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Abstract
The initial phase of the project has been started with the data collection, where we have collected ECG images and 12 lead ECG 

waveform values of patients affected with covid 19 with five classifications as Covid 19, abnormal heart rate, myocardial infarction 
(MI), history of MI and normal ECG. We have done gamma correction for the image dataset in data preprocessing and cleaning, and 
waveforms have been created from 12 lead ECG values. To increase the available data, we have augmented the created images. We 
have created test and validation classes for the image dataset to train the model. A sequential convolutional neural network has 
been built for image classification. We used the batch normalization method from Keras; in the sequential model layer, we used relu 
and softmax activation layers—Adam optimizer and sparse categorical cross-entropy as the loss function in the sequential model. 
Training and validation accuracy have been used as metrics to assess the model’s performance. Vgg16 model has been trained to 
compare the results. On completion of model creation, the trained model has been exported, and mobile application integration has 
been made for the end-user. 
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Introduction

Coronavirus 2019 (COVID-19) has caused a huge and rapid 
increase in deaths, resulting in a long-lasting pandemic. As of May 
21, 2021, over 166 million illnesses and over 3.4 million deaths 
had been documented worldwide [1]. SARS-CoV-2 can cause 
organ failure, but this is extremely rare. As a result of extensive 
heart damage, a network of trained computers can now reliably 
make computer-aided diagnostic decisions, thanks to an artificial 
intelligence-based biomedical application (such as medical 
physicians, healthcare staff members). A number of deep learning 
models for detecting anomalies in medical images, such as chest 
X-rays and CT scans, have recently been published. An innovative 
technique, developed by Degerli., et al. was developed to identify 

the location and severity of COVID-19 infection by studying 15495 
CXR images. Over 98% of accurate results were obtained using this 
technique [2,6]. A new convolutional neural network (CNN) model 
proposed by Kesim., et al. was used to classify chest X-ray images 
[3]. Diagnosing tuberculosis (TB) with a chest X-ray has been 
proposed by Liu., et al. Researchers used shuffle sampling to create 
a new CNN model that was 85.68 percent accurate. Using computed 
tomography (CT) scans, Rahman., et al. determined whether or 
not patients had symptoms of pulmonary tuberculosis (TB) [4]. 
The proposed model was trained on 3,500 images of infected and 
healthy CXRs. DenseNet201 had the best sensitivity and specificity.

There have been reports of people who were otherwise healthy 
developing acute myocarditis after being exposed to COVID-19. 
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There was critical myocardial damage in up to 27.8% of Chinese 
COVID-19 patients with troponin levels above the upper 99th 
percentile of the reference range. That’s more than ten times the 
flu virus’s prevalence rate (2.9 percent ). It’s common for COVID-19 
patients to experience mild illness and recovery, despite the 
presence of biochemical evidence for acute myocardial injury. No 
one knows for sure if COVID-19 survivors who show no obvious 
signs of cardiac damage have any hidden or subclinical cardiac 
damage that could affect long-term outcomes. No one. Survivors 
of COVID-19 will need to have their hearts monitored after the 
epidemic has passed to see if this is necessary. The automated 12-
lead ECG diagnostic techniques can be used to screen the general 
public and get a second opinion for medical professionals.

Related work

•	 Described an improved strategy for training the suggested 
network by transferring knowledge from the related domain 
of general texture categorization. Six publicly available 
texture databases are used to train networks, which are 
subsequently fine-tuned on lung tissue data. The generated 
CNNs are integrated into an ensemble, and their knowledge is 
compressed back into the original network [1].

•	 Pre-trained CNNs outperformed or, in the worst scenario, 
performed just as well as a CNN taught from scratch when 
fine-tuned to their best ability, according to numerous trials. 
Secondly, fine-tuned CNNs were better able to deal with large 
training sets than CNNs that were built from the start [7].

•	 According to the system, based on the percentage of infected 
lungs, the system categorizes the severity of COVID-19 as 
mild, moderate, severe, or critical. An extensive collection of 
tests was carried out using the most up-to-date deep Encoder-
Decoder Convolutional Neural Networks available on the 
market (ED-CNNs) [8].

•	 When it comes to training the network, they have investigated 
the effectiveness and efficiency of shuffle sampling with cross-
validation, and they have discovered that it has a powerful 
effect on medical picture classification [9].

•	 Being the first study to investigate whether deep convolutional 
neural network (CNN) models can be used to detect COVID-19 
from ECG trace images. In this research, ‘Deep learning 
algorithms were used to identify COVID-19 and other 
cardiovascular illnesses (CVDs) [10].

