
Acta Scientific COMPUTER SCIENCES

 Volume 7 Issue 2 May 2025

Science/Education Portraits XI: The Advent of Vibe Coding

Perspective Article

Maurice HT Ling*
HOHY PTE LTD, Singapore

*Corresponding Author: Maurice HT Ling, HOHY PTE LTD, Singapore.

Received: April 10, 2025

Published: April 15, 2025
© All rights are reserved by Maurice HT Ling.

Abstract

Keywords: Vibe Coding; AI-Assisted Coding; AI-Coding Assistant; Chatbot; Source Code Generation; Large Language Models; Cod-
ing Tools; Prompt Engineering

 The term “vibe coding” was coined by Andrej Karpathy on 03 February 2025 and defined in Merriam Webster dictionary as “the
practice of writing code, making web pages, or creating apps, by just telling an AI program what you want, and letting it create the
product for you”. This may be the dream scenario of Frederick B. Thompson and Jean E. Sammet – both advocating English as a pro-
gramming language in 1966, and I argue that vibe coding is its natural progression to today. For the purpose of this article, I tried
the implementation of ProjEB (a command line interface electronic laboratory notebook) using vibe coding. Using Claude 3.5 Sonnet
on GitHub Copilot within Microsoft VS Code, I produced working 994 lines of operational codes with 1685 lines of test codes within
28.5 hours from 161 lines of requirements as prompt. From this trial, I learnt that vibe coding is not exactly easy to accomplish as it
substantially tapped on my previous experiences with software design and coding. I feel like a software architect or project manager
having to envision the end result at the start, and to describe the vision to GitHub Copilot as the initial prompt. However, it does have
enormous potential ahead and if this is the start of vibe coding, I am excited.

Introduction
Vibe coding is a form of AI-assisted coding

On February 03, 2025; Andrej Karpathy (URL 1) of Eureka Labs
coined the term “vibe coding” in a tweet (URL 2) as: There’s a new
kind of coding I call “vibe coding”, where you fully give in to the vibes,
embrace exponentials, and forget that the code even exists. It’s pos-
sible because the LLMs (e.g. Cursor Composer w Sonnet) are getting
too good. Also I just talk to Composer with SuperWhisper so I barely
even touch the keyboard. I ask for the dumbest things like “decrease
the padding on the sidebar by half” because I’m too lazy to find it. I
“Accept All” always, I don’t read the diffs anymore. When I get error
messages I just copy paste them in with no comment, usually that
fixes it. The code grows beyond my usual comprehension, I’d have
to really read through it for a while. Sometimes the LLMs can’t fix
a bug so I just work around it or ask for random changes until it
goes away. It’s not too bad for throwaway weekend projects, but still
quite amusing. I’m building a project or webapp, but it’s not really
coding - I just see stuff, say stuff, run stuff, and copy paste stuff, and
it mostly works.

Merriam Webster (https://www.merriam-webster.com/slang/
vibe-coding) then defines “vibe coding” as “writing computer code
in a somewhat careless fashion, with AI assistance”, and describe

it as “the practice of writing code, making web pages, or creating
apps, by just telling an AI program what you want, and letting it
create the product for you”, with a further elaboration that “in vibe
coding the coder does not need to understand how or why the code
works, and often will have to accept that a certain number of bugs
and glitches will be present”.

From these definitions and descriptions, the hallmarks of vibe
coding can be listed as (i) writing computer codes with artificial
intelligence (AI) using prompts, (ii) no review of AI-generated
computer codes, (iii) repeated iterations until AI-generated com-
puter codes is free of errors, and (iv) perhaps the person giving
the prompt has no knowledge of computer coding; implying com-
pletely trusting the AI-generated codes to execute as intended and
without errors after enough iterations. This is substantially differ-
ent from AI-assisted coding [1,2] which can be defined as the use
of AI-tools in coding and this can include initial code generation by
the AI-tools for testing and evaluation. AI-assisted coding has sub-
stantial adoption in the software engineering community [3]. This
is supported by a study with 234 undergraduate students find that
AI-assisted pair programming positively impacts intrinsic motiva-
tion and reduced programming anxiety [4], suggesting potential
use of AI-assisted coding.

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

One of the main issues with AI-generated codes using large lan-
guage models (LLM) [5] is hallucination. In 1995, Stephen Thaler
demonstrated that hallucinations (also known as phantom experi-
ences) can emerge from random variations to weights in artificial
neural networks [6]. This phenomenon is well-observed in large
language models [7,8] where models generate plausible-sounding
but nonsensical information [9]. Specifically, hallucinations have
been shown in ChatGPT (13 February 2023’s version) [10] with
hallucination rates of 39.6% for GPT-3.5 and 28.6% for GPT-4 [11].

