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In this study we have introduced Riemannian Manifold, Lie groups, Lie algebras, and root systems which help to give further 
understanding of symmetric spaces and some of their algebraic and topological properties which help in classification and many ap-
plications of symmetric spaces. I address and explore the basic concept of a root system. First, its origins in the theory of Lie algebras 
are introduced and then an axiomatic definition is provided. Bases, Weyl groups, and the transitive action of the latter on the former 
are explained Finally, the Cartan matrix and Dynkin diagram are introduced to suggest the multiple applications of root systems to 
other fields of study and their classification.

Nevertheless when introducing symmetric spaces one cannot 
ignore the fact that a symmetric space  can be introduced as a ho-
mogeneous space  where  is it’s group of isometries, which is a 
Lie group, and  is the isotropy subgroup. Many properties of sym-
metric spaces can be studied through their Lie algebras and root 
systems, and specially the problem of classification of symmetric 
spaces. Cartan solved most of this problem where he gave a full 
classification of symmetric spaces in terms of their Lie algebras 
which are related to root systems. Since then many authors con-
tributed their efforts to developing this issue, and introduced Vari-
ous applications of Lie algebras and symmetric spaces in different 
fields, especially in physics. For example Dyson [1] recognized that 
the integration manifolds in random matrix theory are symmetric 
spaces, it was found that the classification of new matrix symme-
try classes in terms of Cartan’s symmetric spaces corresponds to 
ten of the eleven classes of symmetric spaces in Cartan’s classifica-
tion. Also Olshanetsky and Perelomov [2] demonstrated the deep 
connection between some quantum integrable systems and root 
systems of Lie algebras which led to symmetric spaces, where this 
work shows that the symmetry of underlying root systems makes 
Calogero – Sutherland models for some values of the coupling con-
stants integrals. Also Olshanetsky and Perelomov showed that the 
dynamics of quantum enterable systems is related to free diffusion 
on symmetric spaces.

To anchor our discussion of root systems, let us begin with a 
general overview of their occurrence in the theory of Lie alge-

bras. A Lie algebramaybeunderstoodasavectorspacewithanaddi-
tionalbilinearoperationknownasthe commutator [,] defined for all 
elements and satisfying certain properties. Alien algebra is called 
simple fits only ideals are itself and0.Andspecifically the derived 
‘algebra. (This is analogous to the commutator subgroup of a group 
being nontrivial). Let the Lie algebra L be semi simple, i.e. decom-
posable as the direct product of simple Lie algebras. Then we define 
a total sub algebras the span of some semi simple elements of L. It 
is natural to consider a maximal toral sub algebrawhich is not prop-
erly contained in any other. It turns out that may then written as 
the direct sum of  and the subspaceswhere ranges over all element 
of. The nonzero  for which are called the roots of L relative to  Root 
systems thus provide a relatively uncomplicated way of completely 
characterizing simple and semi simple Lie algebras. It is the goal of 
this paper to show that root systems may be themselves completely 
characterized by their Cartan matrices.

Lie groups
Definition 2.1 

A Lie group G is a group satisfying the well-known axioms of 
group, besides the mappings G × G → G  and C → G-1 defined by (x,y) 
→ xy and x → x-1.

Respectively are both C∞. This definition implies that the Lie 
group  is a differentiable manifold. Lie groups are very important 
due to the fact that, their algebraic properties derive from group 
axioms, and their geometric properties derive from the identifica-
tion of group operations with points in a topological space. 
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Examples 2.2 

•	 The set C* of nonzero complex numbers is a 2-dimensional Lie 
group under complex multiplication which can be identified 
with Gl(1,C).

•	 The set GL (n,R) of nonsingular n × n matrices is a group with 
respect to matrix multiplication.. An n × n matrix  X is nons-
ingular if and only X ≠ 0. if det X,Y∈ GL (n,R) If  then both the 
maps (X,Y) →XY and x→ x-1 are C∞. Thus GL (n,R) is a Lie group. 

