
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 5 May 2022

Merge Sort Revisited

Yangjun Chen* and Ruilin Su
Department of Applied Computer Science, University of Winnpeg, Canada

*Corresponding Author: Yangjun Chen, Department of Applied Computer Science,
University of Winnpeg, Canada.

Research Article

Received: March 12, 2022

Published: April 29, 2022
© All rights are reserved by Yangjun Chen
and Ruilin Su.

Abstract
Merge sort is a sorting technique based on the divide-and-conquer technique. With its worst-case time complexity being O(𝑛

log 𝑛), it is one of the most respected algorithms. However, in practice, Quick sort is almost three times f aster than it although the
worst-case time complexity of Quick sort is bounded by O(𝑛 2), much worse than O(𝑛 log 𝑛). In this paper, we discuss a new algorithm,
which improves the merge sort in two ways: (i) cutting down data movements conducted in the merging processes; and (ii) replacing
the recursive calls with a series of improved merging operations. Our experiments show that for the randomly generated input
sequences, the perf ormance of our algorithm is comparable to the quick sort. But f or the sorted or almost sorted input sequences, or
reversely sorted input sequences, our algorithm is nearly 5000 times better than it.

CCS Concepts: Theory of computation → Algorithm design and analysis.

Keywords: Sequences; Merge Sorting; Quick Sorting

Introduction

Merge sort (sometimes spelled mergesort) is an ef ficient
sorting algorithm that uses a divide-and-conquer strategy to order
elements in a sequence. Its worst-case time complexity is bounded
by O(𝑛 log 𝑛), where 𝑛 is the number of elements in the sequence.
This running time is better than Quick sort’s, O(𝑛 2). However, in
practice, the quick sort is normally f aster. One reason f or this is
that Quick sort is an in-place algorithm (by which only quite small
extra space is used) and its average running time is bounded by
O(𝑛 log 𝑛). But the most important reason f or this is due to the
huge amount of data movements carried out by Merge sort itself
when merging subsequences.

In this paper, we address this issue and propose a method
which is able to cut down the number of data movements of the
merge sort by half. Another observation is that the conquer step of
Merge sort can further be greatly improved by replacing recursive
calls directly with a series of merging operations.

As our experiments demonstrate, the running time of our
algorithm for randomly generated input sequences is comparable
to Quick sort. However, f or the sorted or almost sorted input
sequences, or reversely sorted input sequences, our algorithm can
achieve more than 5000-f old improvements over Quick sort.

Since the sorting is almost the most frequently performed
operation in the sof tware engineering, we think that these
improvements are highly significant.

The rest of this paper is organized as follows. In Section 2, we
restate Merge sort as a discussion back ground. Then, in Section 3,
we discuss our algorithm. Next, we show the test results in Section
4. Finally, a short conclusion is set forth in Section 5.

Decription of merge sorting

Merge sort is typically a divide-and-conquer strategy. Given a
sequence with 𝑛 elements, the merge sort involves the f ollowing
three steps:

Citation: Yangjun Chen and Ruilin Su. “Merge Sort Revisited". Acta Scientific Computer Sciences 4.5 (2022): 49-52.

•	 𝐷𝑖𝑣𝑖𝑑𝑒 the sequence into two subsequence’s such that one is
with elements, and the other is with

•	 𝐶𝑜𝑛 𝑞𝑢𝑒 𝑟 each subsequence by sorting it. Unless the sequence
is suf ficiently small, use recursion to do this.

•	 𝐶𝑜𝑚𝑏𝑖𝑛 𝑒 the solutions to the subsequence’s by merging
them into a single sorted sequence.

The following algorithm implements the above idea. For
simplicity, the input of this algorithm is just an array A of numbers
to be sorted.

In line 1 of the above algorithm, 𝑚𝑒 𝑟 𝑔𝑒 𝑆𝑜𝑟 𝑡(), we first check
whether |A| = 1. If it is the case, return A. Otherwise, the divide
step simply computes an index 𝑞 (see line 2) that partitions 𝐴 into
two subarrays: 𝐴 [𝑝 .. 𝑞] containing elements, and A[𝑞 + 1.. 𝑟]
containing ⌊n/2⌋ elements.

By the first recursive call, we will sort 𝐴 [𝑝 .. 𝑞] (see line 3). By the
second recursive call, we will sort 𝐴 [𝑞 + 1 .. 𝑟] (see line 4). Then, we
will call the merge procedure to create an entirely sorted array 𝐴
(see line 5).

