
Acta Scientific COMPUTER SCIENCES

 Volume 6 Issue 5 May 2024

Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning

Review Article

Shravan S Rai*
Arizona State University, USA

*Corresponding Author: Shravan S Rai, Arizona State University, USA.

Received: April 17, 2024

Published: April 30, 2024
© All rights are reserved by Shravan S Rai.

This paper presents an innovative approach to obstacle avoidance in autonomous systems through the application of reinforce-
ment learning techniques. This comprehensive study delves into the intricate challenges of navigating autonomous systems in dy-
namic environments. By harnessing the power of advanced reinforcement learning techniques, specifically a synergistic blend of
Q-learning and the Deep Deterministic Policy Gradient (DDPG) algorithm, this effort has pioneered a groundbreaking approach to
improve obstacle avoidance capabilities of a mobile robot. This research meticulously explores the implementation and efficacy of
this model through rigorous testing in a variety of simulated scenarios. The results obtained are not only promising but signify a sub-
stantial leap forward from traditional methods. There are marked enhancements observed in both the efficiency and safety aspects
of autonomous navigation, paving the way for more sophisticated and resilient obstacle avoidance strategies. This investigation not
only makes a significant contribution to the evolving field of robotics and artificial intelligence but also lays the groundwork for future
explorations into the potential applications of reinforcement learning in complex, ever-changing environments. The findings in this
paper offer valuable insights and a solid foundation for subsequent research aimed at optimizing autonomous systems for enhanced
operational performance and adaptability.

Abstract

Keywords: Obstacle; Avoidance; Reinforcement; Learning; DDPG

Introduction
In the realm of autonomous robotics, mastering the art of

navigation in unknown environments is paramount. Traditional
navigation methods, typically comprising localization, map build-
ing, and path planning, falter in uncharted territories due to their
reliance on preexisting obstacle maps. These conventional ap-
proaches often struggle with complexity and are prone to getting
trapped in local optima, especially in dynamic settings where col-
lision avoidance is crucial. To address these limitations, heuristic
methods, mirroring humanlike behavioral learning, are emerging
as a promising alternative. This project introduces a novel ap-
proach using Deep Deterministic Policy Gradient (DDPG) Rein-
forcement Learning for navigating a mobile robot. The goal here
is to enable the robot to travel from a starting point to a desig-
nated target location without colliding with static obstacles. The
focus was on developing a simplified, yet universal model, lever-
aging information from the robot’s immediate surroundings. This
model optimizes the robot’s path to the destination, enhancing its
practical robustness and capability. Utilizing eight angular regions
and six linear scales for directionality, the presented methodology
enables the robot to select from one of eight angular directions at
each time step, moving a fixed distance each time. This approach
presents a universal characteristic, potentially applicable across
diverse robotic platforms. In the simulation and training, the ro-

bot was liberated from the constraints of limited information, be-
ing allowed to access absolute angles and distances between itself
and the target. However, during the test phase, the robot operates
without this knowledge. The presented study delves into the appli-
cation of reinforcement learning to guide a mobile robot through a
static-obstacle-laden environment, modeled as a Markov Decision
Process. This environment features distinct states and correspond-
ing rewards, with the robot’s objective being to maximize reward
accumulation while avoiding obstacles. The robot’s observed states
include its own position, the goal position, linear and angular ve-
locities, and proximity to obstacles. Its actions are incentivized
through a reward system: small negative rewards for movement to
encourage progress, significant negative rewards for collisions, and
substantial positive rewards for reaching the goal. Additionally, in-
corporating a reward component for velocity aims to enhance the
robot’s speed. This project, thus, not only contributes to the field
of autonomous robotics but also offers significant insights into the
practical application of reinforcement learning for efficient and
safe navigation in complex, obstacle-rich environments.

