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Abstract
In this paper, a Plug-In Hybrid Electric Vehicle’s conventional cruise control system was modelled and improved using Model 

Predictive Control (MPC).  Both a linear MPC and nonlinear MPC was modelled for comparison of the control of the cruise control’s 
system.
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Introduction

As Plug-in Hybrid Electric Vehicles (PHEVs) are becoming 
more common in auto manufacturers product line-ups, more ro-
bust control strategies will be needed for these complex vehicles.  
PHEVs also use cruise control as conventional automobiles do.  
PHEVs can either be equipped with conventional cruise or adap-
tive cruise control (ACC).  This paper focuses on the conventional 
cruise control system using Model Predictive Control (MPC).  The 
control strategy is to use a linear model predictive controller, then 
use the same model with the nonlinear model predictive control-
ler replacing the linear model predictive controller.  The Chrysler 
Pacific Hybrid will be used as a basis for this paper.

Overview of automotive cruise control systems  

Automatic cruise control is an excellent example of a feedback 
control system found in many modern vehicles. The purpose of the 
cruise control system is to maintain a constant vehicle speed de-
spite external disturbances, such as changes in wind or road grade. 
This is accomplished by measuring the vehicle speed, comparing it 
to the desired or reference speed, and automatically adjusting the 
throttle according to a control law [1].

Fiat Chrysler Automobiles also uses the term “Speed Control” 
for “Cruise Control”. When engaged, the Speed Control takes over 

accelerator operations at speeds greater than 25 mph (40 km/h). 
The Speed Control buttons are located on the right side of the steer-
ing wheel.  In order to ensure proper operation, the Speed Control 
System has been designed to shut down if multiple Speed Control 
functions are operated at the same time. If this occurs, the Speed 
Control System can be reactivated by pushing the Speed Control 
on/off button and resetting the desired vehicle set speed.  To ac-
tivate, push the on/off button to activate the Speed Control. The 
cruise indicator light in the instrument cluster display will illumi-
nate. To turn the system off, push the on/off button a second time. 
The cruise indicator light will turn off. The system should be turned 
off when not in use.  In order to set a desired speed, turn the Speed 
Control on.  The vehicle should be traveling at a steady speed and 
on level ground before pushing the SET (+) or SET (-) button.  When 
the vehicle has reached the desired speed, push the SET (+) or SET 
(-) button and release. Release the accelerator and the vehicle will 
operate at the selected speed.  In order to vary the speed setting 
to increase speed, one can increase speed by pushing the SET (+) 
button.  The speed increment shown is dependent on the chosen 
speed unit of U.S. (mph) or Metric (km/h).  For U.S. Speed (mph) 
units: pushing the SET (+) button once will result in a 1 mph in-
crease in set speed. Each subsequent tap of the button results in 
an increase of 1 mph. If the button is continually pushed, the set 
speed will continue to increase until the button is released, then 
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the new set speed will be established. In order to vary the speed 
setting to decrease speed, one can decrease speed by pushing the 
SET (-) button.

For U.S. Speed (mph) units: pushing the SET (-) button once will 
result in a 1 mph decrease in set speed. Each subsequent tap of the 
button results in a decrease of 1 mph.  If the button is continually 
pushed, the set speed will continue to decrease until the button is 
released, then the new set speed will be established.  In order to 
accelerate for passing, press the accelerator as you would normally. 
When the pedal is released, the vehicle will return to the set speed.  
In order to resumea previously set speed, push the RES button and 
release. Resume can be used at any speed above 20 mph (32 km/h).  
For the layout of the Speed Control Button configuration on the 
steering wheel, please refer to Figure 1 below [2]. 

Figure 1: 2018 Chrysler Pacifica Steering Wheel Speed Control 
Buttons [2].

Cruise control can be dangerous when you cannot drive safely 
at a steady speed. Also, do not use your cruise control on wind-
ing roads or in heavy traffic. Cruise control may also be dangerous 
on slippery roads. On such roads, fast changes in tire traction can 
cause excessive wheel slip, and you could lose control [3].

Introduction to model predictive control (MPC)

Model Predictive Control (MPC) originated in the late 1970’s. 
Model Predictive Control does not designate a specific control 

strategy but rather an ample range of control methods that make 
explicit use of a model of the process to obtain the control signal 
by minimizing an objective function.  The techniques that are em-
ployed by Model Predictive Control (MPC) are the explicit use of 
the model in order to predict the process output at future time 
instants or horizons, the control sequence calculation, objective 
function minimization, and the receding strategy [4].

One of the advantages of Model Predictive Control (MPC) is that 
it can be used to control a variety of processes from systems with 
simple dynamics to systems with complex dynamics.  Model Pre-
dictive Control is able to control systems with long delay times or 
non-minimum or unstable phases. Model Predictive Control is able 
to handle multivariable systems as it intrinsically has compensa-
tion for dead times [4].

One of the disadvantages of Model Predictive Control (MPC) is 
that although the resulting control law is easy is to implement and 
requires little computation, its derivation is more complex than that 
of the classical PID controllers. If the system under investigation is 
a dynamic process, then the controller derivation can be computed 
in advance. If the system under investigation is an adaptive control 
case, then the controller derivation cannot be computed in advance 
and must be computed at every sampling time. If constraints are 
taken into account, then the computation time would increase.  
One must choose the appropriate process model [4].

Model Predictive Control (MPC) has proven to be a reasonable 
strategy for industrial control applications.  The purpose of this pa-
per is to provide another application that Model Predictive Control 
(MPC) can be used in the automotive industry.

All Model Predictive Control (MPC) algorithms possess com-
mon elements, and different options can be chosen for each ele-
ment giving rise to different algorithms.  These elements are pre-
diction model, objective function, and obtaining the control law [4].