•	 The Euclidean space  under addition is a group, endowed with 
the smooth operations (x,y)→x+y and x→x-1  ∀ x,y ∈Rn forms 
a Lie group.

There are many other examples for Lie groups and their appli-
cations which can be seen in various references like [3-6]. The ma-
trices in  can be represented as

Where XI are the generators of what is called the Lie algebra of 
the Lie group and tI are real parameters. For a Lie group the tan-
gent space at the origin is spanned by the generators, considered as 
vector fields which are expressed as  where the partial 
derivatives form a basis for the vector field. If X is a generator of 
a lie group then X onto exptX is the exponential map, which is a one 
- parameter subgroup, defining a curve c(t) in the group manifold. 
For the curve c(t) the tangent vector at the origin is given by The 
matrix exponential is very useful because it is always nonsingular 
since .

Lie algebra
A Lie algebra is an algebraic structure whose main use is in 

studying geometric objects such as Lie groups and differentiable 
manifolds.

Definition 3.1
A Lie algebra is a pair (V, [, ]) where Vis a vector space, and [, ] is 

a Lie bracket, [, ]: V × V → V satisfying :
•	 [v, w] = −[w, v] skew-symmetric.
•	 [av + bu, w] = a[v, w] + b[u, w]a bilinear.
•	 [v, [w, u]] + [w, [u, v]] + [u, [v, w]] = 0, For all, uandw ∈ V. (Bian-

chi identity).
A Lie Bracket is a binary operation [, ] on a vector space.

Example 3.2
The Lie algebra𝐠 of Rn as a Lie group, is again Rn, where [X, Y ] = 

0∀ X, Y ∈ G Thus the Lie bracket for the Lie algebra of any abelian 
group is zero.

Example 3.3

Let V = R3, [, ]: R3 × R3 → R3as proved that it is a Lie algebra.

Example 3.4

Let Ω (M) be the set of all vector fields on a manifold. Define
[v, w] = vw − wv,
Then [v, w] is a Lie bracket.

A homeomorphism of Lie algebra l is a linear map, φ ∶ ℓ → ℓ ́ 

, preserving the bracket. This means that φ[ℓ1, ℓ2] = [φ(ℓ1), φ ℓ  
] for any (ℓ1, ℓ2) ∈ ℓ × ℓ. A Lie subalgebra of Lie algebra l is a sub-
vector space η such that [η, η] ⊆ η. An ideal of l is a Lie subalgebra 
η such that [η, ℓ] ⊆ η.

Definition 3.5
A vector subspace η of a Lie algebra l is called a Lie subalgebra 

if [η, ℓ] ⊆ η.

Theorem(9)3.6
Let G be a Lie group and l its Lie algebra
•	 If H is a Lie subgroup of G, η is a Lie subalgebra of l.
•	 If η is a Lie subalgebra, there exists a unique Lie subgroup H of G 

such that the Lie algebra of H is isomorphic to η.

Properties of a Lie algebra 3.7
We now turn to the properties of a Lie algebra. These are de-

rived from the properties of a Lie group. A Lie algebra has three 
properties:
•	 The operators in a Lie algebra form a linear vector space
•	 The operators closed under commutation: the commutator of 

two operators is in the Lie algebra;
•	 The operators satisfy the Jacobi identity.

Topological spaces
Topological spaces are mathematical structures that allow 

the formal definition of concepts such as convergence, connect-
edness and continuity. They appear virtually in every branch of 
modern mathematic and are central unifying notions. The branch 
of mathematics that studies topological spaces in their own right is 
called topology.

Definition of topological spaces 4.1
Let X be a set, let T be a collection of subsets such that

•	 The union of a family of sets which are elements of T belongs 
to T.

•	 The intersection of a finite family of sets which are elements 
of T belongs to T.

