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This paper presents an innovative approach to obstacle avoidance in autonomous systems through the application of reinforce-
ment learning techniques. This comprehensive study delves into the intricate challenges of navigating autonomous systems in dy-
namic environments. By harnessing the power of advanced reinforcement learning techniques, specifically a synergistic blend of 
Q-learning and the Deep Deterministic Policy Gradient (DDPG) algorithm, this effort has pioneered a groundbreaking approach to 
improve obstacle avoidance capabilities of a mobile robot. This research meticulously explores the implementation and efficacy of 
this model through rigorous testing in a variety of simulated scenarios. The results obtained are not only promising but signify a sub-
stantial leap forward from traditional methods. There are marked enhancements observed in both the efficiency and safety aspects 
of autonomous navigation, paving the way for more sophisticated and resilient obstacle avoidance strategies. This investigation not 
only makes a significant contribution to the evolving field of robotics and artificial intelligence but also lays the groundwork for future 
explorations into the potential applications of reinforcement learning in complex, ever-changing environments. The findings in this 
paper offer valuable insights and a solid foundation for subsequent research aimed at optimizing autonomous systems for enhanced 
operational performance and adaptability.
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Introduction 
In the realm of autonomous robotics, mastering the art of 

navigation in unknown environments is paramount. Traditional 
navigation methods, typically comprising localization, map build-
ing, and path planning, falter in uncharted territories due to their 
reliance on preexisting obstacle maps. These conventional ap-
proaches often struggle with complexity and are prone to getting 
trapped in local optima, especially in dynamic settings where col-
lision avoidance is crucial. To address these limitations, heuristic 
methods, mirroring humanlike behavioral learning, are emerging 
as a promising alternative. This project introduces a novel ap-
proach using Deep Deterministic Policy Gradient (DDPG) Rein-
forcement Learning for navigating a mobile robot. The goal here 
is to enable the robot to travel from a starting point to a desig-
nated target location without colliding with static obstacles. The 
focus was on developing a simplified, yet universal model, lever-
aging information from the robot’s immediate surroundings. This 
model optimizes the robot’s path to the destination, enhancing its 
practical robustness and capability. Utilizing eight angular regions 
and six linear scales for directionality, the presented methodology 
enables the robot to select from one of eight angular directions at 
each time step, moving a fixed distance each time. This approach 
presents a universal characteristic, potentially applicable across 
diverse robotic platforms. In the simulation and training, the ro-

bot was liberated from the constraints of limited information, be-
ing allowed to access absolute angles and distances between itself 
and the target. However, during the test phase, the robot operates 
without this knowledge. The presented study delves into the appli-
cation of reinforcement learning to guide a mobile robot through a 
static-obstacle-laden environment, modeled as a Markov Decision 
Process. This environment features distinct states and correspond-
ing rewards, with the robot’s objective being to maximize reward 
accumulation while avoiding obstacles. The robot’s observed states 
include its own position, the goal position, linear and angular ve-
locities, and proximity to obstacles. Its actions are incentivized 
through a reward system: small negative rewards for movement to 
encourage progress, significant negative rewards for collisions, and 
substantial positive rewards for reaching the goal. Additionally, in-
corporating a reward component for velocity aims to enhance the 
robot’s speed. This project, thus, not only contributes to the field 
of autonomous robotics but also offers significant insights into the 
practical application of reinforcement learning for efficient and 
safe navigation in complex, obstacle-rich environments.

Related work
In the burgeoning field of autonomous vehicle technology, en-

suring safety while navigating through obstacle laden environ-
ments is of paramount importance, necessitating advanced solu-
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tions for trajectory planning and real-time collision avoidance. 
Traditional strategies, while robust, often suffer from high compu-
tational demands. For instance, path planning with model-free con-
trollers, such as those detailed by Grisetti, Grzonka, and Burgard 
[1] offers a computationally light approach but tends to be overly 
conservative. On the other hand, model-based methods like Model 
Predictive Control [2], balance slow global planning with rapid 
local avoidance but can be intensive in calculation and limited in 
scope, often requiring dynamic-specific models and precise estima-
tion of obstacle positions from sensors. This project seeks to ad-
dress these limitations by introducing a novel learning algorithm, 
which generates control commands directly from sensor inputs, 
thereby eliminating the need for obstacle position estimation. This 
approach, which is schematically summarized in 3 leverages neural 
networks for greater efficiency compared to traditional methods 
and integrates learning with motion planning. The most general 
approach for learning a control policy in such scenarios is mod-
el-free reinforcement learning, a class of methods that learns the 
control policy through direct interaction with the environment, as 
exemplified in the work of Silver., et al. [3] and others. This project 
builds upon these foundational concepts to develop an innovative 
solution for autonomous vehicles, combining the efficiency of di-
rect sensor input-based control with the adaptability and learning 
capabilities of model-free reinforcement learning.

