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Abstract

The COVID-19 pandemic has led to a global health crisis, highlighting the need for rapid and accurate virus detection. This re-
search paper examines transfer learning with vision transformers for COVID-19 detection, known for its excellent performance in 
image recognition tasks. We leverage the capability of Vision Transformers to capture global context and learn complex patterns 
from chest X-ray images. In this work, we explored the recent state-of-art transformer models to detect Covid-19 using CXR images 
such as vision transformer (ViT), Swin-transformer, Max vision transformer (MViT), and Pyramid Vision transformer (PVT). Through 
the utilization of transfer learning with IMAGENET weights, the models achieved an impressive accuracy range of 98.75% to 99.5%. 
Our experiments demonstrate that Vision Transformers achieve state-ofthe-art performance in COVID-19 detection, outperforming 
traditional methods and even Convolutional Neural Networks (CNNs). The results highlight the potential of Vision Transformers as 
a powerful tool for COVID-19 detection, with implications for improving the efficiency and accuracy of screening and diagnosis in 
clinical settings.
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Introduction

Covid-19, also known as the coronavirus, is an infectious dis-
ease caused by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) [1]. First identified in Wuhan, China, in December 
2019, the disease quickly spread to other countries, leading the 
World Health Organization (WHO) to declare it a pandemic in 
March 2020. Since its emergence in late 2019, it has profoundly 
impacted the world. The virus is primarily spread through respi-
ratory droplets when an infected person talks, coughs, or sneezes 
and can be contracted by anyone who comes into close contact 
with an infected individual or surface—people infected with covid 
experience mild to moderate respiratory illness [2,3]. The disease 
has affected millions of people worldwide, leading to significant 
illness and loss of life. The pandemic has put a strain on healthcare 
systems, caused economic disruptions, and changed daily life in 

many ways. Covid-19 exposed the vulnerability of health workers 
and professionals worldwide, indicating a clear need for automatic 
diagnosis tools for detection. Since the virus affects the lungs, Chest 
X-rays can help diagnose and manage COVID-19. Any method for 
automatic, reliable, and accurate screening of COVID-19 infection 
would be beneficial for rapid detection and reducing medical or 
healthcare professional exposure to the virus. 

Detecting COVID-19 has been essential in containing its spread 
and finding people who have been infected. Different techniques 
have been created to identify the presence of SARS-CoV-2, the vi-
rus accountable for COVID-19. Three commonly used techniques to 
detect Covid-19 are polymerase chain reaction (PCR), antigen test-
ing, and antibody testing [4,5]. PCR is currently considered the gold 
standard for COVID-19 detection. This highly sensitive and specific 
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molecular diagnostic technique detects the presence of the genetic 
material of the SARSCoV-2 virus, specifically its RNA, in a patient’s 
respiratory sample. PCR tests offer high sensitivity and specificity, 
allowing for accurate diagnosis even in the early stages of infec-
tion. However, they require specialized laboratory equipment and 
trained personnel, which can result in longer turnaround times and 
higher costs.

 
Antigen tests detect viral proteins (antigens) in respiratory 

samples and are faster and cheaper than PCR tests. They can pro-
vide results within minutes, identifying infected individuals im-
mediately. However, their sensitivity is lower than PCR tests, es-
pecially in the early stages of infection when the viral load is low. 
False negatives can occur, so PCR tests may sometimes be needed 
for confirmation. 

Serological tests, also called antibody tests, can identify the 
presence of antibodies created by the immune system due to SARS-
CoV-2 infection. These tests are conducted on blood samples and 
can show previous infection or an immune reaction to vaccination. 
Although not as useful for detecting active infections, antibody 
tests may not identify antibodies during the initial stages of the ill-
ness. Antibody tests are useful for determining past infections but 
are less effective for diagnosing active cases. The testing method 
chosen should depend on the specific needs, resources, and objec-
tives of the testing program, which may include screening popu-
lations, diagnosing acute infections, or assessing immunity within 
communities. 

