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Abstract
Merge sort is a sorting technique based on the divide-and-conquer technique. With its worst-case time complexity being O(𝑛 

log 𝑛 ), it is one of the most respected algorithms. However, in practice, Quick sort is almost three times f aster than it although the
worst-case time complexity of  Quick  sort is bounded by O(𝑛 2),  much worse than O(𝑛 log 𝑛 ). In this paper, we discuss a new algorithm, 
which improves the merge sort in two ways: (i) cutting down data movements conducted in the merging processes; and (ii) replacing 
the recursive calls with a series of improved merging operations. Our experiments show that for the randomly generated input 
sequences,  the perf ormance of  our algorithm is comparable to the quick  sort. But f or the sorted or almost sorted input sequences,  or 
reversely sorted input sequences, our algorithm is nearly 5000 times  better than it.

CCS Concepts: Theory of  computation → Algorithm design and analysis. 

Keywords: Sequences; Merge Sorting; Quick  Sorting

Introduction

Merge sort (sometimes spelled mergesort) is an ef ficient 
sorting algorithm that uses a divide-and-conquer strategy to order 
elements in a sequence. Its worst-case time complexity is bounded 
by O(𝑛 log 𝑛 ), where 𝑛  is the number of  elements in the sequence.
This running time is better than Quick  sort’s,  O(𝑛 2). However,  in 
practice,  the quick  sort is normally f aster. One reason f or this is 
that Quick  sort is an in-place algorithm (by which only quite small 
extra space is used) and its average running time is bounded by 
O(𝑛 log 𝑛 ). But the most important reason f or this is due to the
huge amount of data movements carried out by Merge sort itself 
when merging subsequences.

In this paper, we address this issue and propose a method 
which is able to cut down the number of data movements of the 
merge sort by half. Another observation is that the conquer step of 
Merge sort can further be greatly improved by replacing recursive 
calls directly with a series of merging operations.

As our experiments demonstrate, the running time of our 
algorithm for randomly generated input sequences is comparable 
to Quick  sort. However,  f or the sorted or almost sorted input 
sequences, or reversely sorted input sequences, our algorithm can 
achieve more than 5000-f old improvements over Quick  sort.

Since the sorting is almost the most frequently performed 
operation in the sof tware engineering,  we think  that these 
improvements are highly significant.

The rest of this paper is organized as follows. In Section 2, we 
restate Merge sort as a discussion back ground. Then,  in Section 3,  
we discuss our algorithm. Next, we show the test results in Section 
4. Finally, a short conclusion is set forth in Section 5.

Decription of merge sorting

Merge sort is typically a divide-and-conquer strategy. Given a 
sequence with 𝑛 elements, the merge  sort involves the f ollowing
three steps:
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•	 𝐷𝑖𝑣𝑖𝑑𝑒 the sequence into two subsequence’s such that one is
with             elements, and the other is with 

•	 𝐶𝑜𝑛 𝑞𝑢𝑒 𝑟 each subsequence by sorting it. Unless the sequence
is suf ficiently small,  use recursion to do this.

•	 𝐶𝑜𝑚𝑏𝑖𝑛 𝑒 the solutions to the subsequence’s by merging
them into a single sorted sequence.

The following algorithm implements the above idea. For 
simplicity, the input of this algorithm is just an array A of numbers 
to be sorted.

In line 1 of  the above algorithm,  𝑚𝑒 𝑟 𝑔𝑒 𝑆𝑜𝑟 𝑡(), we first check 
whether |A| = 1. If it is the case, return A. Otherwise, the divide 
step simply computes an index 𝑞 (see line 2) that partitions 𝐴 into
two subarrays: 𝐴 [𝑝 .. 𝑞] containing            elements, and A[𝑞 + 1.. 𝑟 ] 
containing ⌊n/2⌋  elements.

By the first recursive call,  we will sort 𝐴 [𝑝 .. 𝑞] (see line 3). By the
second recursive call,  we will sort 𝐴 [𝑞 +  1 .. 𝑟 ] (see line 4). Then, we 
will call the merge procedure to create an entirely sorted array 𝐴 
(see line 5).