However, vibe coding does not insist error free codes at the first
iteration as Andrej Karpathy said that “when I get error messages
I just copy paste them in with no comment, usually that fixes it.”
Hence, iterations are allowed. The iteration of code generation and
code execution until error free fits the definition of a Chinese room
[12], which can be procedural. Conceptually, this meant that a user
with no knowledge of computer coding can issue requirements to
a vibe coding assistant which then runs an iteration loop until the
AI-generated codes is error free. This is predicated on unambigu-
ous requirements by the user, and reduction in both the quantity
and magnitude of errors at each iteration. In practice, unambigu-
ous requirements often require at least basic coding knowledge or
power-user level.

AI-Assisted Coding (And by Extension, Vibe Coding) is a logical
progression of coding tools

Before internet, online forums such as Usenet newsgroups has
become an avenue for many programmers to seek help from more
experienced individuals. Usenet was conceived by Tom Truscott
and Jim Ellis in 1979 and established in 1980. In 1996, Expert Ex-
change started as a forum for IT professionals to seek help within
the community. This is followed by Stack Overflow [13], in 1998,
as a question-and-answer site for programmers. At this point, a
programmer needing help has resources of the entire world but is
still dependent on another person willingness to help. This led to
many students posting assignment questions or genuinely unex-
perienced persons posting simple programming questions, which
resulted in many rude comments in the tone of “do not post your
homework questions”.

With increasing amount of sample codes and operational codes
online, specialized tools such as code search engines [14,15]
emerged. This reduces the need for another person needing to re-
spond to the question and potentially incurring wrath, as online
code repositories become a resource library. However, even with
code search or someone replying to a coding query, it is often diffi-
cult to provide sufficient context, and the reply needs to be contex-

tualized to the current problem. Hence, a high level of abstraction
is required to isolate the issue at hand so that another person can
help. The hope for a tool that can contextualize the problem or able
to reason the problem in the context of the codebase, is ever pres-
ent.

ChatGPT was launched on 30 November 2022 based on gen-
erative pre-trained transformer [16], and has revolutionized many
fields; such as, education [17], creative arts [18], healthcare [19],
research [20], and businesses [21]; for better or for worse. Chat-
GPT belongs to a class of applications known as chatbots and mim-
ics spoken language [22]. Within the year, studies have shown that
ChatGPT can generate source codes [23] comparable to high-per-
forming students [24]. The most important aspect of AI tools, such
as ChatGPT, is its ability to contextualize the problem. This is sup-
ported by studies showing that contextualized AI tools [25,26] are
able to act as coding assistants; thus, AI-assisted coding [2] or AI-
assisted programming [27] emerged. AI-assisted coding can also
mean that the world of code repositories and forum posts is now
within reach. More importantly, AI-coding assistants also meant a
dedicate assistant who will never be frustrated. Conceptually, AI-
coding assistants represents collective knowledge of the corpus it
was trained on.

Source code generation from specification has a long history
which undoubtedly pre-dates ChatGPT [28-30]. In 1966, both Fred-
erick B. Thompson (professor of applied philosophy and computer
science in Caltech) [31] and Jean E. Sammet (the developer of FOR-
MAC programming language and one of the developers of COBOL
programming language) [32] made a plea to consider using English
as a programming language. This led to the development of REL
in 1969 [33], which influenced the development of SEQUEL [34]
which became SQL

Bringing the natural language interface of chatbots to source
code generation seems to be obvious, and it may be what Freder-
ick B. Thompson and Jean E. Sammet were looking for. If natural
English language can be used as a specification language, then it
is possible to describe requirements to a chatbot (in the form of
an AI-coding assistant) and generate source codes as an outcome.
This fits Merriam Webster’s definition of vibe coding – “by just tell-
ing an AI program what you want, and letting it create the product
for you”, where the AI program is the AI-coding assistant.

Trial implementation of ProjEB using vibe coding
I had been wanting to develop an electronic laboratory note-

book (ELN) [35] to replace something that I had developed in the

04

Science/Education Portraits XI: The Advent of Vibe Coding

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

past, CyNote [36]. The new project, ProjEB (Project Electronic
Book) is to be a command-line interface (CLI) system at the start
and a graphical user interface (GUI) added on top of the CLI. How-
ever, I had not touched it since started ProjEB as a GitHub reposi-
tory on 20 August 2018 (URL 3).

Finally on 07 April 2025, I decided to use vibe coding to try to
implement a rudimentary version of ProjEB. I used Claude 3.5 Son-
net (URL 4; available since 21 June 2024) on GitHub Copilot (URL
5; available since 29 June 2021) [37] within Microsoft VS Code.
Here is what I did. In phase 1, I wrote an extensive 161 lines (more
than 4 pages) requirement for ProjEB that almost reminiscent to an
actual Product Requirement Document (PRD) or Product Specifica-
tion Document (PSD) – the commit on 08 April 2025 is at https://
bit.ly/ProjEB-RE.