Additionally, covid can be detected using chest Xrays and com-
puted tomography (CT) [6]. Chest X-rays provide a quick way to 
assess lung damage caused by the virus. Chest X-rays are more 
helpful in monitoring the progression of the disease, evaluating 
the severity of lung damage, and identifying potential complica-
tions [7]. CT scans of the chest can also show lung damage caused 
by COVID-19 and provide more detailed images of the lungs than 
chest X-rays [8]. However, CT scans are not routinely used in CO-
VID-19 diagnosis due to their higher cost, longer imaging time, and 
increased exposure to radiation. 

Since the start of Covid-19, researchers have explored deep 
learning in detecting CXR or CT images [9-13]. Automating the 
diagnosis process helps to save time and effort for radiologists, 

which is a long and error-prone process. Deep learning algorithms 
have shown promise in assisting with the detection of COVID-19 
using chest X-rays. Several studies have reported using deep learn-
ing algorithms to analyze chest X-rays to detect COVID19. These 
algorithms have been trained on large datasets of chest X-rays 
from COVID-19 positive and negative patients to learn patterns and 
features that can distinguish between the two. The performance 
of these algorithms in COVID-19 detection using chest X-rays has 
been reported to be comparable to or even better than that of hu-
man radiologists. One of the benefits of using deep learning algo-
rithms in COVID-19 detection is their ability to quickly analyze 
large volumes of medical images, which can be particularly useful 
in areas with a shortage of radiologists or during a pandemic like 
COVID-19. Furthermore, deep learning algorithms can be trained 
to identify other disease features, such as the severity and progres-
sion of lung damage. 

Related works 

Deep learning has shown great potential in medical imaging, 
which can assist in analyzing and interpreting medical images, 
such as X-rays [14-16], CT scans [17,18], MRI scans [19-22], ultra-
sound images [23,24] etc. Medical imaging technology has made 
significant advances with the help of deep learning. The potential 
benefits of using this technology in healthcare are immense, and 
ongoing research shows promising results. Researchers have been 
actively exploring the use of Chest Xrays for COVID-19 detection 
due to the increased popularity of deep learning in medical imag-
ing. 

 
Wang., et al. [25] proposed COVID-NET, a deep convolutional 

neural network design tailored for COVID-19 detection from chest 
X-rays, which was trained on three classes, i.e., Normal, Pneumonia, 
and COVID-19. COVIDNet is designed by heavy usage of lightweight 
residual projections extension design, enabling enhanced repre-
sentational capacity with reduced computational capacity, which 
has an accuracy of 93.3%.

Das., et al. [26] used transfer learning to train the Xception net-
work for COVID-19 classification. Experiments were conducted 
on 127 COVID-19, 500 Controls, and 500 Pneumonia samples col-
lected from various public datasets, achieving an accuracy of 97%. 
Krishnan., et al. [27] proposed a modified vision transformer archi-
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tecture trained using transfer learning to detect covid from chest 
X-rays and achieved an accuracy of 97.61%. The experiments were 
conducted on COVIDx CXR2 dataset, which consists of 19105 sam-
ples. 

Guefrechi., et al. [28] finetuned three powerful networks VGG16 
[29], ResNet50 [30], and Inception V3 [31] on COVID-19 dataset 
constructed by collecting COVID-19 and normal chest X-ray im-
ages from different public databases. Out of all three architectures, 
VGG16 outperformed with an accuracy of 98.30%. 

