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Abstract
High-resolution images are really helpful in various applications like medical diagnosis and hence the need for super-resolution 

has also increased significantly. Increasing the image resolution on various medical images like a chest X-ray or cell images can 
improve the accuracy of diagnosis by revealing previously unseen details. Using Image super-resolution also reduces the number of 
X-ray radiations required to render ultra high-quality imaging. Hence we applied super-resolution on X-rays using fine-tuned Swift-
SRGAN architecture, which significantly improved the details on the chest X-rays. This helps in rendering super-resolution images 
from low-resolution images with less computational requirements. The proposed approach achieves a Structural Similarity Index 
Measure(SSIM) of 0.893 and a Peak Signal-to-Noise Ratio (PSNR) of 32.10.
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Abbreviations

SSIM: Structural Similarity Index Measure; PSNR: Peak Signal-
to-Noise Ratio; Swift-SRGAN: Swift-Super-Resolution Generative 
Adversarial Network; GAN: Generative Adversarial Network; 
CLAHE: Contrast Limited Adaptive Histogram Equalization

Introduction

Since the invention of Convolutional Neural Networks for image 
processing applications, image super-resolution has attracted the 
interest of numerous experts. Many research communities have 
focused on the reconstruction of a single high-resolution image 
from a low-quality low-resolution image [17]. The process of 
recovering and reconstructing the resolution of a noisy low-quality 
image into a very high-quality high resolution image is known 
as image super-resolution. For example, Reconstructing and 
recovering a low-quality 256x256 pixels image into a higher quality 
super-resolution 1024x1024 pixel image is an example of an Image 

super-resolution task. Image super-resolution has been an area of 
keen research for some time now through various advancements in 
the field of deep learning and growing computational power. 

With the evolution of Deep Learning techniques, the 
requirement for high-end computing power to execute calculations 
of such sophisticated neural network topologies is increasing. 
With the growing costs of higher-end computing devices, there’s 
a huge demand to make the applications run in real-time and are 
mobile-friendly. When it comes to the domains of wearable health 
tech [16], robotics [6], and augmented reality, there is a growing 
need for real-time applications with minimal latency and very low 
footprint requirements. 

This strategy can also be used in a variety of situations. When 
it comes to medical imaging, issues like scanning duration, spatial 
convergence, and signal-to-noise ratio complicate capturing a very 
high-resolution Magnetic Resonance Imaging (MRI) [1]. As a result, 
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adopting image super-resolution principles solves these issues 
by upscaling low-resolution photos into high-resolution images. 
X-rays and CT scans are in the same boat. Several researches have 
shown that adding image super-resolution models to chest X-ray 
(CXR) pictures can enhance pulmonary illness detection greatly 
[2,3].

Existing imaging super resolution techniques are 
computationally intensive, time-consuming processes, and may 
need the optimization of a large number of training parameters. 
In addition, existing approaches for imaging super-resolution and 
visual task analysis involve independently trained models.

This paper focuses on improving the performance in upscaling 
medical X-rays. The architecture of the Swift-SRGAN is fine-tuned 
to render higher resolution X-ray images from low resolution in 
near real-time [5]. By using Depth-wise separable convolutions 
in place of standard convolution layers in the architecture, the 
required trainable parameters are significantly reduced. This helps 
in improving the latency of the architecture and thus boosts the 
performance in real-time. 

Materials and Methods

Dataset

We train this system on the COVID-19 radiography database 
dataset from Kaggle [4,10,11]. This dataset was a collective effort 
of various researchers in cooperation with medical practitioners 
of Malaysia. This dataset has 3616 covid chest X-rays, 6012 lung 
opacity X-rays, 10,200 Normal chest X-rays, and 1345 Viral 
Pneumonia chest X-rays. We combine them to get a total of 21,173 
chest X-ray images. We use 20,000 chest X-ray images for training 
the system, 586 chest X-ray images for validation, and 587 chest 
X-ray images for testing the system.

Figure 1: Combined X-ray datasets consisting of a) Covid X-ray 
data, b) Normal Chest X-ray, c) Lung opacity X-ray dataset and d) 

Viral Pneumonia X-ray dataset. 

256x256 image from the original image. We randomly rotated the 
images with a maximum limit of 90 degrees and a minimum limit 
of 35 degrees. We also created fake RGB channels by repeating the 
same channel thrice since the pre-trained Swift-SRGAN was trained 
on RGB images. We also applied CLAHE (Contrast Limited Adaptive 
Histogram Equalization) as an enhancement technique to remove 
excessive contrast from the images [8]. Finally, we randomly flipped 
the images horizontally 50% of the time and randomly rotated the 
image vertically 20% of the time. All these image augmentation 
techniques combined yielded a better-generalized model.Data preprocessing

We used several data augmentation techniques with the help 
of the albumentations library [7]. At first, we randomly crop a 
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Figure 2: Architecture diagram of Swift-SRGAN’s generator and discriminator.