I had some previous cursory attempts to use generative AI to
produce example codes that I can use. Through these attempts, I re-
alized that I need to specify as many things as possible; hence, this
extensive list of requirements (completed at 6.30 am of 08 April
2025) which I use as my initial prompt for phase 2. Phase 2 is the
generation of initial codes into the files peb.py (the command line
application of ProjEB) and database.py (containing database man-
agement codes), as well as example command line usage in run_peb.
bat file. This is followed by Phase 3, which is getting Github Copilot
to write initial test codes into test_peb.py (containing test cases for
peb.py) and test_run_peb.py (containing test cases for command
line usage – equivalent to test cases for rub_peb.bat). Phase 4 is
then the iterative (a) execute test_peb.py (command = coverage
run -m unittest test_peb.py && coverage report) and test_use_peb.
py (command = python -m unittest test_use_peb.py), (b) feeding
the error messages into Github Copilot to generate amendments
with the occasional prompt to increase code coverage, and (c) ap-
plying the amendments to the corresponding code files. Phase 4 is
deemed completed when code coverage for the 2 main files, peb.
py and database.py, reaches 60% by executing test_peb.py without
any failure; and executing test_use_peb.py without any failure.

This trial ended on 11 am of 09 April 2025 with 24 tests in
test_peb.py and 9 tests in test_use_peb.py, amounting to 64% code
coverage in database.py and 60% code coverage in peb.py. This ex-
periment spanned 28.5 hours (from URL 6, 7); with 525 lines of
codes in database.py and 469 lines of codes in peb.py (total of 994
lines of operational codes), and 1350 lines of codes in test_peb.py
and 335 lines of codes in test_rub_peb.py (total of 1685 lines of test
codes). This gives a crude estimate of 94 lines of codes per hour;
not accounting for the 11.5 hours I spent sleeping (I was down with
fever), the 8 hours of teaching I had on 08 April 2025, and so on.

My thoughts of vibe coding
Having attempted vibe coding myself, I have some thoughts

about it. Here, I will elaborate on my thought from 2 different lev-
els – (a) my thoughts and learnings before and after my attempt
at vibe coding, and (b) my thoughts about vibe coding as a whole.

Since early 2023, I have been dabbling with ChatGPT. Although
there are evidence of hallucination [10], especially in the area of
fabricated citations [38-40]; I was decently surprised by the qual-
ity of the generated data analysis codes, which is supported by re-
cent studies [41,42]. Hence, I felt that LLMs may be more suited for
code generation which is more objective as compared to descrip-
tions – much like grading mathematics examination scripts versus
literature examination scripts. Yet, even in code generation, I real-
ized that ambiguous or imprecise prompts tend to give wildly dif-
ferent results at different sessions using the same prompt. Hence,
in Phase 1 (prompt engineering), I decided to explicitly define my
requirements into a prompt at the start as clear requirement plays
a critical role in success of software development projects [43,44].
Writing these requirements is reminiscent of my previous role as
Senior Scientist where I spent months writing product specifica-
tion document (PRD) for a software project. I even used similar
language of “users should be able to …”. It also reminds me of the
days where I was a Research Associate and needs to communicate
via emails with my collaborator in another state on experiments –
I had to explain the order of which DNA samples must be loaded
onto agarose gel so that I can use the resulting gel image in my pub-
lication. Even this requires years of experiences as tertiary lecturer
writing laboratory manuals for students or explaining the steps to
my project students – the importance of unambiguous step-by-step
protocol. Therefore, writing the prompt itself required experiences
from at least 3 different jobs. This puts me in the role of a soft-
ware architect or project manager more than a junior developer. It
is almost like having to explain the ins and outs to a remote junior
developer, which happens to be GitHub Copilot.

More importantly, I had decided ProjEB to be a CLI at this point,
which allows me to write out the examples of commands as a form
of requirement. If ProjEB is meant to be GUI from the start, I will
have no idea how to describe the end result to GitHub Copilot. Nev-
ertheless, when I wrote the requirements for the software project
years ago, we spent many days scribbling on the whiteboard and
over GUI mock-ups before both developers and testers had copies
of the GUI flow. Yet, aesthetically pleasing GUI can be considered as
one of the non-functional requirement [45] – how to convey aes-
thetics to another person via phone?