 
Islam., et al. [10] developed a CNN-LSTM-based network to de-

tect COVID-19; the network was trained on a dataset with three 
classes COVID-19, Pneumonia, and normal. The dataset consists of 
3660 images in the training set and 915 test datasets. The proposed 
system achieved an accuracy of 99.4%, an AUC of 99.9%, a specific-
ity of 99.2%, a sensitivity of 99.3%, and an F1-score of 98.9%. Pav-
lova., et al. [32] proposed a lightweight network named COVID-NET 
CXR-2 designed based on the originally proposed COVIDNet [25]. 
The network possesses a mix of point-wise and depth-wise convo-
lutions, which reduced the computational capacity by ~25% com-
pared to COVID-Net. In addition, the new architecture achieved a 
test accuracy of 96.3% and an area under the curve (AUC) of 99.4%. 

Guang., et al. [33] explored self-supervised transfer learning to 
detect COVID-19 from chest X-rays. The authors also compared self-
supervised techniques with transfer learning based on Resnet18, 
ResNet50, ResNet101, InceptionV3, and DenseNet121. Self-super-
vised method outperformed the transfer learning by a significant 
margin and achieved an accuracy of 95.3% on four class datasets. 
Junghoon., et al. [34] developed a model for diagnosing COVID-19 
using a self-supervised learning technique with a convolution at-
tention module. In this work a U-shaped supervised learning tech-
nique with a convolutional neural network model combined with a 
convolutional block attention module (CBAM) using over 100,000 
chest X-Ray images with structure similarity (SSIM) index to learn 
image representations extremely well. The final classifier is fine-
tuned on the encoder weights learned by self-supervised learning. 
The average accuracy of the classifier is 98.6%. 

Debaditya., et al. [35] proposed a custom transformer model that 
effectively discriminates COVID-19 from normal chest X-rays with 
an accuracy of 98% and AUC score of 99%. A new self-supervised 

paradigm was proposed by Syed., et al. [36] that involves learn-
ing a general representation from CXRs through a group-masked 
self-supervised framework. The pre-trained model can then be 
fine-tuned for tasks specific to domains like covid-19, pneumonia 
detection, and general health screening. The authors have used the 
VIT-S model for representation learning and achieved an accuracy 
of 98.25%. 

Most previous studies use chest X-rays to detect COVID-19, 
highlighting the importance of image analysis as a trustworthy 
diagnostic tool for doctors. It is widely understood that a large 
amount of labeled data is required to train deep learning models 
effectively. Most studies explored COVID CXR-2 and other datasets, 
or curated datasets based on publicly available datasets. Very few 
studies explored the transformer-based models, which are the cur-
rent state of art techniques outperforming the CNN counterparts. 

In this paper, we performed a fine-grained study on trans-
fer learning using transformer architectures. We explored vision 
transformer (ViT) [37], swin-transformer [38], multi-Axis vision 
transformer (MaxViT) [39], and pyramid vision transformer (PVT 
v2) [40]. We investigated the COVIDx CXR-3 dataset [40], the larg-
est open-source benchmark dataset to date for chest X-ray im-
ages for computer-aided COVID-19 diagnostics. To the best of our 
knowledge, this is the first study to focus on examining multiple 
transformers architectures for detecting COVID-19 Limited re-
search has been conducted on this topic thus far. We verify that the 
transformer models with transfer learning outperform the existing 
state of art techniques in COVID-19 detection from CXR images. 

Methodology 

Datasets 

Our study used the COVIDx CXR-3 dataset [41], which contains 
a vast collection of chest X-rays from Covid19 and pneumonia pa-
tients. This dataset, curated by expert radiologists and clinicians, 
is a benchmark for CXR images and includes images from patients 
across multiple institutions and countries. The COVIDx CXR-3 col-
lection includes 30386 chest X-ray images taken from more than 
17,026 patients across at least 51 countries; the CXR-3 dataset 
is one of the largest available. The x-ray dataset was split into a 
training set of 29986 images and a test set of 400 images. In the 
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Figure 1: Vision Transformer Architecture.

training set, there were 8,437 x-rays of normal cases, 5,555 x-rays 
of pneumonia cases, and 15994 x-rays of Covid19 cases. The test 
set included 100 x-rays of normal cases, 100 x-rays of pneumonia 
cases, and 200 x-rays of Covid-19 cases. 

