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Pneumonia remains a leading cause of morbidity and mortality worldwide. Chest X-ray (CXR) imaging is a fundamental diagnos-
tic tool, but traditional analysis relies on time-intensive expert evaluation. Recently, deep learning has shown immense potential 
for automating pneumonia detection from CXRs. This paper explores applying neural networks to improve CXR-based pneumonia 
diagnosis. We developed a novel model fusing Convolution Neural networks (CNN) and Vision Transformer networks via model-level 
ensembling. Our fusion architecture combines a ResNet34 variant and a Multi-Axis Vision Transformer small model. Both base mod-
els are initialized with ImageNet pre-trained weights. The output layers are removed, and features are combined using a flattening 
layer before final classification.  Experiments used the Kaggle pediatric pneumonia dataset containing 1,341 normal and 3,875 pneu-
monia CXR images. We compared our model against standalone ResNet34, Vision Transformer, and Swin Transformer Tiny baseline 
models using identical training procedures. Extensive data augmentation, Adam optimization, learning rate warmup, and decay were 
employed. The fusion model achieved a state-of-the-art accuracy of 94.87%, surpassing the baselines. We also attained excellent 
sensitivity, specificity, kappa score, and positive predictive value. Confusion matrix analysis confirms fewer misclassifications. The 
ResNet34 and Vision Transformer combination enables jointly learning robust features from CNN’s and Transformer paradigms. 
This model-level ensemble technique effectively integrates their complementary strengths for enhanced pneumonia classification. 

Pneumonia remains a significant global health concern, caus-
ing substantial morbidity and mortality across all age groups. Ac-
cording to the World Health Organization (2022) [1], pneumonia 
is the single largest infectious cause of death in children world-
wide, responsible for 14% of all deaths among children under five. 
This translated to the deaths of 740,180 children under 5 years 
due to pneumonia in 2019 alone. Pneumonia disproportionately 
affects populations in low- and middle-income countries, with 
the highest mortality rates observed in Africa and Asia. The bur-
den of pneumonia in children was most pronounced in Africa and 
Southeast Asia, accounting for approximately 30% and 39% of to-
tal severe pneumonia cases globally [2]. 15 countries in these two 
areas were responsible for two-thirds of all cases of pneumonia 
[3]. Beyond mortality, pneumonia also leads to long-term morbid-
ity, such as impaired lung function. Therefore, timely and accurate 
detection of pneumonia is crucial for prompt treatment and re-
duction of pneumonia-related deaths and disabilities. Chest X-ray 
(CXR) imaging has long been a fundamental diagnostic tool for 
pneumonia and other lung diseases [4]. However, traditional CXR 

analysis relies extensively on expert human evaluation, which can 
be time-consuming, resource-intensive, and prone to subjectivity. 
With rapid advancements in artificial intelligence and deep learn-
ing, there has been growing interest in leveraging neural networks 
to automate and improve pneumonia detection from CXRs [5]. This 
research paper explores the application of neural networks for 
automated pneumonia detection in chest X-rays, investigating the 
challenges, methodologies, and implications of this emerging tech-
nology.

Pneumonia diagnosis traditionally involves the visual inspec-
tion and interpretation of chest X-ray images by trained radiolo-
gists. This process, while effective, is time-consuming and subject 
to human error [6]. Studies have found significant inter-observer 
variability in CXR interpretation among radiologists, underscoring 
the need for automated systems [7]. Automated pneumonia detec-
tion using neural networks aims to streamline this process, reduc-
ing diagnostic time and enhancing accuracy. Neural networks, a 
subset of machine learning algorithms, have shown remarkable 
capabilities in image analysis tasks, making them promising candi-
dates for pneumonia detection [8].
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Deep learning, a subset of neural networks, has achieved re-
markable breakthroughs in various domains, particularly image 
recognition and classification [9]. In medical imaging, neural net-
works have demonstrated exceptional performance in diagnosing 
a wide range of conditions, from detecting tumors in MRI scans to 
identifying diabetic retinopathy in fundus images [10]. These suc-
cesses have spurred research into their application for pneumonia 
detection in CXR images.