•	 The empty set ∅ and the whole X belong to T. Then T is called 
a topological structure or just a topology in X. The pair (X,T) is 
called a topological space.

2
Ic
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The element of X is called point of this topological space.
 

  The element of T is called open set of the topological space (X,T). 
The Conditions in the definition above are called the axioms of to-
pological structure.

Examples 4.2
•	 A discrete topological space is a set with the topological struc-

ture which consists of all the subsets.
•	 The Euclidean spaces Rn can be given a topology in the usual 

topology on Rn, the basic open sets are the open balls.

Metric spaces Definition 5.1
A metric space is a set with a function that satisfies.
d: X × X → R+ that satisfies.

•	 d( x, y) ≥ 0 and d( x, y) = 0 if and only if x = y
•	 d( x, y) = d( y, x) = 0 for every x, y ∈ X
•	 d( x, y) + d( y,z ) ≥ d( x,z ) triangle inequality The pair ( X, d) 

is called metric space.

Example 5.2
The usual metric on C (complex numbers) is the Euclidean met-

ric determined by the modulus function ((z, w)) →
|z − w|. It is of course an extension to G × G of the Euclidean 

metric on R. We shall assume that G is endowed with it unless we 
state otherwise.

Theorem 5.3 [8]
Suppose( X, d) is a metric space. The function is objective func-

tion from X on to d (X).

Theorem 5.4 [8]
Suppose X is a metric space, Z is a metric subspace of X and S⊆Z. 

Then S is a connected subset of X if and only if S is a connected sub-
set of Z.

Topological manifold
Euclidean space and their subspace Rn are the most important. 

The metric space Rn serve as a topological model for Euclidean 
space En , for finite dimensional vector spaces over R or C. It is natu-
ral enough that we are led to study those spaces which are locally 
like Rn. We will consider spaces called manifolds, defined as follows.

Definition 6.1
A manifold M of dimension n, or n-manifold is topological space 

with the following properties :
•	 M is Housdorff space.
•	 M is locally Euclidean of dimension n and,
•	 M has a countable basis of open sets.

As a matter of notion dim M is used for the dimension of, when 
Dim m = 0, then M is a countable space with discrete topology

Example 6.2
Define the circle S1 = {z ∈ ℂ: |z| = 1}. Then for any fixed point z ∈ 

S1, write it as z = e2πic for a unique real number 0 ≤ c ≤ 1, and define 
the map
vz: t → e2πic.

We note that v maps the natural  
to the neighborhood of z given by s1⁄−z, and it is a 
homeomorphism. Then φz = vz|Ic

−1 is a local coordinate chart near. 
By taking products of coordinate charts, we obtain charts for the 
Cartesian product of manifolds. Hence, the Cartesian product is a 
manifold.

Theorem 6.3 [8]
A topological manifold M is locally connected, locally compact, 

and a union of a countable collection of compact subsets; further-
more, it is normal and metrizable.

Riemannian manifold
In this section we introduce the notion of a Riemannian mani-

fold (M. g). The metric g provides us with an inner product on each 
tangent space an can be used to measure angels and the lengths 
of curve in the manifold. These terms are named after the German 
mathematician Bernhard Riemann. This defines a distance func-
tion and turns the manifold into a metric space in a natural way. 
Let M be a smooth manifold, C∞(M) denote the commutative ring 
of smooth function on M and C∞(TM) be the set of smooth vector 
fields on M forming a module over C∞(M). Put C∞(TM) = C∞(M) 
and for each positive integer r ∈ Z+ let C∞(TM) = C∞(M) ⨂. . . 
⨂. . . ⨂C∞(TM) be the r-fold tensor product of C∞(TM) over C∞(M).

Definition 7.1
•	 A Riemannian manifold is a pair (M. g) consisting of a smooth 

manifold M and a metric g on the tangent bundle, i.e., a smooth, 
symmetric positive definite (0,2) -tensor field on M. The ten-
sor g is called a Riemannian metric on M.