In the merge procedure 𝑚𝑒 𝑟 𝑔𝑒 (𝐴 , 𝑝 , 𝑞, 𝑟) shown below, line 1
computes the length 𝑛 1 and 𝑛 2 of the subarrays 𝐴 [𝑝 .. 𝑞] and 𝐴 [𝑞
+ 1.. 𝑟] , respectively; and initializes index variable 𝑘 to p, which is
used to scan 𝐴 f rom lef t to right. The f or-loop of lines 3-4 copies the
subarray 𝐴 [𝑝 .. 𝑞] into 𝐿[1.. 𝑛 1] while the f or-loop of lines 5-6 copies
the subarray 𝐴 [𝑞 + 1.. 𝑟] into 𝑅[1.. 𝑛 2] . In the while-loop of lines
7-12, two index variables 𝑖, 𝑗 are used to scan 𝐿 and 𝑅, respectively.
Depending on whether L[i] ≤ R[j] , L[i] or R[j] will be sent to A[k] .
When we go out of the while-loop, lines 13-16 will be executed, by
which the remaining elements in 𝐿 or in 𝑅 will be copied back into
𝐴 , depending on whether i > 𝑛 1 or 𝑗 > 𝑛 2.

Improvements

In this section, we discuss how to improve the algorithm
described in the previous section. First, we discuss a method to

reduce data movements conducted in merge(), which enables us
to decrease the running time by more than a half. Then, we change
the recursive algorithm to a non-recursive procedure by which the
performance can be further improved.

Deduction of data movements

We notice that in the procedure 𝑚𝑒 𝑟 𝑔𝑒 (), of Merge sort the
copying of 𝐴 [𝑞 + 1.. 𝑟] into 𝑅 is not necessary, since we can directly
merge 𝐿 and 𝐴 [𝑞 + 1.. 𝑟] and store the merged, but sorted sequence
back into 𝐴 .

Denote by 𝐴 ′ the sorted version of 𝐴 . Denote by 𝐴 ′ (𝑖, 𝑗) a prefix
of 𝐴 ′ which contains the first 𝑖 elements f rom 𝐿 and first 𝑗 elements
f rom 𝐴 [𝑞 + 1.. 𝑟] . Obviously, we can store 𝐴 ′ (𝑖, 𝑗) in 𝐴 itself since
af ter the 𝑗 th element has been inserted into 𝐴 ′ , the first 𝑞 - 𝑝 + 𝑗 +
1 entries in 𝐴 are empty and 𝑞 - 𝑝 + 1 ≥ i (thus, 𝑞 - 𝑝 + 𝑗 + 1 ≥ i + j).
In terms of this simple analysis, we give the following algorithm for
merging two sorted subarrays: 𝐿 and 𝐴 [𝑞 + 1.. 𝑟] (see Algorithm 3).

The dif f erence of this algorithm f rom 𝑚𝑒 𝑟 𝑔𝑒 () (Algorithm 2,
described in the previous section) mainly consists in:

•	 Array 𝑅 is not created.

•	 The copying of the remaining part of Array 𝑅 into 𝐴 is not
needed in the case that 𝑗 > 𝑛 2 since 𝑅 itself is replaced by 𝐴 [𝑞
+ 1.. 𝑟] , and the remaining elements of 𝑅 are now already in
𝐴 .

These two differences enable us to save more than half of the
running time of Merge sort.

In addition, less space is needed since R is not created at all.

Non-recursive algorithm

Merge Sort can be further improved by replacing its recursive
calls with a series of merging operations, by which the recursive

⌈n/2⌉ ⌊n/2⌋

⌈n/2⌉

50

Merge Sort Revisited

Citation: Yangjun Chen and Ruilin Su. “Merge Sort Revisited". Acta Scientific Computer Sciences 4.5 (2022): 49-52.

execution of the algorithm is simulated. The whole work ing process
can be divided into ⌈log2 (𝑟 - 𝑝 + 1)⌉ phases. In the first phase, we
will mak e ⌈𝑛 /2⌉ merging operations, where 𝑛 = 𝑟 - 𝑝 + 1, with each
merging two single-element sequences together. In the second
phase, we will mak e 𝑛 /4 merging operations with each merging
two two-element sequences together, and so on. Finally, we will
mak e only one operation to merge two sorted subsequences to f orm
a globally sorted sequence. Between the sorted subsequences, one
contains ⌈𝑛 /2⌉ elements while the other contains ⌊𝑛 /2⌋ elements.

