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Introduction

Abstract
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Biological networks comprise the complicated ways molecules and cell pathways interact and are crucial for finding biomarkers. 
A biomarker is a measurable indicator of a natural state or process, and identifying novel biomarkers is critical for disease diagnosis, 
prognosis, and treatment. Biological networks can aid in biomarker discovery by identifying vital molecular pathways. By analysing 
biological networks, researchers can locate critical molecular pathways involved in disease progression or response to treatment. 
These pathways can then be targeted for biomarker discovery, allowing for the identification of new diagnostic or therapeutic targets. 
In this review, the types of biological networks and their applications in biomarker discovery will be discussed in detail.

Biological networks can help researchers understand the het-
erogeneity of diseases, including the different subtypes and varia-
tions [1]. This can aid in identifying biomarkers specific to certain 
subtypes or stages of a disease, leading to more accurate diagnosis 
and treatment. Predicting treatment response: Researchers can 
predict how a patient will respond to a particular medicine by 
analysing biological networks [2]. This can aid in identifying bio-
markers that can predict treatment efficacy or toxicity, allowing 
for more personalised treatment plans. Integration of multi-omics 
data: Biological networks can integrate data from multiple omics 
technologies, such as genomics, proteomics, and metabolomics 
[3]. This integration can aid in identifying biomarkers that are not 
detectable by a single omics technology, leading to a more com-
prehensive understanding of the disease [4]. Overall, biological 
networks have significant implications for biomarker discovery, 
and their use can aid in developing more effective diagnostic and 
therapeutic strategies [5]. Biological networks are intricate sys-
tems of physical entities, such as genes, proteins, and metabolites, 
and their interactions [6]. These networks are crucial in many bio-
logical processes, including signal transduction, gene regulation, 
and metabolism [7]. Understanding the structure and dynamics of 
these networks is essential for comprehending the mechanisms of 
complex natural phenomena [8]. Various biological networks ex-
ist, including metabolic, gene regulatory, protein-protein interac-
tion, and signal transduction [9].

Metabolic networks
Metabolic networks are a type of biological network that de-

scribes the chemical reactions that take place within a cell. These 
networks consist of a set of metabolites and the enzymes that ca-
talyse the reactions between them. Metabolic networks are essen-
tial for understanding an organism’s metabolism and response to 
environmental stimuli [10]. They have been extensively studied, 
and various computational methods have been developed to anal-
yse and model them [11]. Metabolic networks are complex systems 
of interconnected chemical reactions within an organism or a cell 
[12]. They are essential for the survival and growth of all living or-
ganisms, from bacteria to humans [13]. These networks are highly 
dynamic and respond to changes in the environment and the meta-
bolic demands of the cell [14]. Understanding metabolic networks 
is crucial for various fields, including biochemistry, molecular biol-
ogy, systems biology, and biotechnology [15]. One of the main goals 
of studying metabolic networks is to understand the biochemical 
pathways underlying cellular metabolism [16]. This involves iden-
tifying the individual reactions in the network, the enzymes that 
catalyse these reactions, and the regulatory mechanisms that con-
trol their activity [17]. Advances in genomics, proteomics, and me-
tabolomics have greatly facilitated this task, allowing researchers 
to identify and quantify the various components of metabolic net-
works [18]. Another critical aspect of metabolic network research 
is the analysis of network properties and their functional implica-
tions [19]. This involves characterising the network’s structure, 
such as its connectivity, modularity, and robustness, and determin-
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ing how these properties affect its ability to carry out biological 
functions [20]. For example, the modularity of metabolic networks 
allows for compartmentalising different metabolic processes with-
in a cell [21]. In contrast, the robustness of the network provides 
for the maintenance of metabolic homeostasis under various con-
ditions [22]. Metabolic networks are also crucial for drug discov-
ery and development. By understanding the metabolic pathways 
involved in diseases, researchers can identify potential targets for 
drug therapy and develop new drugs that selectively inhibit or ac-
tivate specific enzymes within the network [23]. For example, the 
development of statins, a class of drugs that inhibit the enzyme 
HMG-CoA reductase, has revolutionised the treatment of hyper-
cholesterolemia by lowering cholesterol levels in the blood [24]. In 
recent years, there has been a growing interest in using computa-
tional models to simulate and analyse metabolic networks. These 
models can be used to predict the behaviour of the network under 
different conditions, identify key regulatory nodes within the web, 
and simulate the effects of genetic and environmental perturba-
tions [25]. These approaches have led to new insights into the dy-
namics and regulation of metabolic networks and the discovery of 
novel metabolic pathways and enzymes [26].

Metabolic networks in biomarker discovery
Metabolites have become increasingly important targets for 

drug discovery due to their involvement in critical pathways that 
regulate cellular processes such as energy production, signalling 
cascades, and disease progression [27]. Biomarkers and metabo-
lites indicate normal biological processes or disease-related ab-
normal states [28]. This chapter focuses on the role of metabolic 
networks in biomarker discovery, specifically how understanding 
these networks can facilitate the identification and validation of 
candidate biomarkers [29]. 1. Metabolomic approaches are advan-
tageous over single molecular methods because they allow for the 
simultaneous measurement of multiple compounds from various 
pathways in complex samples. 2. Advanced analytical techniques 
combined with bioinformatics tools make large-scale global me-
tabolome analysis possible, providing a snapshot of both primary 
(end products) and secondary metabolism (intermediates). 3. Me-
tabolomic profiling allows for assessing systemic perturbations, 
including those caused by dietary interventions. 4. Chemometrics 
can aid in identifying discriminatory biomarkers and determining 
sample classification. 5. Systems biology models incorporating me-
tabolomic data may enhance our understanding of the dynamics 
of regulatory mechanisms underlying specific diseases [30]. Over-
all, this chapter is a valuable resource for researchers interested 
in applying metabolomics towards improved biomarker discovery 
pipelines [31].