•	 Two Riemannian manifolds (Mi, Mi), (i = 1,2) are said to be 
isometric if there exists a diffeomorphism Φ ∶

M1 → M2 such that Φ∗g2 = g1.

Examples 7. 2
(The Euclidean space): The space Rn has a natural metric
g0 = (dx1)2 + ⋯ + (dxn)2.

The geometry of (Rn, g0) is the classical Euclidean geometry.

(The hyperbolic plane): The Poincare model of the hyperbolic 
plan is the Riemannian manifold (D, g) where D is the unit open 
disk in the plane R2 and the metric g is given by
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Theorem: (Fundamental Theorem of Riemannian geometry) 
7.3

Let M be a Riemannian manifold, there exists a uniquely deter-
mined Riemannian connection on M.

Theorem 7.4 [8]
A connected Riemannian manifold is a metric space with the 

metric d(p, q) = infimum of the lengths of curves of class C1 from p 
to q its metric space topology and manifold topology agree.

Roots systems
Roots (Introduction) 8.1

The Root or Root vectors of Lie algebra are the weigh vectors of its 
ad joint representation. Roots are very important because they can 
be used both to define Lie algebra and to build their representa-
tions We will see that Dynkin Diagrams are in fact really only away 
to encode information about roots. The number of Roots is equal to 
the dimension of Lie algebra which is also equal to the dimension 
of the ad joint representation, therefore we can associate a Root 
to every element of the algebra. The most important things about 
Roots is that they allow us to move from one weight to another. 
(weights are vectors which contain the eigenvalues of elements of 
Cartan sub algebra).

Definition (Root systems) 8.2
Let V be a real finite - dimensional vectors space and R ⊂ Va fi-

nite set of nonzero vectors, R is called a root systems in V (and its 
members called roots) if
•	 R generates V.
•	 For each ∝∈ R there exists a reflection S∝ along ∝ leavingR 

invariant.
•	 For all ∝, β ∈ R the number aℬ,∝ determined by

s∝β = β − aℬ,∝ ∝ is an integer that is aℬ,∝ ∈ ᴢ.

Theorem 8.3 [9]
Every root system has a set of simple roots such that for each α 

∈ Φmay be written as

With K∂ ∈ ᴢand each K∂ has same sign.

Example 8.4
For convenience, we introduce the roots systemB2by way of 

providing an uncomplicated example for future reference. Note 
that α and β as labeled form a base for B2.

The roots which are part of a given basis are called simple. It 
follows from the simple roots’ status as a basis that the rank of the 
base, i.e. the number of simple roots, is equal to the dimension of the 
Euclidean space E. The existence of such a base for any given root 
system may be proven in such a way that to determine an algorithm 

2

for finding a base given a root system. Let a root in ϕ be called inde-
composable if it may not be written as a linear combination of any 
other roots. By selecting all the indecomposable roots whose inner 
product with a predetermined vector y in E is positive, one obtains 
a set of linearly independent roots α which lie entirely on the same 
side of the hyper plane normal to y. Then –α is not contained in the 
set for all α, and in fact these roots both span E and give rise to all 
other roots.

Definition (Reduced Root systems) 8.5
Let V be an Euclidean vector space (finite –dimensional real 

vector space with the canonical inner product
(. , . ). Then R ⊆ V ∖ {0}is a reduced root systems if it has the fol-

lowing properties :
•	 The set R is finite and it ontains a basis of the vector space V.
•	 For roots α, β ∈ R we demand nα,β to be integer : 

•	 If sα: V ⟶ 
•	 If α, cα ∈ R for some real c,thenc = 1 or − 1

Remark 8.6
If ∝, β∈ R are porportional, β = m ∝ (m ∈ R) then 

 infact the numbers  /m and 
 are both integers A root system R is said to be reduced 

if ∝,β ∈ R, β = m ∝ implies m = ±1.