In the merge procedure 𝑚𝑒 𝑟 𝑔𝑒 (𝐴 , 𝑝 , 𝑞,  𝑟 ) shown below, line 1
computes the length 𝑛 1 and 𝑛 2 of  the subarrays 𝐴 [𝑝 .. 𝑞] and 𝐴 [𝑞
+  1.. 𝑟 ] , respectively; and initializes index variable 𝑘 to p, which is 
used to scan 𝐴 f rom lef t to right. The f or-loop of lines 3-4 copies the
subarray 𝐴 [𝑝 .. 𝑞] into 𝐿[1.. 𝑛 1]  while the f or-loop of  lines 5-6 copies 
the subarray 𝐴 [𝑞 +  1.. 𝑟 ] into 𝑅[1.. 𝑛 2] . In the while-loop of  lines 
7-12,  two index variables 𝑖, 𝑗 are used to scan 𝐿 and 𝑅,  respectively.
Depending on whether L[i]  ≤ R[j] ,  L[i]  or R[j]  will be sent to A[k] . 
When we go out of  the while-loop,  lines 13-16 will be executed,  by 
which the remaining elements in 𝐿 or in 𝑅 will be copied back into
𝐴 , depending on whether i > 𝑛 1 or 𝑗 > 𝑛 2.

Improvements

In this section, we discuss how to improve the algorithm 
described in the previous section. First, we discuss a method to 

reduce data movements conducted in merge(),  which enables us 
to decrease the running time by more than a half. Then, we change 
the recursive algorithm to a non-recursive procedure by which the 
performance can be further improved.

Deduction of data movements

We notice that in the procedure 𝑚𝑒 𝑟 𝑔𝑒 (), of Merge sort the
copying of  𝐴 [𝑞 +  1.. 𝑟 ] into 𝑅 is not necessary, since we can directly
merge 𝐿 and 𝐴 [𝑞 + 1.. 𝑟 ]  and store the merged, but sorted sequence
back  into 𝐴 .

Denote by 𝐴 ′ the sorted version of 𝐴 . Denote by 𝐴 ′ (𝑖, 𝑗 ) a prefix
of  𝐴 ′ which contains the first 𝑖 elements f rom 𝐿 and first 𝑗 elements
f rom 𝐴 [𝑞 +  1.. 𝑟 ] . Obviously, we can store 𝐴 ′ (𝑖, 𝑗 ) in 𝐴 itself  since 
af ter the 𝑗 th element has been inserted into 𝐴 ′ , the first 𝑞 - 𝑝 + 𝑗  +  
1 entries in 𝐴 are empty and 𝑞 - 𝑝  + 1 ≥ i (thus,  𝑞 - 𝑝 +  𝑗  + 1 ≥ i + j). 
In terms of this simple analysis, we give the following algorithm for 
merging two sorted subarrays: 𝐿 and 𝐴 [𝑞 + 1.. 𝑟 ]  (see Algorithm 3).

The dif f erence of  this algorithm f rom 𝑚𝑒 𝑟 𝑔𝑒 () (Algorithm 2, 
described in the previous section) mainly consists in:

•	 Array 𝑅 is not created.

•	 The copying of  the remaining part of  Array 𝑅 into 𝐴 is not
needed in the case that 𝑗 > 𝑛 2 since 𝑅 itself is replaced by 𝐴 [𝑞
+  1.. 𝑟 ] , and the remaining elements of 𝑅 are now already in
𝐴 .

These two differences enable us to save more than half of the 
running time of Merge sort.

In addition, less space is needed since R is not created at all.

