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Abstract
   This paper investigates the current feasibility of utilizing reinforcement learning algorithms in the industrial sector. Although many 
studies have showcased the success of these algorithms in simulations or on isolated real-world objects, there is a paucity of research 
examining their wider implementation in real-world systems. In this study, we identify the obstacles that must be surmounted to 
fully leverage the potential benefits of reinforcement learning algorithms in practical applications. Moreover, we present a thorough 
overview of existing literature aimed at tackling these challenges.
Keywords: Reinforcement Learning; Deep Learning; Sim-to-real; Engineering; Artificial Intelligence; Control; Robotics; Autonomous 
Control

Abbreviations
RL: Reinforcement Learning; DQN: Deep Q-Network; DDQN: 

Double Deep Q-Network; DDPG: Deep Deterministic Policy Gradi-
ent; MRAC-RL: Model Reference Adaptive Control and Reinforce-
ment Learning; SCM: Supply Chain Management; IoT: Internet of 
Things; AIoT: Autonomous Internet of Things

Introduction
Reinforcement learning (RL) has emerged as a powerful class 

of algorithms for optimization and control tasks. RL gained wide-
spread attention after the pioneering work by R. Sutton and A. Bar-
to [1]. which spurred a surge of research in this field [2]. Notably, 
Q-learning and related algorithms such as DQN [3], DDQN [4] have 
become popular choices for RL applications. DQN and DDQN are 
among the earliest algorithms that use artificial neural networks 
as universal function approximators for Q-values. These models 
have demonstrated impressive performance on various control 
tasks, including the Cartpole problem [5].

An important development in RL was the introduction of actor-
critic models, which separate the Q-function into two components: 
an actor responsible for policy selection, and a critic responsible 
for estimating action values. Actor-critic models [6] have brought 
RL closer to achieving human-level performance in Atari games [3].

However, applying RL algorithms to real-world tasks presents 
significant challenges [7]. Real-world systems often require ex-
tensive computational resources, formalization of the Markov de-
cision process, and a controlled environment. Moreover, learning 
in the real world can cause wear and tear on the control object, 
potentially leading to its failure. These challenges have motivated 
researchers to develop methods for improving the performance 
and robustness of RL algorithms in real-world applications, either 
through algorithmic or statistical means.

In this overview, we aim to collect and synthesize the most sig-
nificant studies on RL in real-world applications, particularly in 
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industrial and control domains. By doing so, we hope to provide 
a comprehensive understanding of the current challenges and op-
portunities in applying RL to complex real-world problems.

Materials and Methods
The initial attempts at applying RL algorithms to real-world 

objects faced numerous challenges, as highlighted by [7]. These 
challenges are sticking point in resolving tasks with RL algorithms. 
Authors of this paper already tried overview the problematic of RL 
real-world application from systematic point of view. However, it 
still needs broader studies in the way of resolving this problematic.

Some of the earliest successful works in this area focused on 
modifying specific Actor-Critic models, such as those used in [8-
10]. For example, [9] trained a Minitaur robot to walk on a flat sur-
face, but the resulting algorithm was also able to perform well on 
more complex and curved surfaces. Similarly, [10] RL algorithms 
succeed in manipulating dynamic and deformable objects.

For more complex tasks with higher levels of disturbance and 
complexity, a combined approach such as that used by [11]. This 
approach utilizes a PI regulator for low-level control and RL algo-
rithms for trajectory creation.

Another approach involves a fully hybrid use of RL and classical 
algorithms. However, in these works, the task is typically decom-
posed, and RL is only responsible for one part of the task [11]. 

These approaches seek to reduce the impact of the stochastic 
component of RL algorithms (exploration) to minimize control er-
ror and increase the deterministic component (exploitation) for 
greater robustness. 

One major limitation of existing approaches is their narrow ap-
plicability to specific control objects and laboratory conditions. To 
extend their use in real-world applications, researchers are now 
exploring more complex tasks and entire systems where RL algo-
rithms can be integrated.

To further improve the performance and applicability of RL al-
gorithms, researchers are also exploring the integration of other 
techniques and methods, such as imitation learning, meta-learning, 

and hierarchical reinforcement learning. These approaches seek to 
enhance the sample efficiency, stability, and generalization capa-
bilities of RL algorithms, making them more suitable for real-world 
applications.

