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Abstract

In this work, we present a novel 2-stage system to detect and classify potentially hazardous objects in CT scans of carry-on lug-
gage. The classification and detection approach consists of two 3D neural networks: Region proposal network (RPN) followed by a 
3D shape classification network (SCN). RPN segment an input volume into 2 classes: Threat and background. To reduce the number 
of false positive regions identified by RPN, connected components labeling and various morphological operation are then applied to 
filter proposed regions for second stage 3D shape classification using SCN. Experimental results show the effectiveness of the pro-
posed system in detecting various threat objects with high detection rates, while producing low false positives.
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Introduction

X-ray type technologies have been used for airport security 
checks for several decades. Heightened regard for the detection 
of complex articles within baggage and parcels for air transit and 
other forms of transportation has led to an increased interest in 
the use of automatic recognition strategies. Items of interest can be 
however difficult to detect within this environment due to a range 
of orientation, clutter, and density confusion in a traditional two-
dimensional (2D) X-ray projection. Object occlusion is a limitation 
of 2D X-ray scanners, which makes detection (automatically or by 
human operators) particularly challenging.

To address these issues, there has been an expansion of the 
use of Computed Tomography (CT) volumetric imagery, where a 
three-dimensional (3D) “voxel” representation of the baggage or 
personal item is reconstructed. Modern imaging technology uses 
multiple energy bands in these CT scanners, for enhanced mate-

rials discrimination, and can achieve real time scanning rates for 
bags in airport baggage/parcel handling operations by allowing 
screeners to quickly identify prohibited items without divestiture 
of electronics or liquids. 
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Figure 1: Examples of 3D CT scans of carry-on luggage. CT 
scans overcome issues with orientation, clutter, and density 

confusion often present in traditional 2D X-ray scanning tech-
nology, while providing enhanced materials discrimination, and 

achieving real time scanning rates.



There is little published work around automatic recognition and 
classification of items in scanned baggage. Most of this work re-
volves around using engineered features (color, edges, histograms, 
etc.) and classical classifiers (Support Vector Machines, Statisti-
cal classifiers, and neural networks). More recently, deep learning 
techniques have emerged as a powerful alternative for supervised 
learning with great model capacity and the ability to learn highly 
discriminative features for the task at hand. These features often 
outperform hand-crafted and pre-defined feature sets. Convolu-
tional Neural Networks (CNNs) have been applied with promising 
results on a variety of imaging problems. The network topology ex-
ploits the stationary nature of natural images by learning features 
using locally connected networks. Convolutional layers are used to 
learn small feature detectors based on patches randomly sampled 
from a large image, resulting in powerful object representations 
without the need to hand design features. This has been empiri-
cally demonstrated on the challenging ImageNet classification task 
across thousands of classes.

Though 2D CNN can learn the spatial relationship between the 
pixels in a 2D plane, it cannot learn the inter-slice relationship be-
tween the frames in a 3D volume. To address this issue, 3D CNNs 
extends 2D CNNs by using convolution kernels in three dimen-
sions, and hence the inter-slice information can be learned, provid-
ing better segmentation and classification results. 

3D CNN-based architectures have been used extensively in med-
ical image analysis [1-18], and in this work, we customize some of 
these architectures to identify potentially hazardous objects in 
scanned luggage. 

Main contributions

To our knowledge, this is a first deep learning-based approach 
to detect and classify threat object in CT scans. Our approach and 
network architecture aims to strike the balance between learning 
powerful and discriminative 3D shape and material representation 
while providing the most optimized architecture complexity to 
meet required execution time for operational deployment.

Material and Methods

As illustrated in figure 2, the classification and detection ap-
proach consists of two 3D neural networks: Region proposal net-
work (RPN) followed by a 3D shape classification network (SCN). 

RPN segment an input volume into 2 classes: Threat and back-
ground. To reduce the number of false positive regions identified 
by RPN, connected components labeling and various morphologi-
cal operation are then applied to filter proposed regions for second 
stage 3D shape classification using SCN.