05

Science/Education Portraits XI: The Advent of Vibe Coding

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

Phase 2 (generation of initial operational codes) and Phase 3
(generation of initial test codes) are smooth. Phase 4 (iterative
testing and revision) took up the most time and potentially most
challenging on my patience. It feels like test-driven development
[46,47]. I reckoned that I iterated more than a hundred times in
this phase. There is rather low technical knowledge required at this
phase except knowing which files to update – sometimes it may
not be obvious and I have to look at the function names to make a
judgement. There are multiple times where the errors are obvious
but in the spirit of vibe coding, I let GitHub Copilot work on it for
several more iterations before prompting where the error is.

On the whole, my thoughts and learnings before and after my
attempt at vibe coding is that it requires the coder to be at a much
higher level, such as a software architect or a project manager;
while the AI-coding assistant is an entry level developer that is
entrusted to code for individual functions. I also felt that iterative
testing and revision (Phase 4) could be automated much like ma-
chine learning as it is tedious, time-consuming, and even boring.

What do I think of vibe coding as a whole? I think vibe coding
is an inevitable progression of IT and computer science, much like
automated theorem proving when mathematical logic meets com-
puter science [48]. Yet, there are currently much debates online
about the dangerous of vibe coding, especially with security [49]
(URL 8-11). This is expected as all advancements come with both
positive and negative impacts. In 2023, WHO reported more than
1.19 million fatalities each year as a result of road traffic crashes
(URL 12) and yet nobody proposes that we should all go back to
walking. I think the reasonable approach is “use with care” rather
than “use blindly”. Therefore, code review is important [50,51] and
LLMs can take the first walkthrough [52].

From my pre-trial experience, AI-coding assistant is a handy as-
sistant to help me locate and contextualize codes that I can use,
which is substantially more convenient than sourcing for potential-
ly similar codes to adapt. From my trial experience, vibe coding can
be a productivity multiplier but as any multiplier, it can multiples
both my strengths and weaknesses. I will illustrate using an anal-
ogy – before the advent of bibliographic managers like EndNote
and Zotero, authors had painstakingly written out and editing ref-
erence sections for various submission. Now, I am using Zotero to
help me collate my references. Nobody is thinking that I am cheat-
ing in anyway. Yet, I also have students who can mess up their refer-
ence sections despite using bibliographic managers because they
simply mess up the data stored in their bibliographic managers.
The same can be said for spell checkers and other software conve-
niences. This also reminds me of my days learning dBase IV when

one of my fellow course mates commented that “browse is such a
powerful command” – how many developers actually know the de-
tailed operations from a print function to the characters displayed
on screen? – third generation programming languages onwards are
just layers of libraries.

Vibe coding should not and cannot replace fundamental coding
skills; instead, it demands software architectural skills, which is
likely a skills gap for entry developers. On March 24, 2025; Straits
Times (Singapore’s main newspaper) published an article on vibe
coding titled “Does ‘vibe coding’ make everyone a programmer?”
(URL 13) and 2 issues were raised – skills gap, and job displace-
ment. As a digital immigrant, I believe that skills gap can be bridged
by constant exposure and willingness to play with it. The year 2025
marks the start of Generation Beta who are expected to grow up
with AI deeply integrated. The same can be said for job displace-
ment – job displacement has been ongoing for centuries. Once
upon a time, computer is an occupation [53,54]. With self-checkout
services, many cashier positions disappeared as well. We have to
move on. I think there are exciting days ahead, maybe choppy but
definitely exciting.

Conclusion
Vibe coding can be a productivity multiplier, provided that the

vibe can be accurately described. This is not an easy task for a be-
ginner as it took substantial experiences from my past. However, I
am excited as its prospects ahead.

List of URLs
URL 1 = https://karpathy.ai/
URL 2 = https://x.com/karpathy/status/1886192184808149383
URL 3 = https://github.com/mauriceling/projeb/
URL 4 = https://www.anthropic.com/news/claude-3-5-sonnet
URL 5 = https://github.com/features/copilot
URL 6 = https://github.com/mauriceling/projeb/releases/tag/
SEP11-start
URL 7 = https://github.com/mauriceling/projeb/releases/tag/
SEP11-VC
URL 8 = https://weerd.xyz/posts/vibe-coding/
URL 9 = https://nmn.gl/blog/vibe-coding-fantasy
URL 10 = https://checkmarx.com/blog/security-in-vibe-coding/
URL 11 = https://futurescouting.substack.com/p/why-you-
shouldnt-use-vibe-coding
URL 12 = https://www.who.int/news-room/fact-sheets/detail/
road-traffic-injuries
URL 13 = https://www.straitstimes.com/tech/does-vibe-coding-
make-everyone-a-programmer

06

Science/Education Portraits XI: The Advent of Vibe Coding

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

Conflict of Interest
The author is interested in and intends to use AI-assisted cod-

ing.