Gene regulatory networks
Gene regulatory networks are another biological network 

that describes the interactions between genes and their regula-
tory elements [31]. These networks are crucial in controlling 

gene expression, essential for many biological processes, includ-
ing development and differentiation. Gene regulatory networks 
are complex, and various factors, including transcription factors, 
epigenetic modifications, and signalling pathways, influence their 
structure and dynamics. Gene regulatory networks (GRNs) are 
complex systems of interacting genes and regulatory molecules 
that control the expression of genes [32]. They are crucial in regu-
lating cellular processes such as development, differentiation, and 
response to environmental stimuli [33]. Therefore, understand-
ing the structure and dynamics of GRNs is essential for elucidat-
ing the molecular mechanisms of cellular processes and develop-
ing therapeutic interventions for diseases resulting from these 
networks’ perturbations [34]. The vital components of a GRN are 
genes, which encode proteins, and regulatory molecules, which 
include transcription factors, microRNAs, and other non-coding 
RNAs. Transcription factors are proteins that bind to specific DNA 
sequences in the promoter region of genes, either activating or re-
pressing their transcription [35]. MicroRNAs are small, non-coding 
RNAs that bind to messenger RNA (mRNA) molecules, inhibiting 
their translation into proteins. Other non-coding RNAs, such as 
long non-coding RNAs (lncRNAs), can also play regulatory roles in 
GRNs. GRNs are often depicted as a network diagram, with genes 
represented as nodes and regulatory interactions represented as 
edges [36]. The direction of an edge indicates the type of regulatory 
interaction, with arrows pointing from the regulator to the regu-
lated gene. GRNs can be either directed or undirected, depending 
on whether the regulatory interactions are known to be one-way 
or bidirectional. One of the significant challenges in studying GRNs 
is inferring their structure and dynamics from experimental data 
[37]. Various techniques have been developed for this purpose, 
including gene expression microarrays, chromatin immunopre-
cipitation (ChIP) assays, and high-throughput sequencing of RNA 
and DNA [38]. Computational methods, such as Bayesian networks, 
Boolean networks, and differential equations, have also been de-
veloped to model and simulate GRNs based on experimental data. 
GRNs have been studied in various biological systems, including 
bacteria, yeast, fruit flies, and mammals. They have been shown to 
play essential roles in numerous cellular processes, including cell 
fate determination, cell signalling, and response to environmental 
stimuli [39]. Perturbations of GRNs have been implicated in a wide 
range of diseases, including cancer, developmental disorders, and 
neurological disorders [40].

Gene regulatory networks in biomarker discovery
Gene Regulatory Networks (GRNs) have emerged as powerful 

tools for understanding the complex interplay of genes that regu-
late cellular processes that are key to many diseases [41]. Biomark-
ers represent the molecular indicators of specific disease states 
and can provide valuable insights into the underlying pathophysi-
ology of these conditions. In this context, GRN analysis has shown 
promise in identifying new potential biomarkers by shedding light 
on how different genes interact within a network context [42]. This 
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chapter discusses some of the latest advances in using GRNs for 
biomarker discovery. It highlights their importance in improving 
our understanding of disease mechanisms and developing more ef-
fective therapeutic strategies. The recent studies of gene regulato-
ry networks (GRNs) have become increasingly important over the 
past decade due to their central role in controlling most aspects of 
biological systems at both transcriptional and translational levels 
[43]. These networks describe the intricate relationships between 
genes and protein interactions that influence cell fate decisions, 
such as proliferation, differentiation, metabolism, inflammation, 
and immune response [44]. Understanding GRNs has led research-
ers to explore novel approaches to identify biomarkers in various 
human disorders and has provided unprecedented opportunities 
for targeted therapies [45]. Here is recent progress towards iden-
tifying novel biomarkers by investigating gene expression patterns 
controlled by GRNs across diverse fields of medicine, including 
cancer and infectious diseases [46]. 

Cancer biomarker discovery
In oncology, exploring the dynamics of GRNs has allowed the 

identification of new diagnostic markers in tumours compared to 
normal tissues [47]. For instance, high-throughput DNA microar-
ray analyses combined with mathematical modelling techniques 
have revealed necessary signatures among specific sets of genes 
acting together during the development of breast, colorectal, lung, 
pancreatic, ovarian, gastric, prostate, oesophagal, skin, liver, cer-
vical, endometrial, bladder, head/neck, kidney, gliomas and leu-
kaemia carcinoma types. Some of the top candidate genes show-
ing remarkable alterations across multiple studies include TP53, 
PTEN, CDKN2A, GATA6, SMAD7, RBMX, CYCLIN D1, ESR1, MDM4, 
FOXO3, MAPK9, NFKBIA, KRAS, ERCC1, FGFR2, BRAF, CTNNB1, 
MYC, IDH1, PRDM6 and REL [6,48]. More recently, integrating 
functional genomics data with system-level computational mod-
els helped define the robustness of cancer GRNs, enabling a better 
understanding of their plasticity, adaptability, and vulnerabilities 
under selective pressures from treatment modalities like radia-
tion therapy or chemotherapy drugs [48]. Nonetheless, further 
research must address challenges related to individual patient het-
erogeneity, intratumorally variability, stromal contributions, and 
immunogenetic contexts.