Applying neural networks for pneumonia detection in CXR im-
ages presents unique challenges and considerations. One of the 
primary challenges is the inherent class imbalance in medical data-
sets, where healthy cases far outnumber pneumonia cases. Model 
generalization and robustness across diverse populations and im-
aging devices also remain critical concerns. Variations in imaging 
settings, patient positioning, and populations can impact model 
performance [11]. Ethical considerations, such as transparency in 
model decision-making and potential bias, demand careful atten-
tion. Interpretability of neural network decisions in medical diag-
nosis, often referred to as “black-box” concerns, raises important 
questions about the clinical adoption of these models.

The successful integration of neural networks into pneumonia 
detection could revolutionize the field of radiology by providing 
radiologists with an auxiliary tool to enhance accuracy and expe-
dite diagnoses. Such advancements could particularly benefit re-
gions with limited access to experienced radiologists. However, it 
is crucial to validate these models rigorously across diverse patient 
populations and compare their performance against established 
diagnostic standards [12]. Moreover, integrating neural network-
based systems into clinical practice requires thorough regulatory 
approval and validation to ensure patient safety.

While neural networks show immense potential for automated 
pneumonia detection, several challenges must be addressed. Lim-
ited dataset size poses a significant challenge since obtaining med-
ical imaging data can be difficult and expensive. Class imbalance 
and variability in image quality present additional hurdles. There 
are also questions about optimally integrating these systems into 
clinical workflows and ensuring physician trust in model predic-
tions [13]. More research is needed to improve model explainabil-
ity and transparency for clinicians. Rigorous validation on diverse, 
real-world populations is essential before clinical deployment [14].

Overall, the application of neural networks to pneumonia de-
tection is an exciting emerging field with many promising avenues. 
While challenges remain, these innovative techniques could en-
hance diagnostic accuracy, efficiency, and accessibility. With con-
tinued research and validation, neural network-based systems 
could become invaluable tools for radiologists in improving patient 
outcomes. However, it is critical that these models are developed 
and evaluated with a patient-centric approach, ensuring safety, 

transparency, and equity. Collaborative efforts between medical 
and technical researchers will be key in realizing the immense 
promise of this technology.

Literature Survey

Several studies have explored fundamental CNN architectures 
for pneumonia detection from chest X-rays. I.e., Jain., et al. [15] de-
veloped CNN models for pneumonia detection in chest X-rays. They 
compared a 2-layer and 3-layer CNN, finding the 3-layer achieved 
an accuracy of 92.31% due to greater depth. They also evaluated 
pre-trained models VGG16, VGG19, ResNet50, and Inception-v3 on 
a dataset of 5216 images. VGG19 performed best with 88.46% ac-
curacy. The models focused on maximizing recall to minimize false 
negatives. The authors conclude that the 3-layer CNN and VGG19 
show potential for pneumonia detection, especially with more 
training data to leverage the pre-trained models.

Other works have customized CNN model designs specifically 
for pneumonia classification. Bangare., et al. [16] developed a 
customized VGG16 CNN model for pneumonia detection in chest 
X-rays. Using a dataset of 5863 pediatric images, they progres-
sively increased filter sizes in the convolutional layers. With data 
augmentation and an Adam optimizer, the model achieved 91.98% 
test accuracy. Key findings show their modified VGG16 model out-
performed other optimizers, indicating it is well-suited for this 
classification task. They conclude incorporating residual connec-
tions, even in shallow CNNs, boosts pneumonia detection perfor-
mance. The high accuracy demonstrates the potential of custom 
CNNs for automated pneumonia screening from chest radiographs. 
Ijaz., et al. [17] developed a CNN model for pneumonia detection 
in chest X-rays. Using a public dataset of 5856 images, they per-
formed resizing, pre-processing, data augmentation, and classifica-
tion. Augmentation techniques handled class imbalance. Key find-
ings demonstrate combining pre-processing, augmentation, and a 
customized CNN boosts pneumonia classification performance on 
chest radiographs. It has been concluded that this approach can as-
sist in automated diagnosis to support physician decision-making.