Architectures 

In this study, we explored transformer-based architectures in 
COVID recognition from X-rays. 

Transformers [42] are a deep learning architecture primarily 
used for natural language processing tasks. However, recent re-
search has shown that transformers can also be effective in com-
puter vision tasks, such as image recognition, object detection, and 
segmentation. Transformers use self-attention mechanisms to pro-
cess input data, allowing the model to focus on relevant parts of the 
input data at different levels of abstraction. This has improved per-
formance on image recognition tasks, particularly on datasets with 
large amounts of data and complex relationships between different 
image features. The success of transformers in computer vision has 
led to the development of new transformer-based architectures, 
such as the Vision Transformer (ViT) [37] and Swin Transformer 
[38], which have achieved state-of-the-art results on several bench-
mark image recognition and object detection datasets. The use of 
transformers in computer vision is a rapidly evolving area of medi-
cal imaging research [43-45]. In the experiments, the following 
modeified state-of-art transformer-based models have been used. 

Vision transformer (ViT) 

The Vision Transformer (ViT) [37] is a paper that proposed 
a novel deep learning architecture for image recognition tasks. 
Traditional convolutional neural networks (CNNs) have been the 
dominant architecture in image recognition, but ViT introduced a 
new approach that uses self-attention mechanisms to process im-
ages. Vision Transformers consist of a series of transformer blocks 
with an additional patch embedding layer. The patch embedding 
layer splits the input image into fixed-size patches and maps it into 
a high-dimensional vector representation; each vector representa-
tion is coupled with a trainable positional embedding. The patches 
are linearly embedded with an additional trainable CLS token for 
classification tasks. Each transformer block includes a multi-head 
self-attention layer, feed-forward layer, and norm layer. The multi-
head selfattention layer computes attention between a pixel with 
all other pixels, while many attention heads help to learn local and 

global dependencies in an image. A normalization layer is applied 
before each multi-head self-attention module, and a feed-forward 
layer. In this experiment, the model is presented with fixed-size 
patches of 16x16 embedded in a linear sequence. The final output 
layer is modified to two classes to recognize Normal and Covid 
CXRs, as shown in Figure 1. 

Swin-transformer 

Swin-Transformer [38] is a recent deep learning architecture 
proposed in a research paper that has achieved state-of-the-art re-
sults in image recognition tasks. Swin transformer addresses two 
key issues faced by ViT i.e., hierarchical feature maps and shifted 
window attention that allows for better scalability and efficiency. 
The hierarchical architecture has the flexibility to model at vari-
ous scales and has linear computational complexity with respect 
to image size. The model is organized into a series of stages, as 
shown in Figure 2; within each stage, the model uses self-attention 
to process image patches and extract features. The input image is 
split into a fixed patch size of 4x4 and passed to a linear embed-
ding layer to project into tokens with an arbitrary dimension C. To 
produce hierarchical features, the number of tokens is reduced by 
patch merging as the network goes deeper. Swin-transformer has 
different variants, and we have used Swin-B for the experiment 
where C=128 and the output layer of the network is modified to 
classify the input image as Normal and Covid (Figure 2). 

20

Study of Vision Transformers for Covid-19 Detection from Chest X-rays

Citation: Sandeep Angara and Sharath Thirunagaru. “Study of Vision Transformers for Covid-19 Detection from Chest X-rays". Acta Scientific Computer 
Sciences 5.8 (2023): 17-25.



Figure 2: A Swin-Transformer architecture adapted from [38]. 