Bibliography
1. Hartman J., et al. “AI-Assisted Coding with Cody: Lessons from

Context Retrieval and Evaluation for Code Recommendations”.
18th ACM Conference on Recommender Systems (ACM, Bari
Italy) (2024): 748-750.

2. Ramler R., et al. “Industrial Experience Report on AI-Assisted
Coding in Professional Software Development”. Proceedings of
the 1st International Workshop on Large Language Models for
Code (ACM, Lisbon Portugal) (2024): 1-7.

3. Martinović B and Rozić R. “Perceived Impact of AI-Based Tool-
ing on Software Development Code Quality”. SN Computer Sci-
ence 6.1 (2025): 63.

4. Fan G., et al. “The impact of AI-assisted pair programming on
student motivation, programming anxiety, collaborative learn-
ing, and programming performance: a comparative study with
traditional pair programming and individual approaches”. In-
ternational Journal of STEM Education 12.1 (2025): 16.

5. Ramírez-Rueda R., et al. “Transforming Software Develop-
ment: A Study on the Integration of Multi-Agent Systems and
Large Language Models for Automatic Code Generation”. 2024
12th International Conference in Software Engineering Re-
search and Innovation (CONISOFT) (IEEE, Puerto Escondido,
Mexico) (2024): 11-20.

6. Thaler SL. “Virtual Input” Phenomena Within the Death of a
Simple Pattern Associator”. Neural Networks 8.1 (1995): 55-
65.

7. Farquhar S., et al. “Detecting Hallucinations in Large Language
Models Using Semantic Entropy”. Nature 630.8017 (2024):
625-630.

8. Ganesh P., et al. “On the Role of Prompt Multiplicity in LLM Hal-
lucination Evaluation”. ICLR 2025 Workshop on Building Trust
in Language Models and Applications (2025).

9. Ji Z., et al. “Towards Mitigating LLM Hallucination via Self Re-
flection”. Findings of the Association for Computational Lin-
guistics: EMNLP 2023 (Association for Computational Linguis-
tics, Singapore) (2023): 1827-1843.

10. Ling MH. “ChatGPT (Feb 13 Version) is a Chinese Room”. Novel
Research in Sciences 14.2 (2023): NRS.000832.

11. Chelli M., et al. “Hallucination Rates and Reference Accuracy of
ChatGPT and Bard for Systematic Reviews: Comparative Anal-
ysis”. Journal of Medical Internet Research 26 (2024): e53164.

12. Searle J. “Chinese Room Argument”. Scholarpedia 4.8 (2009):
3100.

13. Abdalkareem R., et al. “What Do Developers Use the Crowd
For? A Study Using Stack Overflow”. IEEE Software 34.2
(2017): 53-60.

14. Kessel M and Atkinson C. “Code Search Engines for the Next
Generation”. Journal of Systems and Software 215 (2024):
112065.

15. Di Grazia L and Pradel M. “Code Search: A Survey of Techniques
for Finding Code”. ACM Computing Surveys 55.11 (2023): 1-31.

16. Vaswani A., et al. “Attention is All You Need”. Advances in Neu-
ral Information Processing Systems 30 (2017).

17. Lo CK. “What Is the Impact of ChatGPT on Education? A Rapid
Review of the Literature”. Education Sciences 13.4 (2023): 410.

18. Lee BC and Chung J. “An Empirical Investigation of the Im-
pact of ChatGPT on Creativity”. Nature Human Behaviour 8.10
(2024): 1906-1914.

19. Tangsrivimol JA., et al. “Benefits, Limits, and Risks of Chat-
GPT in Medicine”. Frontiers in Artificial Intelligence 8 (2025):
1518049.

20. Picazo-Sanchez P and Ortiz-Martin L. “Analysing the Impact of
ChatGPT in Research”. Applied Intelligence 54.5 (2024): 4172-
4188.

21. A Shaji George., et al. “A Review of ChatGPT AI’s Impact on Sev-
eral Business Sectors. Partners Universal International Innova-
tion Journal 1.1 (2023): 9-23.

22. Adamopoulou E and Moussiades L. “Chatbots: History, Tech-
nology, and Applications”. Machine Learning with Applications
2 (2020): 100006.