Related work
In the burgeoning field of autonomous vehicle technology, en-

suring safety while navigating through obstacle laden environ-
ments is of paramount importance, necessitating advanced solu-

Citation: Shravan S Rai. “Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning". Acta Scientific Computer Sciences 6.5 (2024):
16-21.

tions for trajectory planning and real-time collision avoidance.
Traditional strategies, while robust, often suffer from high compu-
tational demands. For instance, path planning with model-free con-
trollers, such as those detailed by Grisetti, Grzonka, and Burgard
[1] offers a computationally light approach but tends to be overly
conservative. On the other hand, model-based methods like Model
Predictive Control [2], balance slow global planning with rapid
local avoidance but can be intensive in calculation and limited in
scope, often requiring dynamic-specific models and precise estima-
tion of obstacle positions from sensors. This project seeks to ad-
dress these limitations by introducing a novel learning algorithm,
which generates control commands directly from sensor inputs,
thereby eliminating the need for obstacle position estimation. This
approach, which is schematically summarized in 3 leverages neural
networks for greater efficiency compared to traditional methods
and integrates learning with motion planning. The most general
approach for learning a control policy in such scenarios is mod-
el-free reinforcement learning, a class of methods that learns the
control policy through direct interaction with the environment, as
exemplified in the work of Silver., et al. [3] and others. This project
builds upon these foundational concepts to develop an innovative
solution for autonomous vehicles, combining the efficiency of di-
rect sensor input-based control with the adaptability and learning
capabilities of model-free reinforcement learning.

Methods
Q-Learning

Q-learning is a model-free reinforcement learning algorithm to
learn a policy telling an agent what action to take under what cir-
cumstances. It does not require a model of the environment, and
it can handle problems with stochastic transitions and rewards,
without requiring adaptations. For any finite Markov decision
process (FMDP), Q-learning finds an optimal policy in the sense of
maximizing the expected value of the total reward over any and
all successive steps, starting from the current state. Q-learning can
identify an optimal action-selection policy for any given FMDP, giv-
en infinite exploration time and a partly-random policy. ”Q” names
the function that returns the reward used to provide the reinforce-
ment and can be said to stand for the ”quality” of an action taken
in a given state [11]. The weight for a step from a state δt steps into
the future is calculated as γδt, where the discount factor which lies
between 0 and 1 has the effect of valuing rewards received earlier
higher than those received later thus, reflecting the value of a ”good
start”).γ may also be interpreted as the probability to succeed at
every δt. Thus, the algorithm can be approximated as shown in
eq(1) [11].
Q: S × A → R ----- (1)

The core of the algorithm is a Bellman equation as a simple val-
ue iteration update, using the weighted average of the old value and
the new information as depicted in the below equation [11].

Figure 1: A policy is learned form few, short local collision avoid-
ance and path following maneuvers (red). The learned policy
generalizes to unseen scenes and can track long guidance paths
(green) through complex environments while successfully avoid-

ing obstacles (blue).

An episode of the algorithm ends when state st+1 is a final or
terminal state. However, Q-learning can also learn in non-episodic
tasks. Since Q-learning is an iterative algorithm, it implicitly as-
sumes an initial condition before the first update occurs. High
initial values, also known as “optimistic initial conditions”, can en-
courage exploration, no matter what action is selected, the update
rule will cause it to have lower values than the other alternative,
thus increasing their choice probability. The first reward r can be
used to reset the initial conditions [11].

Although for problems with discrete action space and smaller
number of states, the Q learning algorithm works very well. How-
ever, for problems like navigation, balancing an inverted pendulum
on a cart which have continuous action space, the Q learning al-
gorithm is not feasible. This is because in continuous spaces find-
ing the greedy policy requires an optimization of actions at at ev-
ery time-step t. This optimization is too slow to be practical with
large, unconstrained function approximators and nontrivial action
spaces.

Deep Q-Learning
Q-learning is a simple yet quite powerful algorithm to create a

cheat sheet for the agent. This helps the agent figure out exactly
which action to perform [8]. It is pretty clear that one can’t infer the
Q-value of new states from already explored states. This presents
two problems:
•	 First, the amount of memory required to save and update

that table would increase as the number of states increases
•	 Second, the amount of time required to explore each state to

create the required Q-table would be unrealistic

17

Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning

Citation: Shravan S Rai. “Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning". Acta Scientific Computer Sciences 6.5 (2024):
16-21.

In deep Q-learning, a neural network is used to approximate the
Q-value function. The state is given as the input and the Q-value of
all possible actions is generated as the output [8]. The algorithm
includes the following steps in sequence:
•	 All the past experience is stored by the user in memory
•	 The next action is determined by the maximum output of the

Q-network
•	 The loss function here is mean squared error of the predicted

Q-value and the target Q-value – Q*. This is basically a regres-
sion problem. However, we do not know the target or actual
value here as we are dealing with a reinforcement learning
problem.