Region proposal network (RPN)

RPN is trained to output a segmentation map of the central cube 
of a given sub-volume within the scanned bag. To explicitly capture 
spatial relationships in a three-dimensional context, we apply 3D 
convolutions on sub-volumes of different sizes. RPN is an 8-lay-
ers deep network with residual connections. Residual connections 
were shown to facilitate preservation of the flowing signal and as 
such have enabled training of very deep neural networks increas-
ing the number of trainable parameters. Each block (L) consists 
of 2 convolution layers with small 3 x 3 x 3 convolution kernels. 
The use of small convolution kernels, and its small computation 
requirements, allows for building high performing yet efficient 3D 
CNNs. The input to the network is a sub volume of 25 x 25 x25 vox-
els and the output is a 9 x 9 x 9 classification map of the centroid 
within the sub volume.

Shape classification network (SCN)

To reduce the number of false positive regions identified by RPN, 
connected components labeling and various morphological opera-
tion are then applied to filter proposed regions for second stage 3D 
shape classification using SCN. Similar to RPN architecture, SCN is 
a 7-layers deep network with residual connections. The network 
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Figure 2: System Overview. The proposed 2-stage detection 
and classification approach consists of 2 3D neural networks: 
Region proposal network (RPN) followed by a 3D shape clas-

sification network (SCN).



consists of a series of convolution blocks and RLU layers, followed 
by fully connected layers for classification. Each convolution block 
(L) consists of 2 convolution layers with 3 x 3 x 3 convolution ker-
nels. SCN is trained using threat shapes and background volumes.

Training details

For RPN training, we created the training and validation sets by 
sampling all threat voxels across every CT volume to form 50% of 
the samples. Non-threat voxels were sampled from a thresholded 
range to form 45% of the samples. The thresholds were computed 
by computing the mean of all threat voxels for a specific threat and 
subtracting 3.5 standard deviations from the mean for the low 
threshold and adding 3.5 standard deviations from the mean for 
the high threshold. The last 5% of the samples were randomly sam-
pled from any non-threat voxel in the CT volume. Finally, 80% of 
the samples were used for training and 20% of the examples were 
used for validation. Training took approximately 76 seconds per 
epoch on a single NVIDIA Titan X (Maxwell generation) GPU with a 
batch size of 512 on approximately 2 million examples.

For SCN training, cropped 3D shapes and background sub-vol-
umes were extracted from the training set. Training took approxi-
mately 400 seconds per epoch on a single NVIDIA Titan X (Maxwell 
generation) GPU.

Figure 3: RPN architecture with residual connections. The 
operations within each layer block (L) are applied in the order: 
Batch-Normalization, non-linearity, and 3D convolution. C de-

notes classification layer.

Figure 4: 3D Shape Classification network (SCN).

Experimental Results and Discussion

Datasets

To validate the effectiveness of our method, the system was 
trained using 5000 CT scans containing various threat objects in-
cluding guns and sharps of various types, sizes, and shapes, and 
5000 of clear stream of commerce (SOC) CT scans. Each CT scan 
has 640 x 480 x 220 voxels, with a spatial resolution of 0.5–0.625 
mm in the z-axis, and approximately 0.5 mm in the x- to y-axes. 
Figure 5 illustrates a sample of threat objects included in the train-
ing set.

Preprocessing and augmentation

Training datasets were augmented using scaling, 3D rotations of 
different angles, and various image artifacts. This process resulted 
in 300000 training and validation shapes.

Figure 4: 3D Shape Classification network (SCN).

Figure 5: Examples of prohibited items used in  
data augmentation.

Evaluation metric

For quantitative performance evaluation, we use Intersection 
over union (IOU) metric using the model output predicted mask 
compared to the ground truth mask.

Where  and  are the output and ground truth mask, respectively.