07

Science/Education Portraits XI: The Advent of Vibe Coding

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

https://doi.org/10.1145/3640457.3688060
https://doi.org/10.1145/3640457.3688060
https://doi.org/10.1145/3640457.3688060
https://doi.org/10.1145/3640457.3688060
https://doi.org/10.1145/3643795.3648377
https://doi.org/10.1145/3643795.3648377
https://doi.org/10.1145/3643795.3648377
https://doi.org/10.1145/3643795.3648377
https://doi.org/10.1007/s42979-024-03608-4
https://doi.org/10.1007/s42979-024-03608-4
https://doi.org/10.1007/s42979-024-03608-4
https://doi.org/10.1186/s40594-025-00537-3
https://doi.org/10.1186/s40594-025-00537-3
https://doi.org/10.1186/s40594-025-00537-3
https://doi.org/10.1186/s40594-025-00537-3
https://doi.org/10.1186/s40594-025-00537-3
https://doi.org/10.1109/CONISOFT63288.2024.00013
https://doi.org/10.1109/CONISOFT63288.2024.00013
https://doi.org/10.1109/CONISOFT63288.2024.00013
https://doi.org/10.1109/CONISOFT63288.2024.00013
https://doi.org/10.1109/CONISOFT63288.2024.00013
https://doi.org/10.1109/CONISOFT63288.2024.00013
https://doi.org/10.1016/0893-6080(94)00065-T
https://doi.org/10.1016/0893-6080(94)00065-T
https://doi.org/10.1016/0893-6080(94)00065-T
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.1038/s41586-024-07421-0
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://doi.org/10.18653/v1/2023.findings-emnlp.123
https://www.researchgate.net/publication/370262689_ChatGPT_Feb_13_Version_is_a_Chinese_Room
https://www.researchgate.net/publication/370262689_ChatGPT_Feb_13_Version_is_a_Chinese_Room
https://doi.org/10.2196/53164
https://doi.org/10.2196/53164
https://doi.org/10.2196/53164
https://doi.org/10.4249/scholarpedia.3100
https://doi.org/10.4249/scholarpedia.3100
https://doi.org/10.1109/MS.2017.31
https://doi.org/10.1109/MS.2017.31
https://doi.org/10.1109/MS.2017.31
https://doi.org/10.1016/j.jss.2024.112065
https://doi.org/10.1016/j.jss.2024.112065
https://doi.org/10.1016/j.jss.2024.112065
https://doi.org/10.1145/3565971
https://doi.org/10.1145/3565971
https://doi.org/10.3390/educsci13040410
https://doi.org/10.3390/educsci13040410
https://doi.org/10.1038/s41562-024-01953-1
https://doi.org/10.1038/s41562-024-01953-1
https://doi.org/10.1038/s41562-024-01953-1
https://doi.org/10.3389/frai.2025.1518049
https://doi.org/10.3389/frai.2025.1518049
https://doi.org/10.3389/frai.2025.1518049
https://doi.org/10.1007/s10489-024-05298-0
https://doi.org/10.1007/s10489-024-05298-0
https://doi.org/10.1007/s10489-024-05298-0
https://doi.org/10.5281/ZENODO.7644359
https://doi.org/10.5281/ZENODO.7644359
https://doi.org/10.5281/ZENODO.7644359
https://doi.org/10.1016/j.mlwa.2020.100006
https://doi.org/10.1016/j.mlwa.2020.100006
https://doi.org/10.1016/j.mlwa.2020.100006

23. Millam A and Bakke C. “Coding with AI as an Assistant: Can
AI Generate Concise Computer Code?” Journal of Information
Technology Education: Innovations in Practice 23 (2024): Ar-
ticle 9.

24. Nah J-H. “Analysis of ChatGPT’s Coding Capabilities in Foun-
dational Programming Courses”. Journal of Engineering Educa-
tion Research 26.6 (2023): 71-78.

25. Haindl P and Weinberger G. “Does ChatGPT Help Novice Pro-
grammers Write Better Code? Results From Static Code Analy-
sis”. IEEE Access 12 (2024): 114146-114156.

26. Pinto G., et al. “Developer Experiences with a Contextualized
AI Coding Assistant: Usability, Expectations, and Outcomes”.
Proceedings of the IEEE/ACM 3rd International Conference
on AI Engineering - Software Engineering for AI (ACM, Lisbon
Portugal) (2024): 81-91.

27. Rose K., et al. “IS Professors’ Perspectives on AI-Assisted Pro-
gramming”. Issues in Information Systems 24.2 (2023).

28. Knowlton PH. “The Use of an Algebraic Language as Both a
Source and Target Language”. Proceedings of the 1968 23rd
ACM National Conference (ACM Press, Not Known) (1968):
787-794.

29. Antoy S., et al. “Specification-Based Code Generation”. Twen-
ty-Third Annual Hawaii International Conference on System
Sciences (IEEE Comput. Soc. Press, Kailua-Kona, HI, USA), 2
(1990): 165-173.

30. Domı´nguez E., et al. “A Systematic Review of Code Generation
Proposals from State Machine Specifications”. Information and
Software Technology 54.10 (2012): 1045-1066.