Infectious disease biomarker identification
Similarly, examining the architecture of viral and bacterial 

regulatory networks opens up promising possibilities for discov-
ering new biomarkers and drug targets against pathogens causing 
acute or chronic illnesses affecting millions worldwide [5]. Recent 
reports have demonstrated successful applications of GRN infer-
ence methods in studying influenza A virus (H1N1), dengue fever, 
hepatitis C virus (HCV), West Nile virus (WNV), HIV-1, norovirus, 
Streptococcus pyogenes, Burkholderia pseudomallei and Mycobac-
terium species [1]. By characterising their regulatory hierarchies, 
scientists can predict previously unknown components vital for 
host-pathogen interaction outcomes, determine cross-species con-

served elements shared between distinct viruses or intracellular 
bacteria strains, and pinpoint potential weak spots amenable to 
pharmacologic manipulation [2]. For example, integrating protein-
protein interface stability profiling results with integrated miR-
NA-mRNA cooperative crosstalk maps significantly improved the 
prediction accuracy of essential genes required for M. tuberculosis 
survival inside macrophages [3]. 

miRNA regulated networks
Certainly! MicroRNAs (miRNAs) are small noncoding RNAs that 

play essential roles in gene expression regulation by binding to tar-
get mRNAs, resulting in translational repression or degradation. 
miRNA regulatory networks involve many cellular processes, such 
as differentiation, proliferation, apoptosis, stress response, and 
immune function [4]. Here is a more precise method of these net-
works: (a) miRNA Synthesis - miRNAs originate from hairpin pre-
cursor molecules transcribed from specialised chromatin regions 
known as miRNA genes. These hairpins are processed within the 
nucleus into pre-miRNA hairpin structures by Drosha and Pasha 
nucleases, which cleave off introns that flank the mature miRNA 
duplex. (b) Export from Nucleus - Pre-miRNAs are then exported 
out of the nucleus through the activity of Exportin 5, a major nu-
clear exporter for RNA species, together with their associated pro-
teins, including the protein Dis3L/DGCR8 responsible for further 
processing of miRNAs during their transport to cytoplasm. (c) Pro-
cessing - In the cytoplasm, the pre-miRNA strand is hydrolysed by 
Dicer, a ribonuclease III enzyme, yielding a single-stranded miRNA 
product associated with a multi-protein complex called the RISC 
(RNA Induced Silencing Complex), where it guides sequence-spe-
cific target recognition. The other strand forms a truncated product 
termed the “ passenger” strand, which can create a stable second-
ary structure that binds to Argonaute and forms siRNA (small in-
terfering RNA). This siRNA component may contribute additional 
silencing capabilities to the RISC complex. (d) Target Recognition 
- miRNAs typically bind near the middle of their target messenger 
RNAs (mRNAs) in plants or animals via Watson–Crick base pairing 
to form an imperfect hybrid region [5]. Sequence complementarity 
is usually inadequate, allowing some flexibility in target site choice 
among closely related family members. Depending on the number 
of mismatches, the stability of the interaction varies considerably 
[6].

miRNA regulatory networks in biomarker discovery
miRNAs (microRNAs) have emerged as key players in gene ex-

pression regulation and disease pathogenesis. They play essential 
roles in various physiological processes, and their dysregulation 
has been implicated in multiple human diseases [7]. Therefore, 
identifying specific microRNAs contributing to disease progression 
could provide valuable insights into underlying mechanisms and 
potentially lead to new biomarkers for diagnosis, risk assessment, 
and therapeutic monitoring [8]. This section aimed to explore po-
tential miRNA regulatory networks involved in breast cancer and 

05

Implications of Biological Networks in Cancer Biomarker Discovery

Citation: Harishchander Anandaram. “Implications of Biological Networks in Cancer Biomarker Discovery". Acta Scientific Computer Sciences  6.1 (2024): 
02-13.



discuss how these networks can inform target identification and 
biomarker discovery efforts in both primary tumours and meta-
static lesions. As a result, several studies by Zhu., et al. using dif-
ferent bioinformatics approaches showed promise for identifying 
functional miRNA targets associated with breast cancer initiation 
and progression [5]. However, most focused only on predicting in-
dividual miRNA–gene interactions without integrating molecular 
context data such as patient clinical features, genetic mutations, 
epigenetic modifications, or other omics data sources commonly 
used in personalised medicine research [6]. For example, Tay., et 
al. identified six highly connected hub miRNAs and 580 differen-
tially expressed miRNAs from two independent cohorts of estrogen 
receptor-positive and -negative breast tumour samples based on 
microarray profiling data alone. Using random forest classification 
analysis, they achieved high accuracy (93% sensitivity; 95% speci-
ficity) in discriminating ER+ versus ER− breast tumours across 
multiple datasets [1]. However, whether these results were repli-
cable in additional cohorts remains unanswered due to the limited 
availability of follow-up experimental validation. Additionally, no 
attempt was made to integrate different omics layers to enhance 
prediction accuracies further [2]. Hence, an integrated approach 
was incorporated by tissue-specific microRNA profiles (TCIA), pa-
tient survival outcomes, protein interaction networks, and mRNA 
transcriptome data [6]. Through network motif enrichment analy-
sis and Cox regression model building, four significant subnetwork 
modules (DCC, HIPK2/SMAD3, JAK–STAT signalling, and ErbB–IL6 
signalling) involved in cell death, DNA damage response, immune 
response, etc., were discovered [4]. These findings provided com-
plementary links between somatic mutational changes detected 
via whole exome sequencing [5].