Some researchers have incorporated segmentation and local-
ization into their models to improve diagnosis. Guendel., et al. [18] 
developed location-aware Dense Networks (DNetLoc) to detect 
abnormalities in chest X-rays, using the ChestX-Ray14 and PLCO 
datasets. They incorporated spatial information and high-resolu-
tion images, achieving state-of-the-art results on ChestX-Ray14. On 
PLCO data, DNetLoc improved average AUC by 2.3% for patholo-
gies with location labels. Key findings show location information 
and high-resolution images boost performance, especially for lo-
calized pathologies. The authors propose new patient-wise splits 
for robust benchmarking on these public datasets. They conclude 
that exploiting spatial information and image resolution in Dense 
Networks improves chest x-ray abnormality detection. Alharbi., 
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et al. [19] developed an improved BoxENet model using transfer 
learning from ImgNet and SqueezeNet for pneumonia detection 
in chest X-rays. They compared performance on full X-rays ver-
sus segmented lung images on 4,000 healthy and 3700 pneumo-
nia images. Key findings show the improved BoxENet achieved a 
decent accuracy for binary and multi-class classification respec-
tively using segmented images. Segmentation improved all models’ 
performance. The improved BoxENet also had faster speeds. In 
conclusion, incorporating transfer learning in BoxENet with lung 
segmentation boosts pneumonia classification accuracy and speed 
compared to standalone CNN models on full chest X-rays.

Advanced training techniques like GAN augmentation and 
transfer learning have also been applied to enhance pneumonia 
detection. Srivastav., et al. [20] proposed a deep learning model us-
ing GAN and transfer learning for pneumonia detection in chest X-
rays. A DCGAN was used to generate synthetic images and augment 
the minority class to balance the dataset. Transfer learning with 
VGG16 as the base model was then applied for classification. On a 
dataset of 5856 images, the model achieved 84.5% validation accu-
racy, outperforming basic CNN and VGG16 without GAN augmenta-
tion. Key findings show combining GAN-based oversampling and 
transfer learning boosts pneumonia classification performance. 
The authors conclude their approach of generating synthetic im-
ages and fine-tuning CNNs enables accurate automated pneumonia 
screening from chest radiographs. Manickam., et al. [21] proposed 
a deep learning approach using transfer learning with ResNet50, 
InceptionV3, and InceptionResNetV2 for automated pneumonia 
detection in chest X-rays. Using a dataset of 5229 images, they ap-
plied U-Net-based segmentation and compared optimizer and hy-
perparameter settings. Key findings show that ResNet50 achieved 
the best accuracy of 93.06%, outperforming InceptionV3 and In-
ceptionResNetV2. Comparisons demonstrate the proposed models 
surpass other CNN architectures. The authors conclude transfer 
learning with fine-tuned ResNet50 enables accurate pneumonia 
screening from chest radiographs, assisting in clinical diagnosis.

Several studies have compared CNN architectures to identify 
optimal models for this task. Militante., et al. [22] compared six 
CNN models - AlexNet, GoogleNet, LeNet, VGGNet-16, ResNet-50, 
and StridedNet - for pneumonia detection in chest x-rays using a 
dataset of 28,000 images. Models were trained with batch sizes 
of 32 and 64. The key findings showed that GoogleNet and LeNet 
achieved the best overall performance, outperforming VGGNet-16. 
AlexNet and StridedNet also performed well, while ResNet-50 
was the poorest performer. In conclusion, GoogleNet and LeNet 
demonstrated superior performance for pneumonia classification 
compared to other standard CNN architectures, indicating they are 
well-suited for this medical imaging task when properly tuned. Ji-
ang., et al. [23] proposed an improved VGG16 model called IVGG13 
for pneumonia detection in chest X-rays. They reduced the network 
depth compared to the original VGG16 to avoid overfitting while 
maintaining feature extraction capacity. Models were trained on 

5216 images from a public dataset, with and without data augmen-
tation. Key findings show IVGG13 achieved a higher accuracy of 
89.1% versus 74-77% for other CNNs without augmentation and 
90% with augmentation. IVGG13 also reduced training time and 
parameters versus VGG16. The authors conclude that IVGG13 dem-
onstrates superior performance for medical image classification 
compared to standard CNNs while requiring fewer resources. Sz-
epesi., et al. [24] propose a new deep convolutional neural network 
architecture tailored for automated pneumonia detection in chest 
X-rays. A key novelty is the use of dropout in the convolutional lay-
ers, which improves the model’s performance and prevents overfit-
ting. Trained and tested on a dataset of nearly 6,000 pediatric chest 
X-rays, the model achieves strong results across various evaluation 
metrics including accuracy, recall, precision, and F1 score. It out-
performs networks that rely on transfer learning like VGG, ResNet, 
and Inception models. Additionally, the model is efficient, making 
predictions rapidly. Overall, this study shows that a small, cus-
tomized CNN designed specifically for the task can exceed larger 
pre-trained models for medical image analysis applications such 
as pneumonia detection. The results demonstrate the potential of 
crafting specialized neural network architectures versus relying 
solely on general pre-trained models.