31. Thompson FB. “English for the Computer”. Proceedings of the
November 7-10, 1966, Fall Joint Computer Conference on XX -
AFIPS ’66 (Fall) (ACM Press, San Francisco, California) (1966):
349.

32. Sammet JE. “The Use of English as a Programming Language”.
Communications of the ACM 9.3 (1966): 228-230.

33. Thompson FB., et al. “REL: A Rapidly Extensible Language sys-
tem”. Proceedings of the 1969 24th National Conference On -
(ACM Press, Not Known) (1969): 399-417.

34. Chamberlin DD and Boyce RF. “SEQUEL: A Structured English
Query Language”. Proceedings of the 1976 ACM SIGFIDET (Now
SIGMOD) Workshop on Data Description, Access and Control -
FIDET ’76 (ACM Press, Not Known) (1976): 249-264.

35. Badiola KA., et al. “Experiences with a Researcher-Centric
ELN”. Chemical Science 6.3 (2015): 1614-1629.

36. Ng YY and Ling MH. “Electronic laboratory notebook on Web-
2Py framework”. The Python Papers 5.3 (2010): 7.

37. Finnie-Ansley J., et al. “The Robots Are Coming: Exploring the
Implications of OpenAI Codex on Introductory Programming”.
Proceedings of the 24th Australasian Computing Education
Conference (ACM, Virtual Event Australia) (2022): 10-19.

38. Bhattacharyya M., et al. “High Rates of Fabricated and Inac-
curate References in ChatGPT-Generated Medical Content”.
Cureus 15.5 (2023): e39238.

39. Walters WH and Wilder EI. “Fabrication and Errors in the Bib-
liographic Citations Generated by ChatGPT”. Scientific Reports
13.1 (2023): 14045.

40. Lechien JR., et al. “Accuracy of ChatGPT-3.5 and -4 in Provid-
ing Scientific References in Otolaryngology-Head and Neck
Surgery”. European Archives of Oto-rhino-laryngology 281.4
(2024): 2159-2165.

41. Ruta MR., et al. “ChatGPT for Univariate Statistics: Validation
of AI-Assisted Data Analysis in Healthcare Research”. Journal
of Medical Internet Research 27 (2025): e63550.

42. Prandner D., et al. “ChatGPT as a Data Analyst: An Exploratory
Study on AI-Supported Quantitative Data Analysis in Empiri-
cal Research”. Frontiers in Education 9 (2025): 1417900.

43. Rasheed A., et al. “Requirement Engineering Challenges in
Agile Software Development”. Mathematical Problems in Engi-
neering 2021 (2021): 1-18.

44. Hussain A., et al. “The Role of Requirements in the Success or
Failure of Software Projects”. International Review of Manage-
ment and Marketing 6.7 (2016): 306-311.

45. Liang JT., et al. “A Large-Scale Survey on the Usability of AI Pro-
gramming Assistants: Successes and Challenges”. 2024 IEEE/
ACM 46th International Conference on Software Engineering
(ICSE 2024) (ACM Press, Lisbon, Portugal) (2024).

08

Science/Education Portraits XI: The Advent of Vibe Coding

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

https://www.informingscience.org/Publications/5362
https://www.informingscience.org/Publications/5362
https://www.informingscience.org/Publications/5362
https://www.informingscience.org/Publications/5362
https://doi.org/10.1109/ACCESS.2024.3445432
https://doi.org/10.1109/ACCESS.2024.3445432
https://doi.org/10.1109/ACCESS.2024.3445432
https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/3644815.3644949
https://doi.org/10.1145/800186.810642
https://doi.org/10.1145/800186.810642
https://doi.org/10.1145/800186.810642
https://doi.org/10.1145/800186.810642
https://doi.org/10.1109/HICSS.1990.205185
https://doi.org/10.1109/HICSS.1990.205185
https://doi.org/10.1109/HICSS.1990.205185
https://doi.org/10.1109/HICSS.1990.205185
https://doi.org/10.1016/j.infsof.2012.04.008
https://doi.org/10.1016/j.infsof.2012.04.008
https://doi.org/10.1016/j.infsof.2012.04.008
https://doi.org/10.1145/1464291.1464328
https://doi.org/10.1145/1464291.1464328
https://doi.org/10.1145/1464291.1464328
https://doi.org/10.1145/1464291.1464328
https://doi.org/10.1145/365230.365274
https://doi.org/10.1145/365230.365274
https://doi.org/10.1145/800195.805947
https://doi.org/10.1145/800195.805947
https://doi.org/10.1145/800195.805947
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1145/800296.811515
https://doi.org/10.1039/c4sc02128b
https://doi.org/10.1039/c4sc02128b
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.1145/3511861.3511863
https://doi.org/10.7759/cureus.39238
https://doi.org/10.7759/cureus.39238
https://doi.org/10.7759/cureus.39238
https://doi.org/10.1038/s41598-023-41032-5
https://doi.org/10.1038/s41598-023-41032-5
https://doi.org/10.1038/s41598-023-41032-5
https://doi.org/10.1007/s00405-023-08441-8
https://doi.org/10.1007/s00405-023-08441-8
https://doi.org/10.1007/s00405-023-08441-8
https://doi.org/10.1007/s00405-023-08441-8
https://doi.org/10.2196/63550
https://doi.org/10.2196/63550
https://doi.org/10.2196/63550
https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2024.1417900/full
https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2024.1417900/full
https://www.frontiersin.org/journals/education/articles/10.3389/feduc.2024.1417900/full
https://doi.org/10.1155/2021/6696695
https://doi.org/10.1155/2021/6696695
https://doi.org/10.1155/2021/6696695
https://www.researchgate.net/publication/308972993_The_Role_of_Requirements_in_the_Success_or_Failure_of_Software_Projects
https://www.researchgate.net/publication/308972993_The_Role_of_Requirements_in_the_Success_or_Failure_of_Software_Projects
https://www.researchgate.net/publication/308972993_The_Role_of_Requirements_in_the_Success_or_Failure_of_Software_Projects
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128