Methods
Q-Learning

Q-learning is a model-free reinforcement learning algorithm to 
learn a policy telling an agent what action to take under what cir-
cumstances. It does not require a model of the environment, and 
it can handle problems with stochastic transitions and rewards, 
without requiring adaptations. For any finite Markov decision 
process (FMDP), Q-learning finds an optimal policy in the sense of 
maximizing the expected value of the total reward over any and 
all successive steps, starting from the current state. Q-learning can 
identify an optimal action-selection policy for any given FMDP, giv-
en infinite exploration time and a partly-random policy. ”Q” names 
the function that returns the reward used to provide the reinforce-
ment and can be said to stand for the ”quality” of an action taken 
in a given state [11]. The weight for a step from a state δt steps into 
the future is calculated as γδt, where the discount factor which lies 
between 0 and 1 has the effect of valuing rewards received earlier 
higher than those received later thus, reflecting the value of a ”good 
start”).γ may also be interpreted as the probability to succeed at 
every δt. Thus, the algorithm can be approximated as shown in 
eq(1) [11].
Q: S × A → R ----- (1)

The core of the algorithm is a Bellman equation as a simple val-
ue iteration update, using the weighted average of the old value and 
the new information as depicted in the below equation [11].

Figure 1: A policy is learned form few, short local collision avoid-
ance and path following maneuvers (red). The learned policy 
generalizes to unseen scenes and can track long guidance paths 
(green) through complex environments while successfully avoid-

ing obstacles (blue).

An episode of the algorithm ends when state st+1 is a final or 
terminal state. However, Q-learning can also learn in non-episodic 
tasks. Since Q-learning is an iterative algorithm, it implicitly as-
sumes an initial condition before the first update occurs. High 
initial values, also known as “optimistic initial conditions”, can en-
courage exploration, no matter what action is selected, the update 
rule will cause it to have lower values than the other alternative, 
thus increasing their choice probability. The first reward r can be 
used to reset the initial conditions [11].

Although for problems with discrete action space and smaller 
number of states, the Q learning algorithm works very well. How-
ever, for problems like navigation, balancing an inverted pendulum 
on a cart which have continuous action space, the Q learning al-
gorithm is not feasible. This is because in continuous spaces find-
ing the greedy policy requires an optimization of actions at at ev-
ery time-step t. This optimization is too slow to be practical with 
large, unconstrained function approximators and nontrivial action 
spaces.

Deep Q-Learning
Q-learning is a simple yet quite powerful algorithm to create a 

cheat sheet for the agent. This helps the agent figure out exactly 
which action to perform [8]. It is pretty clear that one can’t infer the 
Q-value of new states from already explored states. This presents 
two problems:
•	 First, the amount of memory required to save and update 

that table would increase as the number of states increases
•	 Second, the amount of time required to explore each state to 

create the required Q-table would be unrealistic
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In deep Q-learning, a neural network is used to approximate the 
Q-value function. The state is given as the input and the Q-value of 
all possible actions is generated as the output [8]. The algorithm 
includes the following steps in sequence:
•	 All the past experience is stored by the user in memory
•	 The next action is determined by the maximum output of the 

Q-network
•	 The loss function here is mean squared error of the predicted 

Q-value and the target Q-value – Q*. This is basically a regres-
sion problem. However, we do not know the target or actual 
value here as we are dealing with a reinforcement learning 
problem. 

Going back to the Q-value update equation derived from the 
Bellman equation. We have:

----- (2)

Eq(3) represents the target. One can argue that it is predicting 
its own value, but since R is the unbiased true reward, the network 
is going to update its gradient using back propagation to finally 
converge. Deep Q-Learning is depicted in the below figure.

Figure 2: Pictorial Representation of Deep Q-Learning.

Deep deterministic policy gradient
Out of the numerous reinforcement learning algorithms avail-

able, Deep Deterministic Policy Gradient (DDPG) is best suited 
for continuous action space tasks. DDPG concurrently learns a 
Q-function and a policy µ. It uses off-policy data and the Bellman 
equation to learn the Q-function, and uses the Q-function to learn 
the policy. This approach is closely connected to Q-learning, and 
is motivated the same way: if one knows the optimal action-value 
function Q∗(s,a), then in any given state, the optimal action a∗(s) can 
be found by solving.

DDPG interleaves learning an approximator to Q∗(s,a) with 
learning an approximator to a∗(s), and it does so in a way which 
is specifically adapted for environments with continuous action 
spaces. When there are a finite number of discrete actions, the max 
poses no problem, because the Q-values can be computed for each 
action separately and directly compare them. But when the action 
space is continuous, one can’t exhaustively evaluate the space, and 
solving the optimization problem would make calculating maxa 

Q∗(s,a) a painfully expensive subroutine.