A few studies have explored Mask R-CNN and SVM-based mod-
els. Jaiswal., et al. [25] present a deep-learning approach using 
Mask R-CNN for detecting pneumonia in chest X-rays. Trained on 
the RSNA pneumonia dataset, their model identifies and localizes 
lung opacities indicative of pneumonia. To handle class imbalance, 
they employ aggressive data augmentation. Their model achieves 
a mean IoU score of 0.199 on the test set, demonstrating its ability 
to detect pneumonia lesions accurately. Overall, the study shows 
deep learning can be applied to identify pneumonia in chest X-rays 
by pinpointing abnormal opacities, helping automate analysis and 
improve diagnosis. Further improvements in handling class imbal-
ance could enhance performance. Varshini., et al. [26] propose a 
deep-learning model using DenseNet-169 and SVM for pneumo-
nia detection from chest X-rays. DenseNet-169 is employed for 
feature extraction from the images. Various pre-trained CNNs are 
evaluated as feature extractors, and SVM is chosen as the classi-
fier. Hyperparameter optimization further improves performance. 
On a pneumonia dataset, the proposed model achieves an AUC of 
0.80, outperforming prior work. The study demonstrates combin-
ing CNN feature extraction with SVM classification can effectively 
detect pneumonia from chest X-rays. This approach could help au-
tomate analysis to assist radiologists, particularly in remote areas.

Finally, a few highly accurate models have been developed us-
ing state-of-the-art techniques. Rajpurkar., et al. [27] developed a 
121-layer convolutional neural network that detects pneumonia 
from chest X-rays. When tested on 420 X-rays, CheXNet exceeded 
the average diagnostic performance of 4 radiologists, demonstrat-
ing its ability to identify pneumonia at the level of medical experts. 
The authors also extended CheXNet to detect 14 thoracic diseases, 
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Figure 1: The first row displays the Normal chest X-rays, and the 
second row shows Pneumonia samples.

achieving state-of-the-art results on the NIH’s ChestX-ray14 da-
taset. Overall, the study shows deep learning can automate the 
analysis of chest X-rays to detect pneumonia and other conditions 
as accurately as radiologists. This could expand access to expert di-
agnosis where radiologists are limited. Almezhghwi [28] proposes 
two deep learning methods that combine CNN architectures like 
AlexNet and VGG16 with support vector machines (SVM) for auto-
mated pneumonia detection in chest X-rays. The models use deep 
networks to extract image features, which are then classified into 
12 thoracic diseases by the SVM. When evaluated on the ChestX-
ray14 dataset, the combined AlexNet+SVM and VGG16+SVM mod-
els achieve improved performance across various metrics com-
pared to using the CNNs alone. The study shows that coupling deep 
learning for feature extraction with SVM’s robust classification 
capabilities can enhance pneumonia and pathology detection in 
X-rays. This approach has the potential to help automate the analy-
sis to assist radiologists in evaluating chest radiographs. Overall, 
the results demonstrate the benefits of blending deep neural net-
works like CNNs with traditional machine learning techniques like 
SVM for medical imaging tasks. Chen., et al. [29] propose CMT, a 
deep-learning model combining CNN and Transformer architec-
ture for automated pneumonia detection from ch=est X-rays. CMT 
employs a convolutional neural network to extract image features 
and a Transformer module with a novel multi-level, multi-head 
self-attention mechanism to capture global and local feature rela-
tionships. Evaluated on a large COVID-19 chest x-ray dataset, CMT 
achieves state-of-the-art performance for multi-label classification 
of pneumonia with 99.7% accuracy for COVID-19. The self-atten-
tion module is more efficient, requiring less training and inference 
time than standard attention. Overall, the study demonstrates 
CMT’s ability to recognize pneumonia from X-rays while being in-
terpretable and rapid accurately.