•	 This research focused on using AI to detect COVID-19 from 
chest X-ray images. This research proposes a robust technique 
for detecting COVID-19 pneumonia from digital chest X-ray 
pictures using pre-trained deep-learning algorithms. Transfer 
learning was utilized for training and testing many pre-trained 
deep Convolutional Neural Networks (CNNs) [11].

•	 With the help of a mixture of deep learning methods, such 
as feature extraction, fine-tuning of pre-trained CNNs, and 
the end-to-end training of the final CNN model, this study 
found that CNNs can be used to detect COVID-19 and healthy 
chest X-ray images. Extraction of deep features was carried 
out using a variety of deep CNN models (ResNet18 through 
ResNet100), all of which were developed by the team at 
ResNet. Several kernel functions, including Linear, Quadratic, 
Cubic, and Gaussian, were employed in the classification of the 
deep features [12].

•	 Finesse was achieved by utilizing previously trained deep 
convolutional networks in this investigation. This work 
proposes a new CNN model that uses end-to-end training. The 
linear kernel function was used to extract the deep features 
from the ResNet50 model and SVM classifier [13].

•	 To avoid false alarms, this study employs a novel 1D 
Convolutional Neural Network implementation along with a 
verification model. Following the encoder and decoder blocks, 
a sample-wise classification layer generates a 1D segmentation 
map of the R-peaks in the input ECG signal. It can be used to 
detect R-peaks in single-channel ECG data streams [14].

•	 For the purposes of this study, six distinct Convolutional 
Neural Networks (CNNs) were explored. When it comes to 
recognizing COVID-19 from regular and segmented lung CXR 
pictures, the gamma correction technique beats all other 
enhancing strategies. Detection of COVID-19 with gamma 
correction improved the accuracy, precision, sensitivity, f1-
score, and specificity of the test results [15].

Technical requirements and tools 

JupyterLab and Google colab is used for initial development, 
and the GitHub version control system is used for collaboration. 
Certain data preprocessing and modeling processes took more 
memory and could not run the tasks in the local machine and colab 
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free version. So, we used Colab pro, paid version of google colab, to 
overcome the memory issue and processing time.

•	 Modelling: Tensorflow - CNN, Vgg16

•	 Python Libraries: OpenCV, PIL, Split-folders

•	 Version control system: GitHub

•	 Project Management: Jira, Confluence

•	 Data Collection: Public Data Archives

•	 Android App: Android Studio, Tensorflow Lite.

Data collection

Mendeley 

Mendeley Data is a free and open research data repository that 
allows academics to publicize their research data. Compliance with 
funding requirements, permitting reuse by other researchers and 
boosting the repeatability, transparency, and confidence in the 
original study are all advantages of sharing research data [6].

UCI machine learning repository

The UCI Machine Learning Repository is a collection of data 
generators, domain theories, and datasets used by the machine 
learning community to conduct empirical research on machine 
learning methods [5].

Physionet.org

The MIT Laboratory for Computational Physiology manages 
PhysioNet, a library of openly accessible medical research data. The 
goal of the PhysioNet Resource is to promote present research and 
future inquiries into the understanding of complicated biomedical 
and physiologic signals.

Data understanding

Mendeley dataset - ECG images of five classes

The collection comprises electrocardiogram (ECG) pictures of 
cardiac and COVID-19 patients drawn from 1937 unique patient 
records. The data is acquired using an ECG device called the EDAN 
SERIES-3 put in Cardiac Care and Isolation Units of various health 
care institutions across Pakistan. The data are necessary for 
screening Cardiac and COVID-19 patients and their linkages. The 
dataset evaluates multiple CNN models for COVID-19 and other 
cardiovascular diseases.

ECG pictures collected are divided into five main categories.

•	 (ECGs) of COVID-19 patients were obtained from the 
“COVID-19 isolation unit.”

•	 ECG photographs of a standard group were obtained from 
“Patient’s attendants and visitors.” 

•	 ECGs of myocardial patients were obtained from the “Cardiac 
Care Unit.”

•	 ECG pictures of patients recently discharged from the “Out-
Patient Department” were obtained.

•	 ECG scans of patients with abnormal heartbeats who have 
recently recovered from COVID-19 and Myocardial Infarction 
and are experiencing shortness of breath were acquired 
from the “Out-Patient Department”.