Going back to the Q-value update equation derived from the
Bellman equation. We have:

----- (2)

Eq(3) represents the target. One can argue that it is predicting
its own value, but since R is the unbiased true reward, the network
is going to update its gradient using back propagation to finally
converge. Deep Q-Learning is depicted in the below figure.

Figure 2: Pictorial Representation of Deep Q-Learning.

Deep deterministic policy gradient
Out of the numerous reinforcement learning algorithms avail-

able, Deep Deterministic Policy Gradient (DDPG) is best suited
for continuous action space tasks. DDPG concurrently learns a
Q-function and a policy µ. It uses off-policy data and the Bellman
equation to learn the Q-function, and uses the Q-function to learn
the policy. This approach is closely connected to Q-learning, and
is motivated the same way: if one knows the optimal action-value
function Q∗(s,a), then in any given state, the optimal action a∗(s) can
be found by solving.

DDPG interleaves learning an approximator to Q∗(s,a) with
learning an approximator to a∗(s), and it does so in a way which
is specifically adapted for environments with continuous action
spaces. When there are a finite number of discrete actions, the max
poses no problem, because the Q-values can be computed for each
action separately and directly compare them. But when the action
space is continuous, one can’t exhaustively evaluate the space, and
solving the optimization problem would make calculating maxa

Q∗(s,a) a painfully expensive subroutine.

Because the action space is continuous, the function Q∗(s,a)
is presumed to be differentiable with respect to the action argu-
ment. This allows us to set up an efficient, gradient-based learn-
ing rule for a policy µ(s) which exploits that fact. Then, instead of
running an expensive optimization subroutine each time we wish
to compute maxa Q(s,a), we can approximate it with maxa Q(s,a) ≈
Q(s,µ(s)).

DDPG consists of two types of Networks called the actor and the
critic network. The actor network takes the environment states as
its input and predicts the actions the agent will perform in the next
time step, whereas the critic network is used for evaluating the
policy function estimated by the actor according to the temporal
difference (TD) error. This combination of actor network and critic
network along with experience replay constitutes Deep Determin-
istic Policy Gradient algorithm (DDPG).

Figure 3: DDPG Architecture.

From [6], it is clear that the DDPG algorithm maintains a param-
eterized actor function µ(s | θµ) which specifies the current policy
by deterministically mapping states to a specific action. The critic
Q(s,a) is learned using the Bellman equation as in Q-learning. The
actor is updated by following the applying the chain rule to the ex-
pected return from the start distribution J with respect to the actor
parameters [6]:

Deep deterministic policy gradient with hindsight experience
replay

[4] Experience replay was first introduced by Lin (1992). The
key idea of experience replay is to train the agent with the tran-
sitions sampled from the buffer of previously experienced transi-
tions. A transition is defined to be a quadruple (s,a,r,s0), where s is
the state, a is the action, r is the received reward after executing the
action a in the state s and s0 is the next state. At each time step, the
current transition is added to the replay buffer and some transi-
tions are sampled from the replay buffer to train the agent.

18

Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning

Citation: Shravan S Rai. “Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning". Acta Scientific Computer Sciences 6.5 (2024):
16-21.

[7] HER is an experience replay method which can be used to
overcome the learning difficulties caused by the use of sparse re-
wards and avoid complex reward projects. Different from the tra-
ditional Reinforcement Learning methods, HER is proposed with
a new parameter goal which consists of desired goal and achieved
goal. The desired goal represents the task that the agent should
accomplish. The achieved goal represents the task that the agent
has completed at the current time. The key idea of HER is as fol-
lows: at some moment, although the agent has not achieved the de-
sired goal, it has completed achieved goal. At this time, the desired
goal can be replaced by the achieved goal so that the method can
transform failed experiences into successful experiences and learn
from them. In HER, even though the desired goal is not completed
at present, if the learning process is repeated, the agent will com-
plete the desired goal in the final so as to complete the task with
the sparse rewards.

[9] Suppose the agent performs an episode of trying to reach
goal state G from initial state S, but fails to do so and ends up in
some state S’ at the end of the episode. The trajectory is cached into
our replay buffer:

Where r with subscript k is the reward received at step k of the
episode, and a with subscript k is the action taken at step k of the
episode. The idea in HER is to imagine that the goal has actually
been S0 all along, and that in this alternative reality the agent has
reached the goal successfully and got the positive reward for doing
so. So, in addition to caching the real trajectory as seen before, I
also cache the following trajectory.