More importantly, by our method, there is no system stack
f rame overhead, and theref ore no stack overflow problem (caused
by huge numbers of recursive calls) as by the recursive merge sort
and also by the recursive quick sort. Thus, given a certain size of
main memory, much longer input sequences can be sorted by our
method, as demonstrated by our experiments.

Experiments

In our experiments, we have tested altogether 5 different
methods:

•	 Merge sort (ms for short, [2]).

•	 Improved merge sort 1 (ims-1 for short, discussed in this
paper),

•	 Improved merge sort 2 (ims-2 for short, discussed in this
paper),

•	 Quick sort (qs for short, [3]), and

•	 Random pivot quick sort (r-qs for short, [1]).

Input size ms ims-1 ims-2 qs r-qs
6, 5536 6 1 1 751 518
131, 072 13 2 2 3, 012 1,044
262, 144 28 6 4 12,789 2,088
524,288 54 11 9 49, 625 4, 176
1, 048, 576 106 24 19 - 9,728
2,097,152 214 49 41 - 21,489
4, 194, 304 430 110 97 - 54, 763

Table 1: Time on sorted input sequences (ms).

Input size ms ims-1 ims-2 qs r-qs
6, 5536 10 4 3 3 5
131, 072 19 9 8 7 9
262, 144 39 19 17 14 19
524,288 80 38 35 28 31
1, 048, 576 160 78 72 55 69
2,097,152 320 158 136 110 153
4, 194, 304 670 324 295 210 312

Table 2: Time on random input sequences (ms).

Among all the above 5 methods, ms is the traditional merge
sort described in Section 2. qs is the traditional quick sort, by
which a fix element (e.g., the last, the first or the middle element)
is chosen as the pivot for each sequence partition while r-qs is one
of its variants, by which the pivot for each sequence partition is
randomly selected. ims-1 and ims-2 are two of our improvements
discussed in Section 3.

The code of our two improvements are produced by ourselves
while all the other codes are downloaded from the Internet. They
are all written in C+ + and compiled by GNU g+ + compiler version
5.4.0 with compiler option ‘-O2’. All tests run on a Windows 10
machine with a single CPU i7-11800H. The system memory is of
32 GB.

51

Merge Sort Revisited

Citation: Yangjun Chen and Ruilin Su. “Merge Sort Revisited". Acta Scientific Computer Sciences 4.5 (2022): 49-52.

In table 1, we show the running time of all the algorithms on
sorted input sequences. From this, we can see that Quick sort is
much worse than all the other methods. Especially, it interrupts
due to stack overflows even f or an input whose size is not so large.
Its performance can be somehow improved by randomly choosing
pivots f or each sequence partition. But it is still orders of magnitude
worse than Merge sort. In the opposite, our non-recursive algorithm
essentially improves Merge sort and can achieve more than 5000-
f old improvements over Quick sort.

In table 2, we show the test results over randomly generated
inputs. For large inputs, they clearly show that Merge sort is almost
three time slower than Quick sort. But our algorithm is comparable
to Quick sort, and even a little bit better than its variant.

 Conclusion

In this paper, a method for sorting is discussed. It improves
Merge sort in two ways. First, it cuts down data movements
conducted in the merging processes of Merge sort. Second, it
replaces the recursion of Merge sort with “iteration”, by which
the recursive calls are changed to a series of improved merging
operations. Our experiments show that for the randomly generated
input sequences, the performance of our algorithm is comparable to
the quick sort. But f or the sorted or almost sorted input sequences,
or reversely sorted input sequences, our algorithm is nearly 5000
times better than Quick sort.

Bibliography

1. A Latif., et al. “Enhancing Quick Sort Algorithm using a Dynamic
Pivot Selection Technique”. Wulf enia 19.10 (2012): 543-552.

2. TH Cormen., et al. “Introduction to Algorithms”. Third edition
(2009).

3. CAR Hoare. “Quick sort”. The Computer Journal 5 (1962): 10-
15.

52

Merge Sort Revisited

Citation: Yangjun Chen and Ruilin Su. “Merge Sort Revisited". Acta Scientific Computer Sciences 4.5 (2022): 49-52.

https://www.researchgate.net/publication/235351491_Enhancing_QuickSort_Algorithm_using_a_Dynamic_Pivot_Selection_Technique
https://www.researchgate.net/publication/235351491_Enhancing_QuickSort_Algorithm_using_a_Dynamic_Pivot_Selection_Technique
https://academic.oup.com/comjnl/article/5/1/10/395338
https://academic.oup.com/comjnl/article/5/1/10/395338

	_GoBack