A root ∝∈ R is called indivisible if 1/2 ∝∉ R and unmultipliable 
if 2∝∉ R.

Examples 8.7
•	 The set ∆= ∆ (g, 𝔥𝔥, )of root asemisimpleLie algebra g over 

Cwith respect to a carton subalgebra 𝔥𝔥 is a reduced root 
system

•	 The set ∑ restricted roots is a root system which in general is 
not reduced.

Theorem 8.8 [9]
•	 Each root system has a basis.
•	 Any tow bases are conjugate under a unique weyl group ele-

ment.
•	 aB,∝ ≤ 0 for any two different element ∝, ℬ/, in the same basis.

Symmetric spaces
Symmetric spaces are of great importance for several branches 

of mathematics. Any symmetric space has its own special geom-
etry, such as Euclidean, elliptic & hyperbolic geometry etc….

We can consider symmetric spaces from different points of view. 
In this paper, we consider their algebraic features by considering 
Lie groups and their Lie Algebras as algebraic approach to sym-
metric spaces. In fact a symmetric space can be considered as a 
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Lie group G with a certain involution ℴ, or a homogeneous space G 

H where G is a Lie group and H its isotropy subgroup. In the above 
sections we have discussed the important features and properties 
of Lie groups and their Lie algebras which help in disclosing some 
algebraic features of symmetric spaces. Also in this paper we can-
not discuss all features such as types of symmetric spaces and their 
classification, but we gave introductory notions which help in fu-
ture work in this field.

Involutive automorphism 9.1
Let ɡ be a Lie algebra, the linear automorphism σ: g→ g is called 

an involutive automorphism if it satisfies σ2 =I (the identity) but σ 
≠ I, that is σ has eigenvalues ±1 and it splits the algebra g into or-
thogonal subspaces corresponding to these eigenvalues.

Symmetric Sub algebra 9.2
If g is a compact simple Lie algebra, σ is an involutive automor-

phism of ɡ and ɡ = ɧ⊕P satisfying σ (X) =X for X ∈ ɧ, σ (X) = −X for X 
∈ P, ɧ is a sub algebra, but P is not, and the following relations hold 
: [ɧ, ɧ ] ⊂ ɧ, [ɧ, P ] ⊂P, [P, P ] ⊂ ɧ (9,2).

A sub algebra ɧ satisfying (9,2) is called symmetric sub algebra.

Cartan decomposition and Symmetric Spaces 9.3
Using what is known as Weyl unitary trick, that is by multiplying 

the elements in P by i we get a new noncompact algebra ɡ* = ɧ ⊕iP, 
this is called a Cartan decomposition, and ɧ is a maximal compact 
sub algebra of g∗. The Lie groups corresponding to the Lie algebras 
ɡ & ɡ* are G and H the isotropy subgroup of the Lie group G. Gener-
ally the coset space G⁄H is the set of subsets of G of the form gH, for 
g ∈ G, G acts on this coset space, that is the symmetric space.

Theorem 9.4 [9]
Any symmetric space S determines a Cartan decomposition 

on the Lie algebra of Killing fields. Vise versa, to any Lie algebra ɡ 
with Cartan decomposition ɡ = ɧ ⊕P there exists a unique simply 
connected symmetric space S = G⁄H where G is the simply con-
nected Lie group with Lie algebra ɡ and H the connected subgroup 
with Lie algebra ɧ.