lncRNA regulated networks
LncRNAs (long noncoding RNAs) are gene regulators that have 

gained increasing interest due to their involvement in diverse cel-
lular processes, including developmental programs, differentiation, 
cancer progression, immune response, stem cell maintenance, and 
metabolic disorders [6]. In recent years, thousands of novel human 
lncRNAs have been discovered using next-generation sequencing 
techniques and computational methods to identify transcripts from 
genomic DNA data with no known protein-coding potential [7]. 
These newly identified lncRNAs exhibit tissue specificity and cell 
type-specific expression patterns and play vital roles in controlling 
the output of multiple signalling pathways within cells. Addition-
ally, dysregulation of many lncRNAs has been reported to contrib-
ute to cardiovascular disease, diabetes, neurological disorders, and 
cancers [8]. Therefore, understanding the underlying mechanisms 
of how these lncRNAs function would provide new insights into 
cellular physiology and aid in discovering new therapeutic tar-
gets against diseases [9]. This chapter provides a comprehensive 
overview of regulated networks controlled by lncRNAs and their 
significance in biological functions under normal conditions and in 
case of any disorder [7]. For example, studies have suggested that 
specific miRNAs, small molecules involved in posttranscriptional 

regulation of mRNA levels in the cytoplasm, associate with RNA 
binding proteins (either reversibly or constitutively) to form dis-
tinct effector complexes which act at several points along the 5’–3’ 
UTR of targeted mRNAs [1]. Several classes of RBPs carry miRNA 
species to particular sets of pre-target sites. As a result, these RNPs 
localise to specific regions where mature target messages reside, 
e.g., P bodies (processing bodies), stress granules, nuclear speck-
les, etc. [2] Many lncRNAs like HOTAIR contain miRNA sequences 
upon their translation [3].

lncRNA regulatory networks in biomarker discovery
LncRNA (long noncoding RNA) has emerged as a critical play-

er in gene regulation and cellular function over the past decade, 
providing new opportunities for biomarker discovery [4]. This 
field holds great promise due to its potential to improve our un-
derstanding of disease mechanisms and identify novel therapeutic 
targets [5]. This review aims to provide an update on recent de-
velopments in lncRNA regulatory network analysis in biomarker 
identification and discuss future directions for research in this area 
[6]—the first introduced lncRNAs, their functions and their impor-
tance in human diseases [7]. Next, we discussed approaches for an-
alysing lncRNA regulatory networks, including experimental tech-
niques such as ChIP-seq and CLIP-seq, computational methods like 
motif-finding algorithms, and integrative omics strategies combin-
ing multiple data types [8]. Then, several case studies showed how 
lncRNA-based biomarkers have been successfully identified using 
these approaches in diverse diseases such as cancer and neurologi-
cal disorders [9]. Lastly, we highlighted challenges facing lncRNA 
regulatory network analysis and proposed ways to address them, 
emphasising the need for collaboration across disciplines and inte-
grating diverse datasets. By synthesising recent advances and iden-
tifying areas that require further investigation, we hope to stimu-
late continued progress in applying lncRNA regulatory networks to 
biomarker discovery and precision medicine [8]. This comprehen-
sive review presents a valuable resource for scientists interested in 
exploring the complex world of lncRNAs and their role in disease 
diagnosis and treatment [8].

CircRNA regulated networks
Circular RNAs (circRNAs) are noncoding RNA molecules 

that form hairpin structures and do not require splicing to 
mature. They were once thought to be transcriptional by-
products but have been found to play essential roles in gene 
expression regulation, particularly during stress responses, de-
velopment, and disease. Here’s a comprehensive review of cir-
cRNA-regulated networks: (a) CircRNA biogenesis and functions: 
Before diving into circRNA-regulated networks, we need to grasp 
the basics of their biogenesis and functions. CircRNAs originate 
from linear precursors through back splice events or exon skip-
ping/retention. Despite their diverse origins, most circRNAs share 
standard features like covalently closed loops, terminal untranslat-
ed regions (UTRs), and low abundance relative to canonical coding 
RNAs [3]. Although some circRNAs lack open reading frames, many 
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contain miRNA response elements within their sequences. miRNAs 
bind these sites to downregulate translation and destabilise cog-
nate messenger RNAs (mRNAs). Moreover, circRNAs can directly 
sequester proteins involved in translational control, such as ribo-
somal proteins or argonaute (Ago) proteins bound to miRNAs, thus 
modulating post-transcriptional gene expression in complex ways. 
(b) Identification methods and computational resources. The emer-
gence of high-throughput sequencing technologies has accelerated 
our understanding of circRNAs. CIRI implements graph-based al-
gorithms to identify full-length circular contigs from paired-end 
reads without prior knowledge of genomic locations [4]. Other 
tools include CIRI, JUNO, and CIRCOS. Users may refer to online da-
tabases like ciRS-Base and CircNETBIO for curated annotations and 
meta-analyses of animal studies involving circRNAs across differ-
ent organs and pathological conditions. These repositories contain 
essential functional data for deciphering context-specific interac-
tions at protein-RNA interfaces [5]. 

circRNA regulatory networks in biomarker discovery
Circular RNAs (circRNAs) have emerged as essential regulators 

of gene expression through their interactions with microRNAs and 
proteins involved in pathways crucial for cell survival and disease 
progression [6]. This review aimed to provide an overview of cir-
cRNAs as potential biomarkers in cancer and other diseases. Here, 
the discussion is on recent advances in circular RNA research and 
how these developments can inform the design of novel diagnos-
tic tools for clinical practice [7]. Specifically, we highlight vital 
mechanisms underlying circRNA biogenesis and their role in tu-
morigenesis, the therapeutic targeting of circRNAs, and computa-
tional methods used to identify circRNAs across different species 
[8]. Additionally, we outline current approaches to validate candi-
date circulating circRNAs as robust disease biomarkers that can 
improve diagnosis and treatment outcome prediction, focusing on 
non-coding RNA signatures associated with early detection and 
risk assessment of breast, lung, colorectal, pancreatic, ovarian, and 
liver cancers [9]. Furthermore, we address challenges current tech-
nologies face to detect circulating nucleic acids in biofluids such 
as plasma/serum, urine, saliva, cerebrospinal fluid, and exosomes 
and propose solutions including high-throughput profiling assays 
such as arrays and ultrahigh resolution qRT-PCR platforms. Finally, 
the evaluation was promising to enhance applications of circulat-
ing circRNAs in drug discovery initiatives and explore personalised 
medicine frameworks while acknowledging limitations and future 
directions for the field of circRNA research [1]. This comprehensive 
overview summarises state-of-the-art knowledge of circular RNAs 
in human health and disease, highlighting future translational op-
portunities for developing next-generation molecular diagnoses 
based on minimally invasive samples. Overall, the work empha-
sises a new era of personalised medicine where circRNAs promise 
to revolutionise the landscape of precision diagnostics and therapy 
selection [2].