This trajectory is the imagined one, and is motivated by the hu-
man ability to learn useful things from failed attempts. It should
also be noted that in the imagined trajectory, the reward received
at the final step of the episode is now a positive reward gained from
reaching the imagined goal. By introducing the imagined trajecto-
ries to the replay buffer, it is ensured that no matter how bad the
policy is, it will always have some positive rewards to learn from.

Implementation
In this project, a Simulation tool named CoppeliaSim (previ-

ously known as v-rep) by Coppelia Robotics is used along with
OpenAI’s gym environment [10]. The CoppeliaSim provides mobile
robot and the scene in which the robot moves around. This when
coupled with gym environment gives the states and information
about the environment without any additional sensors. The envi-
ronment looks like the.

The acquisition of environmental states and information is fa-
cilitated through the integration of PyRep [5], a comprehensive
toolkit designed specifically for robot learning research. Built atop

Figure 4: Simulation Environment.

CoppeliaSim, PyRep provides an effective interface with the Ope-
nAI Gym environment, thereby enabling a seamless integration for
conducting extensive reinforcement learning experiments.

In the development of the neural network architectures for both
the actor and the critic components of the model, TensorFlow has
been selected as the primary framework. This choice is predicated
on TensorFlow’s user friendly interface, coupled with its robust set
of training functionalities that significantly enhance the efficiency
of model training processes. The model architecture comprises
four distinct networks: the actor, the critic, and their respective
target networks – target actor and target critic. Each network is
characterized by a shallow neural network architecture, incorpo-
rating two hidden layers with 200 and 100 neurons, respectively.
The rectified linear unit (ReLU) activation function is employed
across these layers due to its proven efficacy in facilitating the
training process. Training of both the actor and the critic networks
is executed utilizing the Adam optimizer, with the aim to minimize
the mean square error between the outputs of the critic and the
target critic networks.

The formulation of an effective reward function is paramount
for the successful training of the agent. To this end, an all-encom-
passing reward function has been devised that accounts for the
critical variables influencing the robot’s performance. This func-
tion has been meticulously designed to encapsulate all pertinent
aspects, with the reward equation delineated in Equation (8).

Where, VL is the linear velocity of the mobile robot, θ is the head-
ing angle, D is the vector distance read from the ultrasonic sensor,

19

Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning

Citation: Shravan S Rai. “Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning". Acta Scientific Computer Sciences 6.5 (2024):
16-21.

d is the distance between robot and goal position, dcollision distance
when collision occurs, dth threshold distance between robot and
goal position, dproxth is the safety distance threshold for regular op-
eration.
Results

The utilization of the CoppeliaSim robotic simulator facilitated
the implementation of robot navigation within a two-dimensional
environment. This simulation environment employed an array of
ultrasonic sensors mounted on the virtual robot to detect obsta-
cles in its vicinity. The collective detection range of these sensors
is depicted in Figure 7. The configuration ensures a broad field of
detection, enabling the robot to identify multiple obstacles simul-
taneously, thereby aiding in effective obstacle avoidance. In Figure
7, the proximity of obstacles is indicated by red arrows, whereas
blue lines denote potential clear paths that the robot can navigate
through.

The experimental setup involved varying the robot’s start and
end points across 15 distinct pairs, with the robot undergoing
training for each pair across 5000 episodes. Initial experiments
employed a simplistic reward system, penalizing collisions and
rewarding goal achievement. However, this initial reward strategy
proved inadequate for complex navigation tasks. Consequently,
the approach was refined to develop a more sophisticated reward
formulation, incorporating multiple factors to better guide the
learning process. Following an extensive training regime spanning
75,000 episodes, the algorithm was subjected to a series of 100
evaluation episodes. The outcomes of these evaluations, as pre-
sented in Figures 8 and 9, demonstrate a success rate exceeding
50%.

Conclusions and Future Work
In summary, the results of this project underscore the efficacy

of the Deep Deterministic Policy Gradient (DDPG) algorithm with-
in simulated environments, marking a significant contribution to
the field of reinforcement learning. Despite initial challenges en-
countered during the preliminary evaluation episodes, DDPG dem-
onstrated a remarkable capacity for recovery, swiftly adapting to
achieve an enhanced success rate in subsequent episodes. This re-
silience highlights DDPG’s potential as a robust learning method
capable of navigating the complexities of simulated environments
effectively.