Example 9.5
Let G = S ∪ (n, C) be the group of unitary complex matrices 

with determinant +1. The algebra ɡ= SU (n, ℂ) of this Lie group 
consists of complex antihermitian matrices of zero trace. X ∈ g 
Can be written as X = A + iB where A is real skew – symmetric and 
traceless, and B is real, symmetric and traceless. Therefore ɡ = ɧ 
⊕P where ɧ is the compact connected sub algebra SO (n, R) con-
sisting of real, skew – symmetric and traceless matrices, and P is 
the subspace of matrices of the form iB, where B is real, symmetric 
and traceless. P is not a sub algebra. g∗ = ɧ ⊕ iP where iP is the 
subspace of real, symmetric and traceless matrices B. The Lie alge-
bra g∗ = SL (n, R) is the set of n × n real matrices of zero trace and 

generates the linear group of transformations represented by real 
n × n matrices of unit determinant. The involutive automorphism 
that splits the algebra ɡ is defined by the complex conjugation 
σ= K, and for g∗ the involutive automorphism is defined by ℴ 

 = (gt)−1 for g ∈ g∗. The decomposition g∗= ɧ ⊕iP is the usual decomposi-
tion of a SL (n, R) matrix in symmetric and skew – symmetric parts Now G 

H = SU (n, ℂ) / SO (n, R)
is a symmetric space of compact type, and the related symmetric 

space of non – compact type is
G∗⁄H = SL (n, R) ⁄SO (n, R) .

In this manner, we can speak about different types of symmetric 
spaces especially for groups of matrices which has many applica-
tions.

More features
Here we gave some notions of algebraic and geometric features 

of symmetric spaces. In fact a symmetric space is a Riemannian 
manifold in which the geodesic symmetry at each point is an isom-
etry in a normal neighborhood of the point (Local property). Sym-
metric spaces are locally symmetric where the geodesic symme-
tries are global isometries.

Definition 10.1 (The rank)
The rank of a symmetric space M is the dimension of the largest 

abelian subalgebra of P where g = ɧ⊕ P.

Theorem 10.2 [9]
A complete, locally symmetric, simply connected Riemannian 

manifold is a symmetric space.

Examples 10.3
The Euclidean n- Space En, The n- sphere Sn and the hyperbolic 

space Hn are standard examples of symmetric spaces, also these 
examples can be used for introducing more symmetric spaces and 
their properties.

Real forms in Symmetric spaces 10.4
Real forms can be classified according to all the involutive auto 

morphisms of the Lie algebra g, satisfying σ2 =I. We have two dis-
tinctive real forms which are the normal real form and the compact 
real form.

The normal real form of the algebra gc which is also the least 
compact real form, consists of the subspaces containing real coef-
ficients ci & cα. It has a metric with respect the bases {Hi, E±α}. The 
compact real form of gc is obtained by the Weyl unitary trick:
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All real forms of any complex Lie algebra can be classified with 
characters lying between the character of the normal real form and 
the compact real form. This can be done just by enumerating all 
the involutive automorphisms of its compact real form. If ɡ is the 
compact real form of a complex semi simple Lie algebragc g∗ runs 
through all its associated non compact real forms g∗, ɡ’ ∗ , . .. with 
corresponding maximal compact subgroups ɧ, ɧ’ and complemen-
tary subspaces iP, i p,, …as σ runs through all the involutive auto 
morphisms of ɡ. Also a complex algebra and all its real forms (the 
compact and all non-compact ones) correspond to the same root 
lattice and Dynkin diagram.

G∗⁄H = SL (n, R) ⁄SO (n, R)

Example 10.5
The normal real form of the complex algebra gc = SL (n, C) is 

the non-compact algebra g∗ = SL (n, R). This algebra can be decom-
posed as ɧ ⊕ iP where ɧ is the algebra consisting of real, skew – 
symmetric and traceless n × n matrices and iP is the algebra con-
sisting of real, symmetric and traceless n × n matrices. Using the 
Weyl unitary trick, this algebra form the compact real form of gc, 
Su (n, C) = g = ɧ ⊕ iP.

Applying some involutive automorphisms to the elements of the 
compact real form g, we can construct all the various non-compact 
real forms ɡ*, ɡ’*.