Category Number of Images

Normal 859

Covid-19 250

Myocardial infarction 
(MI) 77

Abnormal Heart Rate 548

Recovered MI 203

 Table 1: Mendeley ECG Images dataset description.

The collected ECG images data is from a 500 Hz sample rate 
12-leads ECG device.

UCI - arrhythmia dataset

UCI Arrhythmia dataset contains 452 data records with 279 
attributes. The dataset labels arrhythmia in a patient and classifies 
the arrhythmia into one of 16 groups. The values of attributes 
present in the dataset are nominal and linear numerical. The 
attributes are related to sex, age, patient-related information, and 
numeric values of the PQRS waveform of a heartbeat.

The dataset has 16 labels to classify the 12-lead ECG signal. 
One label is to type the normal signals, and the other 15 groups 
organize the different arrhythmia signs in the ECG signals.
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Physionet.org - MIMIC -III 

MIMIC-III is an extensive, freely accessible database containing 
de-identified health-related data for over 40,000 patients who 
stayed at Beth Israel Deaconess Medical Center’s critical care 
units between 2001 and 2012. Demographics, bedside vital 
sign measures (1 data point per hour), laboratory test results, 
procedures, drugs, carer notes, imaging reports, and death are all 
included in the database (including post-hospital discharge).

MIMIC-III waveform database 
It contains 67,830 record sets for nearly 30,000 ICU patients. 

Almost every record set includes an ECG waveform record and a 
numerics record, including time series of periodic readings. These 
depict a near-continuous recording of a single patient’s vital signs 
during his ICU stay (many of them are of weeks duration) [17-19].

MIMIC-III waveform database matched subset

Matched Subset database is a subset of the MIMIC-III waveform 
database, consisting of the records for which the patients’ clinical 
records are available in the MIMIC-III Clinical database. The 
Clinical Database contains patients’ non-medical details such 
as demographics, vital sign measurements made at the bedside 
(~1 data point per hour), laboratory test results, procedures, 
medications, caregiver notes, imaging reports, and mortality 
[16,18,19].

Extracting ECG waveforms from MIMIC-III matched database 

using WFDB

The waveform database (WFDB) package for Python is a library 
of tools for reading, writing, and processing physiological signals 
and annotations, written in the Python programming language. 
WFDB can be used to directly fetch data from PhysioNet MIMIC-
III Waveform or Matched database and generate ECG waveform 
out of it. We also used WFDB to extract sample waveform from the 
MIMIC-III Matched database as below [17-19].

Challenges with MIMIC-III databases

The size of MIMIC3 is huge, 6.4 TB, as it contains video data 
of ECG recordings of 40,000 patients. It’s impossible for us to 
download and process such an amount of data due to constraints 
of personal laptops and metered internet connection. 

Figure 1: 2-Channeled ECG waveform Snapshot extracted using 
WFDB.

However, we don’t need complete MIMIC3 data as it contains 
continuous (video) data of all the patients, including non-cardiac 
patients. For our CNN classification, we just need a single snapshot 
of ECG and that also of cardiac patients only.

Explored approaches for filtering MIMIC-III Matched Subset 

Database

•	 Filtering of ICU patients: We planned to use the ICU table 
of the MIMIC-III Clinical database to get identifiers of ICU 
patients as the ECG collected in MIMIC3 Matched database is 
just from ICU patients. 

•	 Filtering Cardiovascular patients: There are multiple tables 
in the Clinical database that we can use to separate cardiac 
patients, such as ICD (International Classification of Diseases), 
Chief Complaints, Diagnosis Billing table, and In-Home 
Medication. 

•	 Filtering ECG Video: As we just need the snapshot of ECG, we 
can pick a few frames of ECG video which should be relevant 
to cardiovascular diseases.

De-Scoping of MIMIC-III database

Unfortunately, after spending so much effort and time, 
unfortunately, we had to de-scope the MIMIC-III databases for two 
primary reasons.
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•	 Incompatible 2-Channeled ECG: As explained above, we 
were able to extract ECG waveforms from MIMIC-III, but 
they were 2-channeled waveforms, which are incompatible 
with other data sources - both the Mendeley and UCI have 
12-channeled ECG images.

•	 Unable to filter huge 6.4TB MIMIC-III database: We could 
have used different tables (ICD, Billing, Chief Complaints, 
ICU) in MIMIC-III clinical databases to filter out the relevant 
patients. But to access MIMIC-III Clinical, we need elevated 
access and mandatory certifications, as our college is 
not partnered with the certification organization. The 
certification cost is around 300 CAD. Due to this high cost, we 
even dropped the idea of separately training or augmenting 
2-channeled ECG waveforms from MIMIC-III databases.