However, the journey of refining and expanding the capabilities
of reinforcement learning algorithms does not end here. One prom-
ising direction for future work is the integration of Hindsight Expe-
rience Replay (HER). By leveraging the insights gained from previ-
ous experiences, HER has the potential to streamline the learning
process, particularly in scenarios where reward signals are sparse
or difficult to engineer. This approach could significantly mitigate
the challenges posed by complex reward structures, enhancing the
algorithm’s efficiency and effectiveness.

Figure 5: Bot Origin.

Figure 6: Gathering Local Information.

Figure 7: Final Bot Position.

Figure 8: Success Rate.

20

Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning

Citation: Shravan S Rai. “Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning". Acta Scientific Computer Sciences 6.5 (2024):
16-21.

Moreover, the incorporation of vision sensors represents an-
other frontier for exploration. By equipping the algorithm with the
ability to perceive and interpret its surroundings through advanced
sensory inputs, we can substantially improve its navigational strat-
egies. This enhancement would enable a more nuanced interaction
with the environment, facilitating a deeper understanding of the
spatial and contextual elements critical for sophisticated decision-
making processes.

As advancements are made, these extensions will not only bol-
ster the algorithm’s performance but also deepen the understand-
ing of the intricate dynamics at play in reinforcement learning. The
integration of HER and vision sensors has the potential to propel
the field towards more autonomous, perceptive, and adaptable sys-
tems, paving the way for innovations that could transcend simu-
lated environments to impact real-world applications.

In conclusion, this project lays a solid foundation for future re-
search in reinforcement learning, offering valuable insights into the
capabilities of DDPG while charting a course for the next genera-
tion of algorithms. By embracing these extensions, the boundaries
of what is possible can continue to be pushed, driving forward the
development of intelligent systems that are more capable, resilient,
and attuned to the complexities of their operational environments.

21

Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning

Citation: Shravan S Rai. “Autonomous Mobile Robot Obstacle Avoidance with Reinforcement Learning". Acta Scientific Computer Sciences 6.5
(2024): 16-21.

Bibliography

Figure 9: Reward vs Evaluation Episode.

1. G Grisetti., et al. “A fully autonomous indoor quadrotor”. in:
IEEE Transactions on Robotics 28 (2012): 90-100.

2. MW Mueller and R D’Andrea. “A model predictive controller
for quadrocopter state interception”. In: Control Conference
(ECC), 2013 European (2013): 1383-1389.

3. D Silver., et al. “Playing atari with deep reinforcement learn-
ing”. in: arXiv preprint arXiv:1312.5602, 2013. (2013).

4. Richard S Sutton and Shangtong Zhang. “A Deeper Look at Ex-
perience Replay”. In: NIPS 2017 Deep Reinforcement Learning
Symposium (2017).

5. Stephen James., et al. “PyRep: Bringing V-REP to Deep Robot
Learning”. In: arXiv preprint arXiv:1906.11176 (2019).

6. Alexander Pritzel., et al. “Continuous control with deep rein-
forcement learning”. In: Google Deepmind (2019).

7. Jiahao Lu., et al. “Efficient hindsight reinforcement learning
using demonstrations for robotic tasks with sparse rewards”.
In: International Journal of Advanced Robotic Systems (2020).

8. Ankit Choudhary. “A Hands-On Introduction to Deep Q-Learn-
ing using OpenAI Gym in Python”.

9. Or Rivlin. “Reinforcement Learning with Hindsight Experience
Replay”.

10. Souphis. Open-AI Gym extension for robotics based on V-REP.

11. Wikipedia. Q-learning.

https://journals.sagepub.com/doi/10.1177/1729881419898342?icid=int.sj-full-text.similar-articles.6
https://journals.sagepub.com/doi/10.1177/1729881419898342?icid=int.sj-full-text.similar-articles.6
https://journals.sagepub.com/doi/10.1177/1729881419898342?icid=int.sj-full-text.similar-articles.6
https://www.analyticsvidhya.com/blog/2019/%2004/introduction-deep-q-learning-python/
https://www.analyticsvidhya.com/blog/2019/%2004/introduction-deep-q-learning-python/
https://towardsdatascience.com/reinforcement-learningwith-hindsight-experience-replay-1fee5704f2f8
https://towardsdatascience.com/reinforcement-learningwith-hindsight-experience-replay-1fee5704f2f8
https://en.wikipedia.org/wiki/Q-learning

	_GoBack