One potential solution to improve the performance of reinforce-
ment learning algorithms is to explicitly incorporate the control 
object model into the RL algorithm, as demonstrated in [12]. This 
category of algorithms is known as model-based reinforcement 
learning algorithms. In contrast, algorithms that do not include 
a model of the control object in their structure are referred to as 
model-free reinforcement learning algorithms. While Model-Based 
Reinforcement Learning models are generally more sample-effi-
cient, their performance can be sensitive to the model used [13]. In 
cases where the model is simple and contains inaccuracies and un-
certainties, model-free algorithms may be more appropriate. In ad-
dition, model-based algorithms can suffer from systematic errors, 
which can also negatively impact their performance [14]. However, 
in cases where the model is without significant uncertainties and 
disturbances, a model-based approach may be more appropriate. 
This was demonstrated by [15], where a model-based RL algorithm 
was successfully applied to the dynamic control of soft robotic ma-
nipulators.

When it comes to Model-free RL algorithms, there are concerns 
about their sample efficiency and safety [16]. To address these is-
sues, one popular approach is to train RL algorithms on simula-
tions and then transfer the learned model to the real environment, 
as described in [16]. However, due to the simulation to reality gap, 
the performance of the transferred model can drastically drop on 
real objects [17], a problem commonly known as the sim-to-real 
problem. 

While there is no perfect solution to this problem, some re-
searchers attempt domain adaptation [18] or domain randomiza-
tion [19] to mitigate the gap between simulation and reality. Other 
researchers add disturbances to the data to increase the model’s 
robustness [20], while some apply inverse dynamic modeling 
[21,22] to reduce the simulation to reality gap.

This is a summary of the techniques used to reduce the gap 
between simulation and real-world reality, as described in table 
1. The summary provides information about the methods used, a 
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Figure 1: Types of proposed solutions to real-world challenges.

Method References Description Application

Domain adaptation [23] Domain adaptation by transferring image labels in the source 
domain to images in the target domain

A ‘hook loop’  
manipulation task

Domain  
randomization

[19] Randomize visual appearance in simulations for policy train-
ing and sim-to-real policy transfer

Grasp objects in a 
cluttered real-world 

environment

[24] Randomize both visual input and physical parameters in 
simulations for sim-to-real transfer

Learning dexterous  
in-hand manipulation

Inverse dynamics model
[21]

Sim-to-real transfer by adapting the action selected by the 
simulation policy with a learned inverse dynamics model in 

the real world

Back-and-forth swing 
of a robot arm

[22] Sim-to-real policy transfer by modifying the simulation  
environment to be equivalent to the real world Bipedal robot walking

Continual and multitask 
learning (PNNs) [25] Sim-to-real policy transfer via PNNs with raw pixels as input Dynamic conveyor task

Meta-reinforcement  
learning

[26] Meta-train a global dynamics model for fast online adaptation 
in dynamic environments

Track desired  
trajectories

[27] Meta-train a policy with model-free reinforcement learning 
for sim-to-real domain adaptation

Shoot a hockey puck to 
a target location

Table 1: Summary of main sim-to-real deep reinforcement learning policy transfer methods and their applications.

brief description of the work, and the application tasks to which 
they have been applied.

Overall, these techniques are used to bridge the gap between 
the simulation and real world, allowing models trained in simula-
tion to generalize better to real-world scenarios.

These solutions, of course, facilitate the process of pre-trained 
model transfer, but do not solve the problems themselves. More-
over, there is currently no comprehensive study of the factors influ-
encing the process of algorithm transfer and its final performance.

In various studies, these proposed solutions have been wide-
ly employed to investigate the feasibility of using reinforcement 
learning algorithms in practical settings. In this article, we will ex-
plore the different algorithm modifications used in research that 
applies reinforcement learning to industrial and robotics objects, 
the Internet of Things, and supply chain management.

By examining the types of modifications and techniques that 
have been used, we can better understand the adaptability of rein-
forcement learning algorithms in addressing real-world challeng-
es. With this knowledge, researchers and practitioners can better 

tailor reinforcement learning algorithms to suit the specific needs 
of their respective industries, leading to more effective solutions 
for a range of applications.

Reinforcement learning in robotics and autonomous control
Many types of problems in autonomous control and robotics 

may be model as reinforcement learning problem [14]. Trial and 
error mechanism of RL architecture helps a robot and control sys-
tem to autonomously learn an optimal behavior by interacting with 
the environment [28,29].

Some of the RL applications to solve robotic problems by us-
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ing model-based algorithms include [30,31]. These works were 
proposed to enable a robot for the penalty kick, navigation task, 
vision-based mobile robot docking task and the task of obstacle 
avoidance respectively.

One approach to RL is to use model-based algorithms to enable 
robots to perform tasks such as penalty kicks, navigation, vision-
based mobile robot docking, and obstacle avoidance. The Brain-
storner Tribots introduced in [32] won the Robocup 2006 Midsize 
league and can learn various skills such as penalty shots, defenses, 
dribbling, interception, kicking, and motor speed and position con-
trol. 

Soft robots have also gained significant attention in the industri-
al sector, and deep RL has been widely used for manipulation tasks 
such as reaching, door opening, picking and dropping [15,33].