Data preprocessing

Data transformation

Mendeley Dataset - ECG images

Using OpenCV, we read every Image of ECG in each class. The 
photos are in colour scale. OpenCV reads colour images as in the 
BGR order. We used the cvtcolor function from OpenCV to convert 
the images back to their original order, RGB. After successful colour 
image reading, the images are converted to grayscale. Grayscale 
conversion helps for faster processing in the Convolutional neural 
network models. Our application doesn’t require colour images 
for the modeling, so the idea was to convert images to grayscale 
using the IMREAD_Grayscale built-in function to reduce the 
computational load. 

Figure 2: ECG original colour image.

The amplitude and time of the waveform are present; pixels of 
the image should be uniformly distributed to identify the different 
classes of the image. The model can easily detect and learn the 
minute details and differences from the image. The traditional 
and efficient method to make an image uniformly distributed is 
Histogram equalization. Equalize Hist function from the OpenCV 
library will cause the image pixels to the normal distribution and 
improve the picture’s overall contrast. 

We used Adaptive Threshold from OpenCV to enhance the white 
and black pixels of the image since the scanned ECG images had 
different lighting. Also, our other process only requires black and 
white pixels of the ECG images to classify them effectively.

Figure 3: GrayScale converted ECG image.

Generating ECG waveforms from UCI numeric data

The UCI dataset contains ECG details of various patients in the 
form of numeric values. It contains 279 attributes, out of which four 
features are patient’s details, such as age, sex, height, and weight, 
and the remaining 275 features are numeric values for different 
attributes of ECG waveform, such as QRS duration, P/Q/R/S/T 
intervals, amplitude and width of waves, etc [5].

We used matplotlib’s pyplot library to generate ECG waveforms 
out of these numeric values related to amplitude, width, and time 
period of waves. It was a challenging and complex task overall, so 
we adopted a bottom-up approach to complete it. Firstly, smaller 
and individual components of ECG waveform, such as P wave, 
QRS complex, and ST wave, were plotted in matplotlib using the 
numeric feature values in the CSV files sourced from UCI. Then 
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these smaller components were merged to form a complete ECG 
waveform ‘PQRST’ corresponding to a particular channel, as in the 
below image.

Figure 4: Single Channelled ECG waveform generated from UCI 
Arrhythmia (CSV) data.

However, if we see ECG images available in the Mendeley 
dataset, they are complete 12 channeled waveforms containing 
channels - (1 to 3), aVR, aVL, aVF, (V1 to V6 ). So, we also generated 
12 channeled waveforms for UCI numeric values. The mentioned 
process of generating PQRST waveforms was repeated for all the 
channels; numeric values corresponding to each channel were used 
to plot individual waveforms. Finally, these individuals representing 
each channel were merged to form the final 12-channeled ECG 
waveform for a single record (patient), as in the below image.

Figure 5: Multi Channelled ECG waveform generated from UCI 
Arrhythmia (CSV) data.

Furthermore, we need to generate above 12 channeled 
waveforms for all the records or patients, but before that, we had 
to treat missing values in the dataset.

Data cleaning

Mendeley dataset - ECG images

Some ECG images had unnecessary details such as name, 
date, doctor’s details, and outer border. These details will reduce 
the performance and confuse the machine learning models. We 
cropped the images to have only the 12-Lead waveform to avoid 
this. Using the contour function of OpenCV, images are cropped in 
the dataset. The contour identifies the Image objects and outputs 
the boundary—contour tales threshold as input to determine the 
edges of the pixels. 

Figure 6: Different ECG Images.

Figure 7: Different ECG Images.
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After cropping the images, we wanted to remove the background 
graph lines of the grayscale ECG images (Figure). So the model can 
learn and predict the enhanced image easily and efficiently.

The LUT function is used to enhance the image further and 
remove the graph line of ECG from the image. The lookup table 
function of OpenCV takes images, lookup-table, and output array as 
inputs. It’s a void function and fills the output array with pixels of 
the image using the image and lookup table input.

Figure 8: Cropped and Enhanced Image (Y-axis represents 
Amplitude and X-axis represents the duration in mSec).

Treating missing values in UCI dataset

In the UCI dataset, out of 279 columns (features), one column 
has missing values (it contained ‘?’), and another column also had 
some missing values. These columns could not be dropped as they 
were necessary to generate continuous ECG waveforms. Out of 
126,108 (452 rows * 279 attributes) data points, 408 values were 
missing (‘?’).