Weyl group
The Weyl group W of a root system consists of all the reflections 

σαGenerated by elements α of the root system. For a given root α, 
the reflection σα fixes the hyper plane normal to α and maps α → 
−α.we may write σα (β) = β −〈α, β〉 α. The hyper planes fixed by the 
elements of W partition E into Weyl chambers. For a given base ∆ 
of E, the unique Weyl chamber containing all vectors γ such that 
(γ, α) ≥ 0∀ α ∈∆ is called the fundamental Weyl chamber. We first 
prove the statement for W/, the subgroup of W generated by only 
those rotations arising from the simple roots of a given all vectors γ 
such that (γ, α) ≥ 0∀α ∈∆ is called the fundamental Weyl chamber.

Theorem 11.1 [14]
Given ∆ and∆/bases of a root system Φ, ∆/σ (∆) for some σ ∈W/

.

Lemma 11.2 [11]
For all α ∈ ϕ, ∃σ ∈ W such that σ (α) ∈ ∆.

Lemma 11.3 [11]
W/= { σαarising from α ∈∆} generates W.

The cartan matrix
For a root system ϕ = αi, αj,.. one may define a matrix C by Cij 

= 〈αi, αj〉.This is the Cartan matrix of ϕ. Clearly, the Cartanma-
trix is not symmetric however, Cartan matrices do possess several 
immediately observable and distinctive features. For example the 

main diagonal always consists of 2’s, and off-diagonal entries are 
restricted to integers of absolute value ≤ 3.

Definition (The generalized Cartan matrix) 12.1
A generalized Cartan matrix A = Aij is asquare matrix with in-

tegral entries such that.
•	 For non-diagonal entries, Aij ≤ 0.
•	 Aij =0 if and only if Aji=0
•	 A can be written as DS where D is a diagonal matrix, and 

S is a symmetricmatrix.

Theorem 12.2 (Cartan’s first criterion) [9]
A Lie algebra ɡ is solvable if and only if k (x y,) = 0 for all x ∈[ɡ, 

ɡ], y ∈ ɡ.

We use Cartan’s second criterion to determine if a Lie algebra is 
semi simple or not as follows.

Theorem 12.3 (Cartan’s second criterion) [9]
A Lie algebra ɡ is semi simple if and only if its killing form is 

nondegenerate.

When we study the structure of a Lie algebra, its solvability and 
simplicity are helpful in this field, and also when we can decom-
pose the Lie algebra into simple ideals or using its semi simplicity.

Example 12.4 
   The Cartan matrix for the root system B introduced previously, 

has the following form

Characterization of ϕ 12.5
As a consequence of the transitive action of the Weylgroup on 

bases, it may be shown that the Cartan matrix of arootsystem ϕ 
isindependent of the base chosen.

Theorem 12 [14]
Given two root systems ϕ⊂ E and ϕ/⊂ E/with bases
∆ = {αi, αj, … , αl} and ∆/= { αi

/ , αj
/ αj , … , αl

/ }with identical car-
tan matrices i.e 〈αi, αj〉 = 〈 αi

/ , αj
/ 〉 for 1≤ i, j ≤ 1.

Then this bijection extends to an isomorphism f: E ⟶ E . which 
maps

ϕ ⟶ ϕ/ and satisfies 〈f(α), f (β)〉 = 〈α, β〉 ∀ α, β ∈ ϕ.

Dynkin diagrams
As mentioned previously, irreducible root systems provide a 

simple means of classifying Lie algebras. However, the root systems 
may themselvesbe classified according to their Dynkin diagrams. 
Each such diagrams belongs to one of finitely many families of 

08

Root Systems, Cartan Matrix, Dynkin Diagrams in Classification of Symmetric Spaces

Citation: Um Salama Ahmed Abd Alla Alemam and Rasha Ahmed Hamid. “Root Systems, Cartan Matrix, Dynkin Diagrams in Classification of Symmetric 
Spaces". Acta Scientific Computer Sciences  5.11 (2023): 03-10.