Deep RL has also been successfully used in soft robotic naviga-
tion to assist control systems and robots in performing tasks au-
tonomously, such as autonomous driving. Some important studies 
related to the use of deep RL methods for navigation are [34,35]. 

Reinforcement learning in internet of things
The integration of autonomous control systems and the Inter-

net of Things (IoT) has led to the development of autonomous 
IoT (AIoT) systems. Reinforcement learning algorithms have in-
troduced ambient intelligence into AIoT systems by providing 
solutions to closed-loop tasks involving processing sensory data 
to make control decisions [36]. Although AIoT is a relatively new 
trend, several recent works have explored the application of RL 
in autonomous IoT systems. For example, [37] proposes an IoT-
enabled mobile robot for monitoring plant health using Q-learning 
and a CNN-based method. Q-learning has also been used for energy 
consumption optimization and delay in [38], while [39] discuss 
AIoT systems for energy storage management, energy trading pro-
cesses, and other Q-learning applications in AIoT, respectively.

RL actor-critic methods have been widely used in AIoT systems 
to learn stochastic policies for continuous state or action space 
problems and, in a few cases, for discrete state problems. Addition-
ally, the actor-critic method can be used to train deep RL models 
with fewer computational resources and samples. Some examples 
of using RL actor-critic methods in AIoT systems are [40].

Reinforcement learning in supply chain management
According to the supply chain driver classification [41], inven-

tory management problems are the most common application 
in SCM, followed by information and transportation problems. 
The models that address inventory management problems usu-
ally use the RL agent to orchestrate the material flow between 
multiple sites in the supply chain. Information is a broader class 
that includes applications that aim to increase information avail-
ability, such as forecasting, collaboration, or risk management. In 
the transportation class, RL is used to address vehicle routing or 
scheduling problems. The prevalence of RL models in planning 
tasks with short decision horizons is significantly higher than in 
long-term decision-making because they mostly have a limited 
scope, precise inputs and objectives, and a requirement for fast de-
cision making. On the contrary, long-term decisions taken on the 
managerial level require valid reasoning.

Most models take advantage of Q-learning [42]. This fact can be 
explained by the maturity of the long- standing technique capable 
of learning stochastic transitions and reward problems. Besides, 
Q-learning belongs to the model-free class, implying that an RL 
agent can operate directly by sampling and learning the expected 
rewards. However, more recent publications use such deep learn-
ing techniques as DQN [43], A2C [44] and PPO [45]. By incorporat-
ing deep artificial neural networks, RL agents gain the capabilities 
to make decisions from large-scale and potentially unstructured 
input data.

Results and Discussion
Despite efforts to address the challenges of scalability, robust-

ness, and interpretability in reinforcement learning, the majority 
of these attempts have been either statistical in nature, such as ma-
nipulating the resulting sample, or algorithmic, such as modifying 
reward functions or adding extra coefficients. Some studies have 
utilized a combination of both statistical and algorithmic methods. 
Another studies used transfer techniques to reduce sim-to-real 
gap. While these approaches have shown some promise in specific 
contexts, further research is needed to identify more comprehen-
sive and effective solutions to these challenges.
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Method References Description
Algorithmic modifications [8,9,15,22,25,30,31,46] Algorithmic modifications involve changes to the basic RL algorithm, such 

as modifying the reward function, exploration strategy, and action selection 
mechanism.

Statistical modifications [7,29,32,35,37,39,42] Statistical modifications involve changes to the learning algorithm’s statistical 
assumptions or objectives, changes in observations, input vectors, etc.

Transfer techniques [21-24,26,47,48] Transfer techniques involve leveraging knowledge learned from one task to 
accelerate learning in a related task. One example is using transfer learning 

to reuse a pre-trained neural network to perform a similar task with minimal 
retraining. Another example is using domain adaptation to transfer knowledge 

between different environments with similar but not identical dynamics.
Algorithmic and Statistical 

modifications
[11,49] Combining statistical and algorithmic methods.

Combination of all methods [2,50] Combining all methods involves integrating multiple solutions to address  
different challenges faced by RL agents.

Table 2: Summary of real-world application of reinforcement learning algorithms and type of proposed solutions.

Conclusion
Based on our analysis, it appears that while there are numerous 

algorithms available for controlling specific objects in certain con-
ditions, there has been limited success in generalizing the approach 
to develop control systems for real-world applications using rein-
forcement learning. Further research is needed to overcome the 
challenges of scalability, robustness, and interpretability, which are 
essential for practical implementation in industrial settings. None-
theless, we remain optimistic about the potential of reinforcement 
learning algorithms and believe that with continued investigation 
and development, they will become increasingly valuable tools for 
industrial control systems in the future. 
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