Because the action space is continuous, the function Q∗(s,a) 
is presumed to be differentiable with respect to the action argu-
ment. This allows us to set up an efficient, gradient-based learn-
ing rule for a policy µ(s) which exploits that fact. Then, instead of 
running an expensive optimization subroutine each time we wish 
to compute maxa Q(s,a), we can approximate it with maxa Q(s,a) ≈ 
Q(s,µ(s)).

DDPG consists of two types of Networks called the actor and the 
critic network. The actor network takes the environment states as 
its input and predicts the actions the agent will perform in the next 
time step, whereas the critic network is used for evaluating the 
policy function estimated by the actor according to the temporal 
difference (TD) error. This combination of actor network and critic 
network along with experience replay constitutes Deep Determin-
istic Policy Gradient algorithm (DDPG).

Figure 3: DDPG Architecture.

From [6], it is clear that the DDPG algorithm maintains a param-
eterized actor function µ(s | θµ) which specifies the current policy 
by deterministically mapping states to a specific action. The critic 
Q(s,a) is learned using the Bellman equation as in Q-learning. The 
actor is updated by following the applying the chain rule to the ex-
pected return from the start distribution J with respect to the actor 
parameters [6]:

Deep deterministic policy gradient with hindsight experience 
replay

[4] Experience replay was first introduced by Lin (1992). The 
key idea of experience replay is to train the agent with the tran-
sitions sampled from the buffer of previously experienced transi-
tions. A transition is defined to be a quadruple (s,a,r,s0), where s is 
the state, a is the action, r is the received reward after executing the 
action a in the state s and s0 is the next state. At each time step, the 
current transition is added to the replay buffer and some transi-
tions are sampled from the replay buffer to train the agent.
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[7] HER is an experience replay method which can be used to 
overcome the learning difficulties caused by the use of sparse re-
wards and avoid complex reward projects. Different from the tra-
ditional Reinforcement Learning methods, HER is proposed with 
a new parameter goal which consists of desired goal and achieved 
goal. The desired goal represents the task that the agent should 
accomplish. The achieved goal represents the task that the agent 
has completed at the current time. The key idea of HER is as fol-
lows: at some moment, although the agent has not achieved the de-
sired goal, it has completed achieved goal. At this time, the desired 
goal can be replaced by the achieved goal so that the method can 
transform failed experiences into successful experiences and learn 
from them. In HER, even though the desired goal is not completed 
at present, if the learning process is repeated, the agent will com-
plete the desired goal in the final so as to complete the task with 
the sparse rewards.

[9] Suppose the agent performs an episode of trying to reach 
goal state G from initial state S, but fails to do so and ends up in 
some state S’ at the end of the episode. The trajectory is cached into 
our replay buffer:

Where r with subscript k is the reward received at step k of the 
episode, and a with subscript k is the action taken at step k of the 
episode. The idea in HER is to imagine that the goal has actually 
been S0 all along, and that in this alternative reality the agent has 
reached the goal successfully and got the positive reward for doing 
so. So, in addition to caching the real trajectory as seen before, I 
also cache the following trajectory.

This trajectory is the imagined one, and is motivated by the hu-
man ability to learn useful things from failed attempts. It should 
also be noted that in the imagined trajectory, the reward received 
at the final step of the episode is now a positive reward gained from 
reaching the imagined goal. By introducing the imagined trajecto-
ries to the replay buffer, it is ensured that no matter how bad the 
policy is, it will always have some positive rewards to learn from.

Implementation
In this project, a Simulation tool named CoppeliaSim (previ-

ously known as v-rep) by Coppelia Robotics is used along with 
OpenAI’s gym environment [10]. The CoppeliaSim provides mobile 
robot and the scene in which the robot moves around. This when 
coupled with gym environment gives the states and information 
about the environment without any additional sensors. The envi-
ronment looks like the.

The acquisition of environmental states and information is fa-
cilitated through the integration of PyRep [5], a comprehensive 
toolkit designed specifically for robot learning research. Built atop 

Figure 4: Simulation Environment.

CoppeliaSim, PyRep provides an effective interface with the Ope-
nAI Gym environment, thereby enabling a seamless integration for 
conducting extensive reinforcement learning experiments.