Testing

For testing, a test set of 30,000 CT scans of various threat ob-
jects including guns and sharps of various types, sizes, and shapes, 
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as well as SOC CT scans obtained from different scanners were 
used. Tables 1-4 below, present testing results for 2 models: guns 
and sharps when applied to threat and clear SOC volumes. Across 

all CT scans, guns model has an 92% average detection rate with 
8% false positives, while sharps model has 94% detection rate with 
5% false positives

Datasets Threat count TP 
count

TP
rate

FP 
count

FP rate IOU
rate (>= 50%)

IOU
rate (>= 75%)

Inference 
Time(s)

G1 966 742 0.768 6 0.009 0.74 0.59 2.99

G2 964 741 0.769 6 0.009 0.752 0.695 2.804

G3 154 137 0.89 7 0.045 0.89 0.838 2.271

G4 41 25 0.61 0 0 0.585 0.341 2.586
G5 799 782 0.979 1 0.001 0.979 0.977 2.655

G6 799 779 0.975 1 0.001 0.975 0.975 2.671

G7 1657 1590 0.96 32 0.019 0.956 0.949 3.103

G8 1775 1728 0.974 1 0.001 0.973 0.973 2.9

Summary 7155 6524 0.912 54 0.008 0.905 0.873 2.876

Table 1: Results of testing on guns threat volumes.

Datasets Count FP count FP rate Inference Time

S1 608 1 0.002 2.261
S2 222 6 0.027 2.308
S3 627 1 0.002 2.251
S4 278 3 0.011 2.23
S5 2285 59 0.026 2.258
S6 2434 31 0.013 2.043
S7 1644 6 0.004 2.353
S8 852 1 0.001 2.324
S9 667 5 0.007 2.49

S10 554 10 0.018 2.397
S11 831 3 0.004 2.015
S12 1644 8 0.005 2.019
S13 602 3 0.005 2.168

Summary 13248 137 0.01 2.203

Table 2: Results of testing gun model on SOC volumes.
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Datasets Threat 
count

TP count TP
rate

FP 
count

FP rate IOU
rate (>= 50%)

IOU
rate (>= 75%)

Inference 
Time(s)

K1 31 15 0.484 5 0.161 0.323 0.258 3.579
K2 202 171 0.847 12 0.059 0.782 0.688 2.867
K3 201 171 0.851 11 0.054 0.806 0.751 2.883
K4 70 57 0.814 3 0.044 0.8 0.743 2.226
K5 64 39 0.609 23 0.359 0.141 0.047 3.654
K6 956 923 0.965 4 0.004 0.963 0.837 3.544
K7 637 602 0.945 0 0 0.939 0.819 3.517
K8 999 960 0.961 9 0.009 0.959 0.835 3.444
K9 1007 967 0.96 9 0.009 0.96 0.831 3.358

K10 1682 1632 0.97 86 0.051 0.935 0.851 3.24
K11 679 660 0.972 39 0.057 0.934 0.897 3.324
K12 1279 1136 0.888 155 0.149 0.819 0.695 3
K13 460 439 0.954 19 0.041 0.904 0.904 3.357
K14 317 289 0.912 10 0.032 0.861 0.833 2.814
K15 335 305 0.91 4 0.012 0.86 0.836 2.902

Summary 8919 8366 0.938 389 0.045 0.905 0.811 3.266

Table 3: Results of testing sharps model on threat volumes.

Datasets Count FP count FP rate Inference Time

S1 608 8 0.013 2.654
S2 222 2 0.009 2.732
S3 627 13 0.021 2.656
S4 278 2 0.007 2.602
S5 2285 99 0.043 2.681
S6 2434 117 0.048 2.443
S7 1644 68 0.041 2.835
S8 852 29 0.034 2.736
S9 667 26 0.039 2.944

S10 554 13 0.023 2.789
S11 831 8 0.01 2.399
S12 1644 30 0.018 2.402
S13 602 34 0.056 2.579

Summary 13248 449 0.034 2.617

Table 4: Results of testing sharps model on SOC volumes.

neural networks: Region proposal network (RPN) followed by a 3D 
shape classification network (SCN). RPN segment an input volume 
into 2 classes: Threat and background. To reduce the number of 
false positive regions identified by RPN, connected components la-
beling and various morphological operation are then applied to fil-
ter proposed regions for second stage 3D shape classification using 
SCN. As shown in the above presented results, the system was ca-
pable of detecting various threat objects with high detection rates 
and low false positives, while meeting required execution times for 
operational application.
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