Multi-axis vision transformer (MaxViT) 

MaxViT [46] introduces a multi-axis self-attention (MaxSA) 
mechanism to capture local and global spatial interactions in a 
block. Max-SA decomposes the fully dense attention mechanisms 
into two sparse forms – window attention and grid attention, which 
provide linear complexity. Compared to (shifted) window/local at-
tention, Max-SA can enhance model capacity by offering a global re-
ceptive field. MaxViT is designed hierarchically by stacking Max-SA 
blocks and convolutions. The multi-axis attention module consists 
of both blocked local and dilated global attention, enabling global 
perception at a linear complexity level. The architecture of MaxViT 
is built by cascading alternative layers of Max-SA with MBConv lay-
ers, as shown in Figures 3A and 3B. Each Max-SA module has block 
attention and grid attention, the former computes the local atten-
tion, and the latter computes the global attention. To increase the 
generalization, an MBConv block is added prior to block and grid 
attention blocks. MaxViT base model has been used for the training 
by modifying the final layer of the architecture to classify the input 
CXR image as Normal or Covid (Figure 3). 

Figure 3: (a) Multi-Axis Vision Transformer (MaxViT)  
architecture (adapted from [46]) (b) MaxViT block.

Pyramid vision transformer (PVT) v2 

Pyramid vision transformer [47] is designed to overcome the 
drawbacks of Vision transformer (ViT), as the output from ViT is 
not ideal for segmentation tasks due to its low resolution and sin-
gle-scale feature map. PVT v2 [40] is built on a baseline model pyr-
amid vision transformer with several novel improvements, which 
include a linear complexity attention layer, overlapping patch em-
bedding, and convolution feed-forward network. With these modi-
fications, the model has achieved state-of-the-art results on several 
benchmark image recognition datasets, including ImageNet, and 
has shown to be effective on other computer vision tasks, such as 
object detection and segmentation. 

Performance criteria 

To thoroughly evaluate the effectiveness of our trained model, 
we utilize a range of metrics that have been widely accepted as re-
liable assessments in the medical field. While accuracy serves as 
the primary measure for evaluating classification performance, 
we also employ specific metrics such as sensitivity, kappa score, 
PPV, AUPRC, and AUROC to ensure a comprehensive and thorough 
evaluation. 

Accuracy 

Accuracy is a performance metric that measures the proportion 
of correct predictions made by a classification model. 
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Accuracy = (TP + TN)/(TP + FP + TN + FN) 

Where “TP” stands for the number of true positive samples in a 
category, while “FN” represents the number of false negative sam-
ples. Similarly, “TN” denotes the number of true negative samples, 
and “FP” indicates the number of false positive samples in a cat-
egory. 

Sensitivity 

The sensitivity indicates the ability of a test to detect positive 
cases correctly, and a higher sensitivity value indicates a lower rate 
of false negatives. 

Sensitivity = TP/(TP + FN) 

 
PPV (Positive Predictive Value) also known as precision, It quan-

tifies the proportion of correctly predicted positive instances (true 
positives) out of the total instances predicted as positive (true posi-
tives and false positives). 

PPV = TP/(TP + FP) 

Kappa score 

kappa is a statistic that measures the agreement between the 
observed agreement and the expected agreement beyond chance 
in a classification problem. It is particularly useful when assessing 
inter-rater reliability. 

Kappa = (Observed agreement - Expected agreement)/(1 - Ex-
pected agreement) 

The kappa score has a scale of -1 to 1. When it’s closer to 1, it 
means that there is a high level of agreement beyond chance. 

 
AUPRC (Area Under the Precision-Recall Curve)

It evaluates the trade-off between precision and recall across 
different classification thresholds, which is helpful for is calculat-
ed by computing the area under the precision-recall curve, which 
plots precision on the y-axis and recall on the x-axis. A higher AU-
PRC value indicates better model performance in terms of preci-
sion and recall trade-off.