In the past, very few studies concentrated on Transformers and 
ensembling models for pneumonia detection from chest X-rays, 
with most works using standalone CNNs or Transformers. Our 
work demonstrates a novel fusion model combining ResNet and 
Vision Transformer networks via model-level ensembling. This 
showcases the potential of blending CNN and Transformer mod-
els to harness their complementary strengths, which has not been 
explored in prior works. Our ensemble approach achieves state-
of-the-art performance, proving that fusing CNN and Transformer 
models can boost pneumonia classification accuracy compared 
to using individual architectures. While most previous studies fo-
cused on solitary models, our experiments reveal the value of novel 
ensemble techniques to advance the state of the art in this domain.

Methods
Datasets

In this work, the Kaggle pneumonia dataset [30] is created us-
ing chest X-ray images of pediatric patients aged 1-5 selected from 
Guangzhou Women and Children’s Medical Center’s retrospective 
cohort’s dataset samples are provided in Figure 1. The X-rays were 

taken as part of routine clinical care, and the dataset is labeled into 
two classes: normal and Pneumonia. The dataset used for training 
includes 1341 normal samples and 3875 pneumonia samples. The 
test set contains 234 normal samples and 390 pneumonia samples. 
Due to its small size of only 16 images, the validation dataset pro-
vided by Kaggle was not utilized for experimentation. Therefore, 
the training dataset was split into train and validation datasets 
based on classes, with an 80:20 ratio, and detailed information can 
be found in Table 1.

Set Normal Pneumonia Total
Train 1060 3112 4172

Val 281 763 1044
Test 234 390 625

Table 1: Dataset samples for each set.

Description of models
A fusion network combining CNN and Transformers is designed 

to run the experiments. The fusion model is created using the 
ResNet-34 variant and multi-Axis Vision transform small variant 
model. 

ResNet [31]
ResNet, a convolutional neural network architecture introduced 

in 2015, is short for “Residual Network.” It has been a groundbreak-
ing innovation in computer vision and deep learning. It has greatly 
impacted image-related tasks such as image classification, object 
detection, and image segmentation. The development of ResNet 
addressed the problem of vanishing gradients in very deep neural 
networks. As the depth of a neural network increases, the gradi-
ent signal diminishes during backpropagation, making training in-
creasingly difficult. The key insight of ResNet is the introduction of 
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skip connections, which allow for easier gradient flow through the 
network. The core building block of ResNet is the “residual block” 
or “identity block,” which contains two or three convolutional lay-
ers with shortcut connections that bypass one or more layers in 
the block. These shortcut connections, also known as “identity” or 
“shortcut” connections, provide a direct path for information to 
flow through the network, helping to mitigate the vanishing gradi-
ent problem and allowing for the training of very deep networks. 
ResNet 34 variant is used for experiments and the detailed compo-
sition of the model is in Figure 2.

Figure 2: ResNet34 model architecture.

Multi-axis vision transformer [32]
Recently, Transformers have gained attention in computer vi-

sion. However, their self-attention mechanisms’ scalability with 
image size has limited their adoption in state-of-the-art vision 
backbones. Multi-Axis Vision Transformer (MaxVit) solves scalabil-
ity issues by stacking repeated blocks of Max-SA, modules, and MB-
Conv hierarchically [cite this one]. Max-SA is a fundamental archi-
tecture component that includes blocked local and dilated global 
attention, providing global perception in linear complexity. It can 
carry out both local and global spatial interactions within a single 
block. As compared to full self-attention, Max-SA is highly capable.  
We show the detailed composition of MaxViT in Figure 3. 

Figure 3: MaxViT model architecture.

The fusion model comprises two different paths, as shown in 
the diagram. The first path is the ResNet34 model, while the sec-
ond path is the MaxViT base model. Both models are initialized 
with pre-trained weights from ImageNet. The output layer of each 
model is removed, and the features from both paths are combined 
using a flattening layer. Finally, the combined features are passed 
through a dense layer with two nodes to generate prediction prob-
abilities. Figure 4 displays a comprehensive view of the architec-
ture.

Figure 4: Proposed model architecture. 