In the development of the neural network architectures for both 
the actor and the critic components of the model, TensorFlow has 
been selected as the primary framework. This choice is predicated 
on TensorFlow’s user friendly interface, coupled with its robust set 
of training functionalities that significantly enhance the efficiency 
of model training processes. The model architecture comprises 
four distinct networks: the actor, the critic, and their respective 
target networks – target actor and target critic. Each network is 
characterized by a shallow neural network architecture, incorpo-
rating two hidden layers with 200 and 100 neurons, respectively. 
The rectified linear unit (ReLU) activation function is employed 
across these layers due to its proven efficacy in facilitating the 
training process. Training of both the actor and the critic networks 
is executed utilizing the Adam optimizer, with the aim to minimize 
the mean square error between the outputs of the critic and the 
target critic networks.

The formulation of an effective reward function is paramount 
for the successful training of the agent. To this end, an all-encom-
passing reward function has been devised that accounts for the 
critical variables influencing the robot’s performance. This func-
tion has been meticulously designed to encapsulate all pertinent 
aspects, with the reward equation delineated in Equation (8).

Where, VL is the linear velocity of the mobile robot, θ is the head-
ing angle, D is the vector distance read from the ultrasonic sensor, 
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d is the distance between robot and goal position, dcollision distance 
when collision occurs, dth threshold distance between robot and 
goal position, dproxth is the safety distance threshold for regular op-
eration.
Results

The utilization of the CoppeliaSim robotic simulator facilitated 
the implementation of robot navigation within a two-dimensional 
environment. This simulation environment employed an array of 
ultrasonic sensors mounted on the virtual robot to detect obsta-
cles in its vicinity. The collective detection range of these sensors 
is depicted in Figure 7. The configuration ensures a broad field of 
detection, enabling the robot to identify multiple obstacles simul-
taneously, thereby aiding in effective obstacle avoidance. In Figure 
7, the proximity of obstacles is indicated by red arrows, whereas 
blue lines denote potential clear paths that the robot can navigate 
through.

The experimental setup involved varying the robot’s start and 
end points across 15 distinct pairs, with the robot undergoing 
training for each pair across 5000 episodes. Initial experiments 
employed a simplistic reward system, penalizing collisions and 
rewarding goal achievement. However, this initial reward strategy 
proved inadequate for complex navigation tasks. Consequently, 
the approach was refined to develop a more sophisticated reward 
formulation, incorporating multiple factors to better guide the 
learning process. Following an extensive training regime spanning 
75,000 episodes, the algorithm was subjected to a series of 100 
evaluation episodes. The outcomes of these evaluations, as pre-
sented in Figures 8 and 9, demonstrate a success rate exceeding 
50%.

Conclusions and Future Work
In summary, the results of this project underscore the efficacy 

of the Deep Deterministic Policy Gradient (DDPG) algorithm with-
in simulated environments, marking a significant contribution to 
the field of reinforcement learning. Despite initial challenges en-
countered during the preliminary evaluation episodes, DDPG dem-
onstrated a remarkable capacity for recovery, swiftly adapting to 
achieve an enhanced success rate in subsequent episodes. This re-
silience highlights DDPG’s potential as a robust learning method 
capable of navigating the complexities of simulated environments 
effectively.

However, the journey of refining and expanding the capabilities 
of reinforcement learning algorithms does not end here. One prom-
ising direction for future work is the integration of Hindsight Expe-
rience Replay (HER). By leveraging the insights gained from previ-
ous experiences, HER has the potential to streamline the learning 
process, particularly in scenarios where reward signals are sparse 
or difficult to engineer. This approach could significantly mitigate 
the challenges posed by complex reward structures, enhancing the 
algorithm’s efficiency and effectiveness.

Figure 5: Bot Origin.

Figure 6: Gathering Local Information.

Figure 7: Final Bot Position.

Figure 8: Success Rate.
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Moreover, the incorporation of vision sensors represents an-
other frontier for exploration. By equipping the algorithm with the 
ability to perceive and interpret its surroundings through advanced 
sensory inputs, we can substantially improve its navigational strat-
egies. This enhancement would enable a more nuanced interaction 
with the environment, facilitating a deeper understanding of the 
spatial and contextual elements critical for sophisticated decision-
making processes.

As advancements are made, these extensions will not only bol-
ster the algorithm’s performance but also deepen the understand-
ing of the intricate dynamics at play in reinforcement learning. The 
integration of HER and vision sensors has the potential to propel 
the field towards more autonomous, perceptive, and adaptable sys-
tems, paving the way for innovations that could transcend simu-
lated environments to impact real-world applications.

In conclusion, this project lays a solid foundation for future re-
search in reinforcement learning, offering valuable insights into the 
capabilities of DDPG while charting a course for the next genera-
tion of algorithms. By embracing these extensions, the boundaries 
of what is possible can continue to be pushed, driving forward the 
development of intelligent systems that are more capable, resilient, 
and attuned to the complexities of their operational environments.
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