graphs with a variety of connections to e.g. quiver representations. 
This correspondence between Cartan matrices and Dynkin dia-
grams may be explicitly under stood as follows. Each vertex of the 
Dynkin diagram corresponds to a root αi. Clearly if Cij=Cji= 0, no 
edge exists between the vertices for αi and αj. If theCijth and Cjith 
entries in the Cartan matrix are both ±1, a single edge connects the 
vertices corresponding to αi and αj.If the Cijthor Cjith entry is ±2 or 
±3, two or three edges, respectively, connect the two vertices in 
question. In order to distinguish the relative lengths of the roots, 
an arrow pointing to wards the shorter of the two is drawn over 
the vertex in question. The properties of the Cartan matrices place 
a number of restrictions on possible. Dynkin diagrams, which we 
enumerate below. Intact, these properties, enumerated below, lead 
to a complete description of all possible Dynkin diagrams, which 
may be found in
•	 If some of the vertices of the Dynkin diagram are omitted along 

with all their attached edges, the remaining graph is also pos-
sible as a Dynkin diagram.

•	 The number of vertex pairs connected by at least one edge is 
strictly less than the order of the root system. It follows that no 
Dynkin diagram may contain a cycle.

•	 No more than three edges can connect to a single vertex. Thus, 
the only Dynkin diagrams containing a triple edge contain ex-
actly those two vertices it connects.

•	 If a Dynkin diagram contains as a sub graph a simple chain, the 
graph obtained by reducing that chain to a point also forms a 
Dynkin diagram. This prohibits several possible arrangements 
of terminal vertices from co-occurring within a diagram, lest 
the preceding restriction be violated.

Definition (Dynkin diagram) 13.1:
Suppose s ⊆ R is a simple root system. The Dynkin diagram of s is 

a graph constructed by the following prescription
•	 For each αi, ∈ S we construct a vertex (visually, we draw a 

circle).
•	 For each pair of roots αi,,αj, we draw a connection depending 

on the angle φ between them.
•	 If φ = 90∘the vertices are not connected (we draw no line).
•	 If φ = 120∘ the vertices have a single edge (we draw a single 

line).
•	 If φ = 135∘ the vertices have a double edge (we draw two con-

necting lines).
•	 If φ = 150 the vertices have a triple edge (we draw a three sin-

gle connecting lines).

For double and triple edge connecting two roots, we direct them 
towards the shorter root (we draw an arrow pointing to the shorter 
root).

Example 13.2
The Dynkin diagram for our familiar root system, B2, is asfol-

lows. Recall that e.g. βis longer than α: B2.

Example 13.3
The only Dynkin diagram with a triple edge, C2, has the follow-

ing form: C2

Main Results
•	 The elements of a Lie group can act as transformations on the 

elements of the symmetric space.
•	 If M is a symmetric space, its group of isometries G has a Lie 

group structure and we can obtain all information of M from 
G. If the point p∈ M, H the isotropy subgroup at p and ɡ is the 
Lie algebra of G, then the Lie algebra ɧ of H is a subalgebra of ɡ 
having a complementary subspace P such that ɡ = ɧ ⊕ P, [ɧ, ɧ 
] ⊂ ɧ, [ɧ, P ] ⊂ P and [ P, P ] ⊂ P, and so the triple (ɡ, ɧ, P) gives 
characterization of symmetric

•	 Every Lie algebra corresponds to a given root system, and each 
symmetric space corresponds to a restricted root system.

•	 We can have several different spaces derived from the same 
Lie algebra.

•	 Most of features of symmetric spaces can be extracted from 
Lie algebras.

•	 Many properties of symmetric spaces can be studied through 
their Lie algebras and root systems.

Conclusion
•	 In this scientific paper, the importance of Root Systems, Car-

tan Matrix, Dynkin Diagrams in Classification of Symmetric 
Spaces.
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