Non-recursive algorithm

Merge Sort can be further improved by replacing its recursive 
calls with a series of merging operations, by which the recursive 

⌈n/2⌉ ⌊n/2⌋ 

⌈n/2⌉ 
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execution of  the algorithm is simulated. The whole work ing process 
can be divided into ⌈log2 (𝑟 - 𝑝 +  1)⌉ phases. In the first phase, we
will mak e ⌈𝑛 /2⌉ merging operations, where 𝑛 = 𝑟  - 𝑝 + 1, with each
merging two single-element sequences together. In the second 
phase,  we will mak e 𝑛 /4  merging operations with each merging
two two-element sequences together, and so on. Finally, we will 
mak e only one operation to merge two sorted subsequences to f orm 
a globally sorted sequence. Between the sorted subsequences,  one 
contains ⌈𝑛 /2⌉ elements while the other contains ⌊𝑛 /2⌋ elements.

More importantly,  by our method,  there is no system stack  
f rame overhead,  and theref ore no stack  overflow problem (caused 
by huge numbers of  recursive calls) as by the recursive merge sort 
and also by the recursive quick  sort. Thus,  given a certain size of  
main memory, much longer input sequences can be sorted by our 
method, as demonstrated by our experiments.

Experiments

In our experiments, we have tested altogether 5 different 
methods:

•	 Merge sort (ms for short, [2] ).

•	 Improved merge sort 1 (ims-1 for short, discussed in this 
paper), 

•	 Improved merge sort 2 (ims-2 for short, discussed in this 
paper), 

•	 Quick  sort (qs for short, [3] ),  and

•	 Random pivot quick  sort (r-qs for short, [1] ).

Input size ms ims-1 ims-2 qs r-qs
6, 5536 6 1 1 751 518
131, 072 13 2 2 3, 012 1,044
262, 144 28 6 4 12,789 2,088
524,288 54 11 9 49, 625 4, 176
1, 048, 576 106 24 19 - 9,728
2,097,152 214 49 41 - 21,489
4, 194, 304 430 110 97 - 54, 763

Table 1: Time on sorted input sequences (ms).

Input size ms ims-1 ims-2 qs r-qs
6, 5536 10 4 3 3 5
131, 072 19 9 8 7 9
262, 144 39 19 17 14 19
524,288 80 38 35 28 31
1, 048, 576 160 78 72 55 69
2,097,152 320 158 136 110 153
4, 194, 304 670 324 295 210 312

Table 2: Time on random input sequences (ms).

Among all the above 5 methods, ms is the traditional merge 
sort described in Section 2. qs is the traditional quick  sort,  by 
which a fix element (e.g.,  the last,  the first or the middle element) 
is chosen as the pivot for each sequence partition while r-qs is one 
of its variants, by which the pivot for each sequence partition is 
randomly selected.  ims-1 and ims-2 are two of our improvements 
discussed in Section 3.

The code of our two improvements are produced by ourselves 
while all the other codes are downloaded from the Internet. They 
are all written in C+ +  and compiled by GNU g+ +  compiler version 
5.4.0 with compiler option ‘-O2’. All tests run on a Windows 10 
machine with a single CPU i7-11800H. The system memory is of  
32 GB.
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In table 1, we show the running time of all the algorithms on 
sorted input sequences. From this,  we can see that Quick  sort is 
much worse than all the other methods. Especially, it interrupts 
due to stack  overflows even f or an input whose size is not so large. 
Its performance can be somehow improved by randomly choosing 
pivots f or each sequence partition. But it is still orders of  magnitude 
worse than Merge sort. In the opposite, our non-recursive algorithm 
essentially improves Merge sort and can achieve more than 5000-
f old improvements over Quick  sort.

In table 2, we show the test results over randomly generated 
inputs. For large inputs, they clearly show that Merge sort is almost 
three time slower than Quick  sort. But our algorithm is comparable 
to Quick  sort,  and even a little bit better than its variant.

 Conclusion

In this paper, a method for sorting is discussed. It improves 
Merge sort in two ways. First, it cuts down data movements 
conducted in the merging processes of Merge sort. Second, it 
replaces the recursion of Merge sort with “iteration”, by which 
the recursive calls are changed to a series of improved merging 
operations. Our experiments show that for the randomly generated 
input sequences, the performance of our algorithm is comparable to 
the quick  sort. But f or the sorted  or almost sorted input sequences,  
or reversely sorted input sequences, our algorithm is nearly 5000 
times better than Quick  sort.
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