Protein-protein interaction networks
Protein-protein interaction networks describe the interactions 

between proteins within a cell [3]. These networks are crucial in 
many biological processes, including signal transduction, gene 
expression, and metabolism [4]. Protein-protein interaction net-
works are challenging to study experimentally, and various compu-
tational methods have been developed to predict and analyse them. 
Protein-Protein Interaction Networks (PPIN) have emerged as a 
critical area of research in Systems Biology [5]. The basic premise 
of PPIN is that proteins do not work alone but rather interact with 
other proteins to form complex networks that underlie biological 
functions [6]. PPIN analysis provides a holistic view of protein in-
teractions and their role in cellular processes [7]. This review will 
discuss the basic concepts of PPIN, the methods used to construct 
them, their applications, and future directions.

Basic concepts of PPIN
PPIN represents a network of protein-protein interactions, 

where nodes represent proteins and edges represent the physi-
cal or functional interactions between them [8]. The interactions 
between proteins can be direct or indirect and can be classified 
based on the nature of the exchange, such as enzymatic, regula-
tory, or structural. PPIN is a dynamic network that evolves with 
changes in cellular conditions and is subject to various regulatory 
mechanisms. The nodes and edges of PPIN can be visualised using 
network analysis tools [9]. The properties of the network, such as 
degree distribution, clustering coefficient, and modularity, can be 
analysed to gain insights into the organisation and function of the 
network [1]. PPIN is a scale-free network, with a few highly con-
nected proteins (hubs) linked to many proteins with fewer connec-
tions [1].

Methods for constructing PPIN
PPIN can be constructed using various experimental and com-

putational methods, and the choice of method depends on the 
research question and available resources [2]. Testing methods 
include yeast two-hybrid, co-immunoprecipitation, and protein-
fragment complementation assay [10]. Computational techniques 
include sequence-based, structure-based, and interaction-based 
plans. Sequence-based methods use homology-based approaches 
to predict protein-protein interactions based on sequence similar-
ity, domain composition, or phylogenetic profiling [4]. Structure-
based methods use protein structures to predict interactions based 
on the geometric complementarity between protein surfaces. Us-
ing machine learning or statistical methods, interaction-based 
methods use existing interaction data to predict new interactions 
[5].

Applications of PPIN
PPIN has various applications, including drug discovery, disease 

diagnosis, and understanding of cellular processes. PPIN can be 
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used to identify potential drug targets by analysing the properties 
of the network and identifying critical nodes essential for network 
function [10]. PPIN can also be used to identify biomarkers for dis-
ease diagnosis and prognosis by analysing changes in the network 
properties in diseased states [7]. PPIN can be used to understand 
the molecular basis of cellular processes by analysing the network 
properties and identifying functional modules involved in specific 
processes [8]. PPIN can also be used to study the evolution of pro-
tein interactions and the origin of complex cellular functions [10].

Protein-protein interaction networks and biomarker discov-
ery

Protein-protein interaction (PPI) networks have emerged as 
valuable resources for identifying potential therapeutic targets in 
disease research. PPIs are crucial in many cellular processes, such 
as signal transduction, gene regulation, and metabolism. Studying 
these interactions can identify essential proteins that control spe-
cific pathways involved in diseases like cancer, diabetes, and neu-
rological disorders [11]. In this context, computational methods, 
especially those based on graph theory approaches, have become 
essential for analysing large-scale PPI data sets [1]. Here is an over-
view of recent progress in developing algorithms designed for min-
ing functional modules and drug target identification from massive 
amounts of interactome data [2]. The vital aspect is to discuss how 
structural properties of real-world interaction graphs influence 
network visualisation performance and highlight new challenges 
presented by high-resolution interactomics experiments, such as 
time-resolved protein interactions observed during the cell cycle 
[3]. Together, these findings emphasise both the opportunities and 
limitations faced by systems biology efforts to understand the glob-
al properties of complex biological networks [4].

Signal transduction networks
Signal transduction networks describe the complex series of 

signalling events that occur within a cell in response to a stimulus 
[5]. These networks involve the interaction of various proteins, in-
cluding receptors, kinases, and phosphatases [6]. Signal transduc-
tion networks are essential for many biological processes, includ-
ing development, immune response, and cell proliferation [11]. 
Understanding the structure and dynamics of these networks is 
crucial for developing targeted therapies for various diseases [8]. 
Signal transduction networks (STNs) are a critical component of 
cellular communication and are involved in numerous physiologi-
cal processes, such as cell proliferation, differentiation, and apop-
tosis [9]. STNs comprise a complex network of signalling pathways 
that allow cells to interpret and respond to external stimuli [12]. 
Understanding the mechanisms and pathways involved in STNs 
has important implications for both basic and applied research, 
including drug discovery and disease treatment [1]. Advances in 
molecular biology and bioinformatics have greatly facilitated the 
study of STNs [2]. Developing high-throughput technologies, such 
as microarrays and next-generation sequencing, has enabled re-