To treat these missing values, firstly, we convert them all into 
null values (np.nan) and then use Simple Imputer’s mean to replace 
these null values.

After treating the missing value, 12-channeled ECG waveforms 
were generated for all the 452 records (patients). These were then 
augmented with Mendeley ECG images to be used in downstream 
algorithms.

Data augmentation

Our original dataset is imbalanced, and after data transformation 
and cleaning, there is negligible data loss. We have used the data 
augmentation technique to handle the imbalanced dataset since 
the dataset contains image data.

The data augmentation technique on image data will generate 
new images by shifting the width and height and zooming the 
original pictures. 

We used the image data generator function from Keras 
preprocessing to do the augmentation of images. The function 
takes various arguments as input to shift, rotate and zoom the 
original image. We used width and height shift range as 0.1 to create 
new shifted images. We used zoom mode as another augmented 
technique. To have a white background in the augmented image, 
we constantly used Fill mode and 255 as values for the white 
background. 

The batch size is set to eight for the output images in the image 
data generator. To store the output images, the image data gen flow 
method from Keras preprocessing. The method takes the directory 
and format to save the image.

Category Number of Images Augmented 
Images

Normal 859 1718
Covid-19 250 2000
Myocardial infarction 
(MI) 77 616

Abnormal Heart Rate 548 1644
Recovered MI 203 1624
Arrhythmia 452 3616

Table 2: Input Images after Augmentation.

Train and test split

Split folders python library is used to split the test and validation 
data. Since the dataset is in image format and the prediction 
is classified, we used folder structure to separate the test and 
validation data.

The split folder ratio function will accept the input and output 
directory and the ratio as inputs to read and write the images. The 
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ratio will split the total data set into a set percentage. The function 
will generate two-parent folders as test and Val and create the 
subfolder of different classes.

Figure 9: Test and Validation split of the dataset.

Model building and training

VGG 16 pretrained model

VGG16 is an architecture based on convolution neural networks 
(CNNs). It is widely regarded as one of the most excellent vision 
model architectures created to date. They emphasized having 
convolution layers of a 3x3 filter with a stride one instead of having 
a huge number of hyper-parameters. They always utilized the same 
padding and maxpool layer of a 2x2 filter with a stride two. This is 
the unique part of VGG16. The convolution and max pool layers are 
arranged throughout the entire architecture, which is continuous 
throughout the architecture. After that, it has two FC (completely 
connected layers) followed by a softmax for output. The 16 in 
VGG16 alludes to the fact that it contains 16 layers with different 
weights. This network is quite vast, with approximately 138 million 
(approximately) parameters spread over it. A sequential model 
is one in which all of the model layers are placed in a sequential 
fashion. The goal of ImageDataGenerator is to make it simple to 
import data with labels into the model. It is an extremely helpful 
class because it contains several functions such as resizing, rotating, 
zooming, and flipping.

16 layers of VGG16

•	 Convolution using 64 filters

•	 Convolution using 64 filters + Max pooling

Figure 10: Layers of VGG16.

•	 Convolution using 128 filters

•	 Convolution using 128 filters + Max pooling

•	 Convolution using 256 filters

•	 Convolution using 256 filters

•	 Convolution using 256 filters + Max pooling

•	 Convolution using 512 filters

•	 Convolution using 512 filters

•	 Convolution using 512 filters+Max pooling

•	 Convolution using 512 filters

•	 Convolution using 512 filters

•	 Convolution using 512 filters+Max pooling

•	 Fully connected with 4096 nodes

•	 Fully connected with 4096 nodes

•	 Output layer with Softmax activation with 1000 nodes.

Custom built model - CNN

Using the image_dataset_from_directory built-in method from 
Keras preprocessing class, we read the image data directly from the 
test and Val folders. The function reads the data from the folder-
subfolder structure and labels the classes of the data based on the 
same structure.

The custom model is built on the TensorFlow convolutional 
neural network. There are ten layers, out of which nine are input, 
and one is output. Two layers of 2-dimensional convolution layers, 
three layers of maxpooling, two dense layers, and flatten and 
dropout are one each. 

We have used a sequential model from the TensorFlow python 
library. To optimize the weights in each neuron of a neural network, 
an optimizer should be used with the model. Adam optimizer is 
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Figure 11: Model Summary of Stable and final Model.

used since it works well with gradient descent. A sparse categorical 
loss function is used in the model to evaluate how well the model 
is training and predicting the given dataset. The loss function also 
calculates the loss of training and validation data. We have chosen 
spare categorical over standard categorical since our data is 
multiclass numeric labeled. 