AUROC (Area Under the Receiver Operating Characteristic 
Curve)

AUROC is another widely used performance metric for size of 
8, and a weight decay 5x by default. The learning binary classifica-
tion problems. It evaluates the trade-off rate is initialized to 5 x and 
decreases with cosine measuring performance in imbalanced data-
sets. The AUPRC between true positive rate (sensitivity) and false 
positive rate (1 - specificity) across different classification thresh-
olds. The AUROC is calculated by computing the area under the 
ROC curve, which plots the true positive rate on the y-axis against 
the false positive rate on the x-axis. The AUROC provides a single 
value to assess the overall performance of a classification model, 

with higher values indicating better discrimination between posi-
tive and negative cases. 

Experimental settings 
We trained all the models using transfer learning, where the 

transformer networks are initialized with pretrained weights on 
ImageNet [48]. We train models on the training set and report top-
1 error on the test set. We use Adam optimizer [49] with a mo-
mentum of 0.9, a mini-batch schedule [50]. All models are trained 
to 100 epochs using cross-entropy loss, with warmup epochs of 
5. During training, data augmentation techniques like random 
cropping, horizontal flip, vertical flip, and color jittering have been 
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Model Image size Sensitivity Accuracy (%) kappa PPV (%) AUROC AUPRC

MEDUSA [51] 480x480 0.975 98.3 - 99.0 - -

ViT-S + SS-CXR [35] 256x256 98.25 - - 0.999 0.999

ViT-Base 384x384 0.98 0.99 0.98 1.0 0.9994 0.9994

Swin-T-Base 384x384 0.975 0.9875 0.975 1.0 0.9988 0.9988

MaxVIT 384x384 0.99 0.995 0.99 1.0 9.9997 0.9997
pvt_v2_b5 384x384 0.98 0.99 0.98 1.0 0.9999 0.9999

Table 1: Covid vs. Normal classification Accuracy, kappa score, positive predictive value (PPV), AUROC, and AUPRC of the models on the 

test samples of the CXR-3 benchmark dataset and comparison to other previous works on this dataset.



applied randomly to the training set. Pytorch-based models from 
Timm [51] have been used for experiments and trained on RTX 
3090. The best model during training is selected based on accuracy. 

Results and Discussion 

The results of the models suggested for the CXR-3 dataset are 
presented in Table 1. To evaluate the models, accuracy, kappa 
score, positive predictive value, AUROC, and AUPRC were used on 
the test dataset. MaxViT demonstrated the highest accuracy of all 
the techniques, surpassing the previous best-performing models 
by 1%. The confusion matrix for the test set, illustrated in Figure 1, 
shows that MaxViT had fewer misclassifications in comparison to 
the other models. When it comes to CXRs, MaxViT exhibited slightly 
superior performance than all the other transformerbased models, 
making it a highly efficient model for covid classification. 

From Table 1, vision transformers with transfer learning clearly 
achieved state-of-art performance in COVID-19 detection from CXR 
images. The main reason for Vision Transformers to dominate the 
existing methods is to utilize self-attention mechanisms, allowing 
the model to focus on relevant parts of the input image. This helps 
capture long-range dependencies and relationships between image 
features, which is particularly beneficial for understanding com-
plex visual patterns and relationships. Vision Transformers cap-
ture global context by considering the entire image as a whole. This 
global perspective gives the model a more holistic understanding 
of the image and helps make better predictions. Vision Transform-
ers can benefit from transfer learning, where pre-trained models 
on large-scale datasets can be fine-tuned on specific tasks. This al-
lows the model to leverage knowledge learned from vast amounts 
of data, leading to improved performance, especially when labeled 
data is limited.

Conclusion 

The use of deep learning techniques in analyzing CXR images 
holds great potential for COVID-19 diagnosis. Specifically, we have 
found that transformers-based deep learning algorithms effec-
tively learn long-range dependencies; when used in conjunction 
with transfer learning and appropriate hyperparameters, these 
algorithms have demonstrated impressive results. However, we 
recognize that the study may be limited to this COVIDx CXR-3. Fur-
ther work involves exploring vision transformers on other medical 
datasets.

Figure 4: Confusion matrix of the transformer models on COVID 
CXR-3 test set.
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