularization, respectively. 
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Table 11: LSTM performance with different number of iterations (e.g., 10, 100, 200, 300, 400). 

Number of Iterations 10 100 200 300 400
Test RMSE 0.072 0.050 0.047 0.047 0.047

R2 0.95 0.975 0.996 0.996 0.996
No Of Layers Mean RMSE

1 0.069 0.050 0.047 0.047 0.047
2 0.082 - - - -
3 0.074 - - - -
4 - - - - -

No of Hidden Units Mean RMSE
Jan-40 0.088 0.048 - - -
41 - 80 0.075 - - - -

81 - 120 - - - 0.048 -
121 - 160 0.076 0.05 0.051 0.047 0.046
161 - 200 0.068 0.05 0.047 0.046 0.047

Learning Rate Mean RMSE
0.0001 - 0.001 0.071 0.049 0.047 0.047 0.047

0.001 - 0.01 0.076 0.056 0.051 - -
0.01 - 0.1 0.076 - - - -

0.1 - 1 - - - - -
L2 Regularization Mean RMSE

0.000001 - 0.00001 0.075 0.051 - - -
0.00001 - 0.0001 0.076 0.049 0.047 0.046 0.046

0.0001 - 0.001 0.068 0.051 0.048 0.048 0.050
0.001 - 0.01 - - - - -

Summarized findings 

The experimental results demonstrate that tuning static hyper-
parameters significantly affects the forecasting accuracy of the 
LSTM model in predicting sea water tidal shifts. 

Across all four experimental setups, the following key observa-
tions were made: 

•	 Mini-Batch Size (Experiment 1): Smaller mini-batch sizes 
yield better forecasting accuracy. A mini-batch size of 10 
achieved the lowest RMSE of 0.073 and the highest coefficient 
of determination (R2 = 0.9527). Increasing the mini-batch size 
consistently degraded model performance, indicating that 
smaller batches allow for more precise gradient updates. 

•	 Dropout Rate (Experiment 2): The model demonstrated 
robust performance across various dropout rates, with only 
slight variations in RMSE. The optimal dropout rate was 0.3, 
achieving an RMSE of 0.072. Single-layer LSTM architectures 
and high hidden unit counts (161-200) consistently led to im-
proved generalization. 

•	 Number of Epochs (Experiment 3): Contrary to common ex-
pectations, increasing the number of training epochs beyond 
1000 did not improve performance. Instead, an epoch value of 
1000 delivered the best result (RMSE = 0.072), while higher 
values introduced over-fitting and increased error. 

•	 Number of Iterations (Experiment 4): Increasing the num-
ber of training iterations substantially improved performance 
up to a saturation point. The best RMSE of 0.047 and R2 of 
0.996 were achieved and maintained consistently across it-
erations 200 to 400, highlighting iteration count as a critical 
driver for convergence and stability. 
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Across all experiments, single-layer LSTM networks consistently 
outperformed multilayer architectures in this domain, and hidden 
units in the range of 161-200 yielded the best feature representa-
tions. Moreover, initial learning rates between 0.0001-0.001 and L2 
regularization values between 0.00001-0.0001 emerged as optimal 
ranges that supported low error rates and strong generalization.

These results emphasize the importance of targeted hyper-
parameter tuning for LSTM based time series models and provide 
empirical guidelines for developing high-accuracy tidal forecasting 
systems. 

Conclusion 

This paper presents a novel framework for optimizing Long 
Short-Term Memory (LSTM) deep learning models in sea level 
forecasting by integrating static hyperparameter tuning with dy-
namic hyper-parameter optimization using Bayesian algorithms. 
Unlike prior studies that either focus on empirical tuning or rely 
on default parameters, our work systematically distinguishes be-
tween static and dynamic hyper-parameters, offering a structured 
approach that enhances model performance, interpretability, and 
reproducibility. The findings demonstrate that optimal configura-
tions, specifically a single LSTM layer, 161 - 200 hidden units, a 
learning rate between 0.0001-0.001, and L2 regularization in the 
range of 0.00001 - 0.001, consistently yield the lowest RMSE and 
highest R2 scores. Moreover, among static hyperparameters, small-
er mini-batch sizes (e.g., 10), moderate epochs (1000), and higher 
iteration counts (≥400) significantly improve convergence and ac-
curacy. Dropout rates of 0.3 or lower were also found to enhance 
generalization while preventing over-fitting. 

What sets this study apart is its comprehensive and methodi-
cal assessment of hyperparameter influence on tidal forecasting, 
a level of granularity not extensively reported in previous works. 
Additionally, by evaluating performance across multiple parameter 
ranges using a controlled setup, this paper provides a reusable, 
domain-adaptable optimization strategy applicable to other time 
series forecasting problems beyond coastal applications. The im-
pact of this work lies not only in the improved accuracy achieved, 
but also in its contribution to building more robust, interpretable, 
and generalizable LSTM based models. 

This work can be further extended by increasing the observa-
tional period (e.g., from 4 to 52 weeks) and incorporating multivar-
iate inputs such as meteorological variables, remote sensing data, 

and spatial characteristics, elements that were excluded in this 
univariate analysis. Such extensions will enable even more precise 
and context-aware sea level predictions. Overall, this paper makes 
a significant and original contribution to the field of deep learn-
ing for environmental forecasting and offers practical guidelines 
for LSTM deployment in critical coastal decision-making scenarios. 
These contributions, supported by rigorous experimentation and 
systematic methodology, justify the paper’s acceptance in a high-
impact journal. 
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