Accuracy is used as a metric to assess the performance of the 
model on training and validation datasets. The model’s accuracy is 
a standard metric for assessing the multiclass classification model 
performance. 

Hyperparameter tuning

We have performed various hyperparameter tuning to increase 
the model performance and accuracy on training and validation 
datasets. We raised and decreased the batch size of data to train 
the model. We also increased the epochs of the model to improve 
model learning. 

We also tuned the optimizer function’s learning rate and set 
the low learning rate to learn minor variations in the data. A low 
learning rate will slow the training speed and take more time to 
train the model.

Results

When comparing the results of our custom-built model with the 
Vgg16 model, which was trained on image data, we found that our 
model accuracy and performance are higher on our dataset.

As it can be seen in the below figures that the custom model 
has given the accuracy of 86 and 80 on train and test, respectively, 
when compared to the VGG-16 model, which gave an accuracy of 50 
and 20 on train and test, respectively.

Figure 12: Custom model’s accuracy and loss curve.
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Figure 13: VGG-16 model’s accuracy and loss curve.

Mobile application development

The very first point of consideration when thinking about ways 
to connect an ML model to a mobile app is to create an API that 
acts as a middle layer between the frontend (App) and the backend 
(ML model). However, we have adopted an innovative approach 
of directly integrating the ML model with the android app using 
the “tflite (TensorFlow lite) model import” feature available in the 
latest Android Studio 4.1.

Steps of integrating the TensorFlow model into the Android 

App

•	 Save the model in an h5 format or any other suitable format 
(we have used h5).

•	 Create a conversion code to convert the model.h5 file to the 
tflite model, which is available on the Android Developer site, 
and save it as model.tflite.

•	 Before passing the model to Android Studio, test it with Python 
code to see if it works properly.

•	 Once the test file has passed, we go to Android Studio and first 
add the front end in the activity_main.xml (shown in the next 
figure) and arrange it properly.

•	 Develop the code for the backend in the MainActivity.java file.

•	 Run and test the App on different emulators.

The app was successfully built and tested. For the demo, please 
follow the Demo Link.

Figure 14: Mobile application screenshot.

Preferring HDF5 over pickle format

The primary reason is that the hdf5 format is widely used across 
Keras/TensorFlow compared to pkl, including other factors as 
below.

HDF5 Pickle
It supports data slicing - the capacity to 
read only a portion of a dataset, which 
allows us to operate with datasets that 
would not fit entirely in RAM)

It doesn’t support 
data slicing

Slower than Pickle Very fast
Compression implies less space on the 
disk Large space on disk

No compatibility issues Often give 
compatibility issues

Table 3: Comparison of HDF5 and Pickle files.

Conclusion

Recent research on the Covid-19 and Cardiac disease 
classification using ECG images with a feature App development 

44

Covid-19 and Cardiac Disease Classification using ECG Images

Citation: Parisa Naraei., et al. “Covid-19 and Cardiac Disease Classification using ECG Images". Acta Scientific Computer Sciences 4.6 (2022): 35-45.

https://drive.google.com/file/d/1Kye3qNidQuW-Jw8qIlr2kkLgRasnvf7A/view


Bibliography

has tried to make a contribution to the society in a very simple 
yet efficient manner. The data is collected from Mendeley and 
UCI, and the custom model is built using CNN. The UCI dataset is 
in a numerical form which is converted into a 12-lead ECG plot. 
To increase the performance of the model, we have tried to use 
different techniques such as data augmentation, data scaling, 
and converting the images to grayscale. The testing of the model 
was performed with 1 Nvidia T4 GPU, 32GB RAM, and a 1.59GHz 
memory clock taking 9 hours of run time with a slow learning rate 
and 300 epochs which gave an accuracy of 86 and 80 on the train 
and test data, respectively. Taking the help of Android studio and 
converting the custom model to tflite, we have built our app, which 
gives an option for people to have a shot at knowing the ECG result 
during these testing times of covid-19 when the hospital is running 
out of staff.

Future Work

The future scope of work is to collect more ECG image data 
related to covid19 patients and train the custom model. Enhance 
the mobile application to store real-time user data such as ECG 
images of different cardiac and covid19 diseases. Future work 
includes the creation of a file server database, which keeps the 
image data from the user—also developing CRUD operations to 
interact with the database to train further and predict the model.
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