searchers to map and analyse the complex interactions within 
STNs [3]. In addition, computational tools have been developed to 
model and predict the behaviour of STNs, providing insights into 
their structure and dynamics [4]. One of the critical features of 
STNs is their ability to integrate signals from multiple sources [5]. 
This integration can occur at various levels, including receptor acti-
vation, intracellular signalling, and gene expression [6]. For exam-
ple, a single receptor may activate multiple downstream signalling 
pathways, each affecting cellular behaviour differently [7]. Simi-
larly, various receptors may converge on a single path, producing 
a coordinated cellular response [12]. Another essential feature of 
STNs is their ability to exhibit robustness and adaptability [9]. De-
spite the noise and other perturbations, STNs can often maintain 
a stable and appropriate response to a given stimulus. In addition, 
STNs can adapt to changing conditions, allowing cells to respond to 
new or altered stimuli. This adaptability is often achieved through 
feedback mechanisms and crosstalk between signalling pathways. 
STNs have been implicated in numerous diseases, including can-
cer, diabetes, and neurodegenerative disorders [13]. In some cases, 
disease-associated mutations may alter the activity or regulation of 
specific signalling pathways, leading to aberrant cellular behaviour 
[4]. In other instances, STN dysregulation of STNs may occur due to 
environmental factors or interactions between multiple signalling 
pathways [5].

Signal transduction networks in biomarker discovery
Signal transduction networks play a vital role in cellular com-

munication and maintain cellular homeostasis [6]. The dysregula-
tion of these networks is often associated with various diseases, 
including cancer, diabetes, and neurological disorders [13]. As a 
result, understanding the complex interplay between different 
signalling pathways has become a critical area of research in bio-
marker discovery [8]. Signal transduction networks can be broadly 
classified into three categories: (i) ligand-receptor signalling, (ii) 
intracellular signalling, and (iii) intercellular signalling. Ligand-
receptor signalling involves binding a ligand, such as a hormone or 
a neurotransmitter, to its specific receptor on the cell surface [9]. 
This binding event triggers downstream events, activating intra-
cellular signalling pathways [14]. Intracellular signalling pathways 
involve the activation of various enzymes and second messengers, 
ultimately leading to gene expression or protein activity changes 
[1]. Intercellular signalling involves cell communication, such as 
cytokine signalling, which is crucial in immune responses [2]. Bio-
marker discovery relies on identifying signalling pathways that 
are dysregulated in disease states, leading to identifying potential 
targets for therapy or diagnosis [3]. Several approaches for iden-
tifying dysregulated signalling pathways include transcriptomics, 
proteomics, and metabolomics [4]. Transcriptomics involves the 
analysis of gene expression patterns, whereas proteomics focuses 
on identifying differentially expressed proteins [5]. Metabolomics 
analyses small molecule metabolites and their role in cellular sig-
nalling [6]. One of the significant challenges in biomarker discov-
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ery is the identification of signalling pathways that are explicitly 
dysregulated in disease states [7]. This challenge can be addressed 
using network-based approaches, which consider the interactions 
between different signalling pathways [14]. For example, analysing 
protein-protein interaction networks can provide insights into the 
functional relationships between other proteins and identify po-
tentially dysregulated signalling pathways in disease [14]. Another 
approach for identifying dysregulated signalling pathways is using 
computational modelling [15]. Mathematical models can simulate 
the behaviour of signalling networks under different conditions, 
providing insights into the underlying mechanisms of dysregula-
tion [1]. For example, the analysis of dynamic signalling models 
can reveal how signalling activity changes led to cellular behaviour 
changes [2].

Analysis of biological network-based biomarker discovery
Biological networks are complex systems of interconnected 

molecules such as proteins, genes, and metabolites that perform 
specific bodily functions [3]. Studying these networks can provide 
valuable insights into the underlying disease mechanisms and help 
identify biomarkers for diagnosis, prognosis, and treatment [4]. 
The network-based analysis is one of the most common approach-
es for identifying biomarkers in biological networks [15]. This in-
volves constructing a network from biological data such as gene 
expression profiles or protein-protein interactions and analysing 
the network to identify nodes (genes, proteins, or metabolites) that 
are highly connected or have other topological properties associ-
ated with the disease [6]. Several methods exist for network-based 
biomarker discovery, including centrality measures, clustering al-
gorithms, and machine-learning approaches [7]. Centrality mea-
sures such as degree centrality, betweenness centrality, and close-
ness centrality are often used to identify highly connected nodes 
within the network [15]. Clustering algorithms such as MCODE and 
ClusterONE can identify modules of highly interconnected nodes 
associated with the disease [9]. Machine learning approaches such 
as random forest and support vector machines can be used to iden-
tify biomarkers predictive of disease status [16]. These methods 
often incorporate network and non-network features, such as clini-
cal data or gene expression profiles, to identify biomarkers most 
predictive of disease [1]. One of the main advantages of network-
based biomarker discovery is that it can identify biomarkers that 
may not be detectable using traditional methods [2]. For example, 
a biomarker not differentially expressed between healthy and dis-
eased individuals may still be informative if it is highly connected 
within a disease-associated network [3]. However, network-based 
biomarker discovery also has several limitations [4]. One of the 
main challenges is the construction of accurate and relevant bio-
logical networks, which can be difficult due to the complexity and 
variability of biological systems [5]. In addition, network-based ap-
proaches may not be suitable for identifying biomarkers for rare 
diseases or diseases with poorly characterised networks [16]. 
Network-based biomarker discovery is a promising approach for 

identifying biomarkers for disease diagnosis, prognosis, and treat-
ment [7]. However, further research is needed to overcome this 
approach’s limitations and validate the identified biomarkers in 
clinical settings [8].