Fine tuned swift-SRGAN

The proposed system is based on the fast and efficient Swift-
SRGAN architecture that can perform real-time super-resolution 
even on low-end computing devices [5]. The Swift-SRGAN 
architecture consists of generator and discriminator architectures. 
The generator architecture takes in the input low-resolution chest 
X-ray image and passes it through a series of Depth-wise Separable 
Convolutions, Batch Normalization, and PReLU as the activation 
function. Figure 2 explains the generator and discriminator 
architecture of the fine tuned Swift-SRGAN network. There are 
a total of sixteen residual blocks in the generator architecture. 
This residual block is then passed through a series of Depth-wise 
Separable convolutions, batch Normalization, and element-wise 
summation operations to add the outputs of the previous and the 
current block. Figure 3 shows the residual block contents. The 
image is then up-sampled twice by running it through the up-
sample Block. The depth-wise separable convolutions are followed 
by two Pixel Shuffle layers with PReLU as the activation function in 
the up-sample block. The final Depth-wise Separable Convolution 
layer is then applied, with a kernel size of Nine, three output 
channels, and a stride of one.

Eight Depth-wise Separable Convolution blocks make up the 
discriminator architecture. A Depth-wise Separable Convolution 
[9] is used in all blocks, followed by batch normalization and the 
activation function LeakyReLU (negative slope = 0.2). There is no 
batch normalization layer in the first block. The output of the final 

Convolution block is sent to the adaptive average pooling layer, 
which produces a 6x6 output. The adaptive average pooling layer’s 
output is flattened and fed into a 1024-neuron linear layer. 

Experimental setup

The experimental setup consists of an NVIDIA RTX 2060 
Graphics Processing Unit (GPU) which is used to train the fine-
tuned Swift-SRGAN architecture. The architecture takes in the low-
resolution images of dimensions 256x256 and up-samples it to 
the high resolution of dimensions 1024x1024. AdamW optimizer 
[15] is used here along with the ReduceLROnPlateau learning 
rate scheduler in-order to generalize the model. A batch size of 32 
images is considered. The perceptual loss function is used here to 
calculate the generator loss. Mixed-precision support of PyTorch is 
used to support the training process of the model. 

The low-resolution image is passed to the generator and the 
perceptual loss is calculated. Then the high resolution and super-
resolution images are fed to the discriminator block which helps in 
calculating the discriminator loss. The goal of the generator model 
is to create as realistic as possible super-resolution images and fool 
the discriminator into classifying super-resolution images as high-
resolution original images. And the goal of the discriminator is to 
better distinguish between high-resolution and super-resolution 
images. We use the Swift-SRGAN generator and the discriminator 
that is pre-trained on DIV2K [13,14] and FLICKR2K [12] datasets 
and fine-tune them on the COVID-19 radiography database dataset 
[10,11].

Performance metrics

We benchmark the fine-tuned model on the standard 
performance metrics Peak Signal to Noise Ratio (PSNR) and 
Structural Similarity Index Measure (SSIM) [5]. These two metrics 
together define the super-resolution quality of our proposed 
system by comparing it with the high-resolution image. Typically, 
the higher the PSNR and SSIM, the better the super-resolution 
results. While PSNR uses the signal-to-noise ratio to compare the 
images, SSIM uses the contrast, luminance, and structure of the 
images to compare the images.

Results and Discussion

The proposed system uses the pretrained Swift-SRGAN to 
perform super-resolution on medical images. We achieve a PSNR 
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Figure 3: The above figure shows the depthwise residual 
block used on the generator part of the Swift-SRGAN. 



of 32.10 and SSIM of 0.893 for medical image super-resolution. The 
use of depthwise separable convolution on the Swift-SRGAN allows 
us to perform real-time super-resolution of medical images on low-
end computing devices.

The PSNR is formulated as,

And SSIM is formulated as,

Luminance comparison function,

Contrast comparison function,

Structure comparison function,

Metric Performance
PSNR 32.10
SSIM 0.893

Table 1: Evaluation metrics for our proposed approach.

The figure 4 clearly demonstrates the performance of rendering 
a super resolution image from a single low resolution image. 

In figure 5, we can see that the super-resolution CT scan has 
much more details and, hence helps in better diagnosis. The 
proposed system works really well even on chest CT scans even 
though it was trained only on chest X-ray images. Thus the proposed 
system generalizes to all medical images and performs equally well 
on all kinds of medical images.

Conclusion

Medical super-resolution has proven to be a great help for 
several medical practitioners to efficiently analyze medical images 
and perform diagnoses. Using super resolution also reduced the 
amount of X-ray radiation required to achieve ultra high quality 
images. The use of Swift-SRGAN allows us to perform real-time 
and efficient super-resolution even on low-edge computing 
devices making it perfectly suitable for the task of medical image 
super-resolution. Combining this with some data augmentation 
techniques and efficient training strategies like mixed-precision, 
we achieve a highly efficient system. From table 1, we can see that 
our proposed lightweight real-time system has achieved a PSNR 
of 32.10 dB and an SSIM of 0.893. The resultant images from the 
system are highly detailed and hence help medical practitioners to 
detect even the slightest anomaly on the X-rays and better diagnose 
the patient.

Although the system achieves a significant performance while 
maintaining speed and efficiency, there is still scope for improving 
the performance by tweaking the Swift-SRGAN architecture. We are 
planning to extend our work by improving the proposed system’s 
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Figure 4: The image on the left is the original high-resolution 
image and the image on the right is the super-resolution 

image from the proposed system.

Figure 5: The image compares the super-resolution CT scan 
(top) and the original CT scan (bottom). 



performance by adding visual attention mechanisms into the Swift-
SRGAN architecture and reducing the number of convolutions used 
without affecting the performance of the architecture.
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