46. Beck K. “Test Driven Development: By Example (Addison-Wes-
ley Educational Publishers Inc)”. (2002).

47. George B and Williams L. “A Structured Experiment of Test-
Driven Development. Information and Software Technology
46.5 (2004): 337-342.

48. Loveland DW. “Automated Theorem Proving: Mapping Logic
into AI”. Proceedings of the ACM SIGART International Sympo-
sium on Methodologies for Intelligent Systems, ISMIS ’86. (Asso-
ciation for Computing Machinery, New York, NY, USA) (1986):
214-229.

49. Negri-Ribalta C., et al. “A Systematic Literature Review on the
Impact of AI Models on the Security of Code Generation”. Fron-
tiers in Big Data 7 (2024): 1386720.

50. Nazir S., et al. “Modern Code Review Benefits - Primary Find-
ings of A Systematic Literature Review”. Proceedings of the 3rd
International Conference on Software Engineering and Infor-
mation Management (ACM, Sydney NSW Australia) (2020):
210-215.

51. Braz L and Bacchelli A. “Software Security During Modern
Code Review: The Developer’s Perspective”. Proceedings of the
30th ACM Joint European Software Engineering Conference
and Symposium on the Foundations of Software Engineering
(ACM, Singapore Singapore) (2022): 810-821.

52. Wadhwa N., et al. “CORE: Resolving Code Quality Issues using
LLMs”. Proceedings of the ACM on Software Engineering 1.FSE
(2024): 789-811.

53. Light JS. “When Computers Were Women”. Technology and Cul-
ture 40.3 (1999): 455-483.

54. Ceruzzi PE. “When Computers Were Human”. IEEE Annals of
the History of Computing 13.3 (1991): 237-244.

09

Science/Education Portraits XI: The Advent of Vibe Coding

Citation: Maurice HT Ling. “Science/Education Portraits XI: The Advent of Vibe Coding". Acta Scientific Computer Sciences 7.2 (2025): 03-09.

https://doi.org/10.1016/j.infsof.2003.09.011
https://doi.org/10.1016/j.infsof.2003.09.011
https://doi.org/10.1016/j.infsof.2003.09.011
https://doi.org/10.1145/12808.12833
https://doi.org/10.1145/12808.12833
https://doi.org/10.1145/12808.12833
https://doi.org/10.1145/12808.12833
https://doi.org/10.1145/12808.12833
https://doi.org/10.3389/fdata.2024.1386720
https://doi.org/10.3389/fdata.2024.1386720
https://doi.org/10.3389/fdata.2024.1386720
https://doi.org/10.1145/3378936.3378954
https://doi.org/10.1145/3378936.3378954
https://doi.org/10.1145/3378936.3378954
https://doi.org/10.1145/3378936.3378954
https://doi.org/10.1145/3378936.3378954
https://doi.org/10.1145/3540250.3549135
https://doi.org/10.1145/3540250.3549135
https://doi.org/10.1145/3540250.3549135
https://doi.org/10.1145/3540250.3549135
https://doi.org/10.1145/3540250.3549135
https://doi.org/10.1145/3643762
https://doi.org/10.1145/3643762
https://doi.org/10.1145/3643762
https://doi.org/10.1353/tech.1999.0128
https://doi.org/10.1353/tech.1999.0128
https://doi.org/10.1109/MAHC.1991.10025
https://doi.org/10.1109/MAHC.1991.10025