Artificial intelligence and biological networks-based bio-
marker discovery

Biomarker discovery is an essential area of research in bio-
medicine [9]. Biomarkers are measurable indicators of normal or 
abnormal biological processes and can be used for disease diagno-
sis, monitoring, and treatment [17]. Artificial intelligence (AI) and 
biological network-based approaches have become increasingly 
popular for biomarker discovery due to their ability to integrate 
and analyse large-scale biological data [17]. AI-based biomarker 
discovery involves using machine learning algorithms to analyse 
and classify large molecular and clinical information datasets, such 
as gene expression data, imaging data, and patient records [1]. 
These algorithms can identify patterns and correlations in the data 
that may indicate disease states or treatment responses [2]. Bio-
logical network-based biomarker discovery involves constructing 
and analysing biological networks and graphical representations of 
the interactions between genes, proteins, and other molecules in a 
natural system [3]. These networks can be used to identify key bio-
markers that are associated with specific diseases or pathways [4]. 
Combining AI and biological networks-based approaches can pro-
vide a powerful tool for biomarker discovery [5]. For example, AI 
algorithms can identify candidate biomarkers from large-scale da-
tasets [6]. The physical networks can further analyse and validate 
these biomarkers by examining their interactions with other mol-
ecules in the system [7]. AI and biological network-based biomark-
er discovery were promising for advancing our understanding of 
disease mechanisms and improving patient outcomes through per-
sonalised medicine [8]. Biological networks are representations of 
the interactions between genes, proteins, and other biological mol-
ecules in a cell or organism [9]. They argue that these networks can 
provide a more comprehensive view of natural processes and can 
be used to identify biomarkers associated with specific diseases or 
conditions [18]. Machine learning algorithms, such as random for-
ests, support vector machines, and neural networks, can analyse 
large datasets and identify patterns associated with biomarkers or 
diseases [1]. Deep learning and reinforcement learning are gaining 
popularity in biomarker discovery. Network-based approaches can 
be used to identify biomarkers and identify standard underlying 
biological processes [2]. AI revolutionise biomarker discovery by 
providing a more comprehensive and accurate view of biological 
processes [3]. Challenges still need to be overcome, such as the 
need for large, high-quality datasets and more sophisticated AI al-
gorithms [4].Top of Form

Summary
Metabolic networks are complex systems that play a crucial role 

in the survival and growth of living organisms. Advances in molec-
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ular biology, genomics, and computational modelling have greatly 
facilitated the study of these metabolic networks, which is essential 
for advancing our understanding of cellular metabolism and devel-
oping new disease treatments and biotechnology strategies. Gene 
regulatory networks are complex systems of interacting genes and 
regulatory molecules that play a crucial role in regulating cellular 
processes. Understanding the structure and dynamics of these 
networks is essential for elucidating the molecular mechanisms 
of cellular processes and developing therapeutic interventions for 
diseases resulting from these networks’ perturbations. The devel-
opment of experimental and computational methods for studying 
GRNs has dramatically advanced our understanding of these com-
plex systems and promises to continue. PPIN is a powerful tool for 
understanding the complex network of protein-protein interac-
tions that underlie cellular processes. PPIN has wide-ranging ap-
plications in various fields, and its potential is still being explored. 
With the integration of PPIN with other types of biological data and 
the development of new analytical methods, PPIN is poised to play 
an even more significant role in Systems Biology research in the fu-
ture. Signal transduction networks play a crucial role in biomarker 
discovery, providing insights into the dysregulation of signalling 
pathways in disease states. Using network-based approaches and 
computational modelling can help identify dysregulated signalling 
pathways, leading to identifying potential targets for therapy or di-
agnosis. However, further research is needed to develop more effec-
tive biomarker discovery strategies and improve our understand-
ing of the complex interplay between different signalling pathways. 
STNs are a rapidly evolving field with broad implications for basic 
and applied research. The ability to map and model Signal trans-
duction networks has already led to important insights into cellular 
behaviour and disease mechanisms and is likely to continue to do 
so. Networks and led to new insights into their structure, function, 
and regulation. Biological networks are complex interactions be-
tween molecules, such as proteins, genes, and metabolites. These 
networks are essential in many biological processes, including 
signal transduction, gene regulation, and metabolic pathways. In 
recent years, physical network studies have emerged as a powerful 
tool in biomarker discovery. It can provide a more comprehensive 
understanding of disease mechanisms and identify potential bio-
markers that would be otherwise difficult to detect using tradition-
al methods. Biomarkers are biological molecules or indicators de-
termining a disease’s presence, progression, or severity. Biomarker 
discovery is crucial in disease diagnosis, prognosis, and treatment 
and can transform personalised medicine. However, traditional 
biomarker discovery methods, such as genomics, proteomics, and 
metabolomics, have limitations, such as high false-positive rates 
and low sensitivity and specificity. Biological networks can provide 
a more holistic approach to biomarker discovery by incorporating 
multiple types of omics data and identifying critical regulatory and 
signalling pathways that are dysregulated in disease. This approach 
can help identify novel biomarkers that are more specific and sen-
sitive to a particular condition and potential therapeutic targets. 