Experimental setup
All the models are trained using transfer learning and are ini-

tialized with pre-trained weights on ImageNet. The models have 
been implemented in PyTorch [33] using the timm library [34] and 
trained for 100 epochs with warmup epochs of 5 using the Adam 
optimizer [35] with a momentum of 0.9. A mini-batch size of 8 has 
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been used for training, with a weight decay of 5 x   by default. 
The learning rate has been initialized to 5 x  and decreases 
with the cosine schedule. Data augmentation techniques such as 
random cropping, horizontal flip, vertical flip, and color have been 
used during training. The experiments are conducted on NVIDIA 
RTX 3090. The best model during training is selected based on ac-
curacy.

Performance criteria
To assess our trained model’s performance effectively, we use 

various widely accepted and reliable metrics in the medical field. 
The performance of the models are evaluated using the following 
metrics 1) Accuracy 2) Kappa score 3) Sensitivity 4) Specificity   5) 

Model Accuracy Kappa score Sensitivity Specificity PPV
ResNet34 [31] 0.9407 0.8696 0.9974 0.8461 0.9152

vit_tiny_patch16 [36] 0.9407 0.8698 0.9948 0.8504 0.9172
swin_tiny_patch4_window7 [37] 0.9455 0.8804 0.9974 0.8589 0.9218
Resnet34 + maxvit_small (Ours) 0.9487 0.8875 1.0 0.8632 0.92417

Table 2: Experimental comparison results between our model and other SOTA models for Normal vs. Pneumonia classification.

PPV (Positive Predictive Value). These metrics are expressed in Eqs 
1-5
Accuracy = (TP + TN)/(TP + FP + TN + FN)
Kappa score = ()/( )
Sensitivity = TP / (TP + FN)
Specificity = TN / (TN + FP)
PPV = TP / (TP + FP)

“TP” represents the number of true positive samples in a cat-
egory, while “FN” means the number of false negative samples. 
Similarly, “TN” denotes the number of true negative samples, and 
“FP” indicates the number of false positive samples in a category.

Results and Analysis
We calculated accuracy, kappa, sensitivity, specificity, and posi-

tive predictive value to evaluate performance. Our model was com-
pared to several CNN and Vision Transformer models, including 
Resnet34, Vision Transformer, and Swin-transformer tiny variant, 
all trained under the same settings. Our model achieved a SOTA 
level of 94.87% accuracy for classification, as shown in Table 2. 
Similarly, our model achieves a kappa score of 0.88 and a sensitiv-

Figure 5: Confusion matrix of models on Pneumonia detection.

ity of 1.0. Additionally, our model outperformed in other metrics, 
as presented in Table 2. Analyzing the confusion matrix for the test 
set in Figure 4, indicates that our suggested architecture has fewer 
misclassifications than the other existing models. Our model dem-
onstrated good generalization performance on the test dataset by 
combining the resnet34 and MaxVit variants via model-level en-
sembling. This combination of CNN and Vision Transformer mod-
els allows for learning robust features for pneumonia classification.
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Conclusion

Our research paper proposed a novel model-level ensembled ar-
chitecture for detecting pneumonia using chest X-rays. To achieve 
this, we utilized a combination of the resnet34 and MaxVit small 
variants models, which helped us create a highly effective model 
for identifying pneumonia. We experimentally demonstrate the ef-
ficacy of the proposed model over CNN or pure vision transform-
er-based models by achieving SOTA performance as measured by 
various classification metrics. Moreover, our model outperformed 
other popular neural networks and transformer models, which is 
a promising outcome for the future of pneumonia detection. Look-
ing ahead, we intend to continue exploring various combinations 
of architectures and datasets further to enhance the accuracy and 
reliability of our model.

Overall, Our work reveals promising new research directions 
in employing model ensembling to combine diverse strengths for 
improved pneumonia detection, which has immense real-world 
implications. With further development, such systems could be 
deployed in clinical settings to provide radiologists with accurate 
decision support and enhanced productivity. We aim to extend this 
research by exploring different ensemble configurations, larger da-
tasets, and real-world validation studies. Overall, we successfully 
showcase the potential of fusing CNNs and Vision Transformers via 
model-level ensembling to attain new state-of-the-art performance 
for automated pneumonia diagnosis using chest X-rays.
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