One of the most significant advantages of using biological networks 
in biomarker discovery is identifying biomarkers that are not di-
rectly measured but are inferred from their interaction with other 
molecules in the network. For example, a protein not differentially 
expressed in a disease sample may still be considered a potential 
biomarker if it is part of a dysregulated pathway or interacts with 
known biomarkers. Additionally, biological networks can integrate 
different data types, such as genomic, proteomic, and metabolo-
mic data, to identify biomarkers relevant to a particular disease. 
This approach can help to overcome the limitations of individual 
omics data sets and provide a more comprehensive understanding 
of disease mechanisms. In conclusion, using biological networks in 
biomarker discovery can revolutionise personalised medicine by 
providing a more comprehensive understanding of disease mecha-
nisms and identifying novel biomarkers and therapeutic targets. 
However, analysing biological networks requires advanced compu-
tational and statistical methods and is still in its infancy, with ongo-
ing efforts to improve its accuracy and reliability.

Challenges in applying biological networks in biomarker dis-
covery

Biomarker discovery is an essential field of study to identify mo-
lecular features that can be used to diagnose, prognosis, or predict 
disease outcomes. Biological networks, such as protein-protein 
interaction or gene regulatory networks, have been increasingly 
used in biomarker discovery. They provide a systems-level under-
standing of molecular interactions and enable the identification 
of critical molecular players in disease processes. However, using 
biological networks in biomarker discovery also presents signifi-
cant challenges. Data integration is one of the main challenges in 
applying biological networks in biomarker discovery. Biological 
networks are often constructed from heterogeneous data sources, 
such as gene expression data, protein-protein interaction data, and 
literature mining data. Integrating these diverse data sources and 
identifying relevant features can be daunting, as the data’s qual-
ity and reliability vary significantly. In addition, network construc-
tion and analysis require sophisticated computational tools and 
algorithms, which can be challenging to develop and apply for re-
searchers without specialised expertise. Another challenge in us-
ing biological networks for biomarker discovery is the selection of 
network features. Biological networks can be large and complex, 
containing thousands or even millions of nodes and edges. Iden-
tifying the most informative network features relevant to a spe-
cific disease can be difficult, as the relevance of individual features 
may vary depending on the disease stage or subtype. Moreover, 
the selection of network features may be biased by the availabil-
ity and quality of the underlying data sources. Another challenge 
in applying biological networks in biomarker discovery is the in-
terpretation of network results. Biological networks can provide 
a rich source of information about molecular interactions, but in-
terpreting this information can be challenging. Network analysis 
often involves identifying clusters or modules of highly connected 
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nodes, which can be used to identify potential biomarkers. How-
ever, interpreting these clusters or modules can be difficult, as they 
may contain many non-specific or redundant features. Moreover, 
the biological relevance of individual network features may need 
to be clarified, as biological networks are often based on incom-
plete and noisy data. PPIN research is rapidly evolving, and several 
areas of future research hold promise. One area is the integration 
of PPIN with other types of biological data, such as gene expres-
sion data, to gain a more comprehensive understanding of cellular 
processes. Another area is the development of methods for analys-
ing the dynamics of PPIN, as cellular processes are dynamic, and 
changes in the network can significantly impact cellular function. 
A further challenge in using biological networks for biomarker dis-
covery is validating network results. Validation is a critical step in 
the biomarker discovery process, as it ensures the reliability and 
reproducibility of the identified biomarkers. However, validating 
biomarkers identified from biological networks can be challeng-
ing, as these biomarkers may be based on indirect or inferred rela-
tionships between molecular features. Furthermore, validation re-
quires access to independent datasets and experimental resources, 
which may only sometimes be available. In conclusion, biological 
networks have great potential for biomarker discovery, as they pro-
vide a systems-level understanding of molecular interactions and 
enable the identification of critical molecular players in disease 
processes. However, the use of biological networks in biomarker 
discovery also presents significant challenges, including data inte-
gration, selection of network features, interpretation of network 
results, and validation of network results. Addressing these chal-
lenges will be critical to realising the full potential of biological net-
works in biomarker discovery.

Future Prospectives
Biomarkers are measurable indicators of biological processes 

and have immense potential in diagnosing, treating, and prevent-
ing diseases. The use of biological networks in biomarker discovery 
is a promising area of research that can help identify new biomark-
ers and enhance our understanding of disease mechanisms. This 
review will discuss the prospects of applying biological networks 
in biomarker discovery. Biological networks are complex systems 
with multiple interacting components, such as genes, proteins, and 
metabolites. These networks can be represented graphically, with 
nodes representing individual components and edges representing 
their interactions. By analysing these networks, researchers can 
gain insight into the underlying biological processes and identify 
potential biomarkers. One of the key advantages of using biological 
networks in biomarker discovery is the ability to identify biomark-
ers that are part of a more extensive physical process or pathway. 
This can provide more insight into the underlying disease mecha-
nisms and potential targets for therapeutic interventions. For ex-
ample, a network-based analysis of gene expression data in breast 
cancer identified a set of genes that were highly interconnected 
and involved in cell cycle regulation. This led to the identification 

of a biomarker panel predictive of breast cancer recurrence and 
response to chemotherapy. Another advantage of using biological 
networks is integrating data from multiple sources, such as ge-
nomics, proteomics, and metabolomics. This can provide a more 
comprehensive view of the physical processes involved in disease 
and identify potential biomarkers that may not be detected using 
a single data type. For example, a network-based analysis of gene 
expression, protein-protein interactions, and metabolite data in 
colorectal cancer identified a set of critical metabolic pathways 
that were dysregulated in the disease. This led to identifying a 
panel of metabolites predictive of colorectal cancer. In addition to 
identifying new biomarkers, network-based analysis can help vali-
date existing biomarkers and provide a complete understanding of 
their role in disease. For example, a network-based analysis of gene 
expression data in breast cancer confirmed the role of the estrogen 
receptor (ER) pathway in the condition and identified potential 
biomarkers that were downstream targets of the ER pathway. De-
spite these promising results, there are challenges associated with 
using biological networks in biomarker discovery.
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