The continuous-time state-space representation of the Model 
Predictive Control algorithm is implemented as:

    (t + 1) = Ax(t) + Bu(t)--------- (1)

    (t) = Cx(t) + Du(t)------------ (2)

where,
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(t) = the state vector

(t) = the output vector

u(t) = the input or control vector

A = the state or system matrix (dimension ) 

B = the input matrix (dimension ) 

C = the output matrix (dimension ) 

D = the feedthrough or feedforward matrix (dimension ) 

The discrete-time state-space representation of the Model Pre-
dictive Control algorithm is implemented as [3]

    (k + 1) = Ax(k) + Bu(k)-------- (3)

    (k) = Cx(k) + Du(k)-------- (4)

where, 

(k) = the state vector

(k) = the output vector

u(k) = the input or control vector

A = the state or system matrix (dimension) 

B = the input matrix (dimension ) 

C = the output matrix (dimension ) 

D = the feedthrough or feedforward matrix (dimension ) 

Common variables for Model Predictive Control (MPC)

Ts = Sample Time  

P = Prediction Horizon

M = Control Horizon

In many cases, real processes are nonlinear, which means that 
that the system parameters depend on system states or/and time.  
Linearization is one possibility to map the system behavior into 
one invariant SS-system with the disadvantage of reduced model 
accuracy.  Nonlinear system behavior can be represented by local 
model networks, which use in principle, local linearizations, in or-
der to calculate the nonlinear system behavior [5].

Figure 2 shows the block diagram of the controller and plant of 
the system being observed.

If the slope of the highway incline is considered, the vehicle 
must be equipped with an accelerometer.  Highways are usually 
level and this may not need to be considered.  This model has one 
type of disturbance.  The disturbance that is included in the model 
is the road grade.  A section of highway can have varying concrete.  
The road may have a combination of new and old sections of con-
crete depending on road repairs.  In addition, road repair crews 
may just patch potholes or tar parts of the road instead of replacing 
a section.  If these sections are uneven or are not smoothed down 
to match the existing section, then there would be bumps present 
which may affect the cruise control system.

Linear model predictive control (LMPC)

In this section, the plant is controlled with a Linear Model Pre-
dictive Controller (LMPC).

Figure 3 shows the block diagram of the Linear Model Predic-
tive Control (LMPC) controller and plant of the system being ob-
served. Figure 4A shows the model of LMPC control block and the 
plant. Figure 4B shows the transfer function of LMPC control block 
and the plant. Figure 4C shows the input and the output plots of 
the system.

Figure 3: Block Diagram of the LMPC Controller and Plant.

Figure 2: Block Diagram of the MPC Controller and Plant.

Figure 4A: Second Order LMPC Model.

Figure 4B: Second Order LMPC Model.
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Nonlinear model predictive control (NLMPC)

In this section, the plant is controlled with a Nonlinear Model 
Predictive Controller.

Figure 5 shows the block diagram of the Nonlinear Model Pre-
dictive Control (NLMPC) controller and plant of the system being 

Figure 4C: Second Order LMPC Plot.

Figure 5: Block Diagram of the NLMPC Controller and Plant.
Figure 6B: Second Order NLMPC Transfer Function.

Figure 6C: Second Order NLMPC Plot.

Figure 6A: Second Order NLMPC Model.

observed. Figure 6A shows the model of NLMPC control block and 
the plant. Figure 6B shows the transfer function of NLMPC control 
block and the plant. Figure 6C shows the input and the output plots 
of the system.
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Figure 6D: Response of Initial Speed from Scope.

Figure 6E: Nonlinear MPC Response from Scope.

The idea of the NMPC scheme is as follows: at each sampling 
instant n we optimize the predicted future behavior of the system 
over a finite time horizon k = 0, N -1 of length N ≥ 2 and use the 
first element of the resulting optimal control sequence as a feed-
back control value for the next sampling interval. In this section 
we give a detailed mathematical description of this basic idea for 
a constant reference xref ≡ x∗ ∈ X.   A prerequisite for being able 
to find a feedback law which stabilizes the system at x∗ is that x∗ is 

an equilibrium of the nominal closed-loop system, i.e., x∗ = f (x∗,μ 
(x∗))—this follows immediately with g(x) = f (x,μ (x)). A necessary 
condition for this is that there exists a control value u∗ ∈ U with 
x∗ = f (x∗, u∗), which we will assume in the sequel. The cost func-
tion to be used in our optimization should penalize the distance 
of an arbitrary state x ∈ X to x∗. In addition, it is often desired to 
penalize the control u ∈ U. This can be useful for computational 
reasons, because optimal control problems may be easier to solve 
if the control variable is penalized.  On the other hand, penalizing u 
may also be desired for modeling purposes, e.g., because we want 
to avoid the use of control values u ∈ U corresponding to expensive 
high energy. For these reasons, we choose our cost function to be 
of the form l: X × U → . In any case, we require that if we are in 
the equilibrium x∗ and use the control value u∗ in order to stay in 
the equilibrium, then the cost should be 0. Outside the equilibrium, 
however, the cost should be positive, i.e., l(x∗, u∗) = 0 and l(x, u) > 0 
for all x ∈ X, u ∈ U with x l= x∗ [6].

Piecewise linear (PL) systems or more precisely, piecewise af-
fine systems are an attractive class of nonlinear systems that have 
been used to represent a range of system nonlinearities in many 
applications such as saturation, relays and dead zones. By approxi-
mating a nonlinear system as a family of piecewise affine systems, 
the analysis of the nonlinear system is transformed into an analysis 
of several linear systems [7].

Over the last decade, a solid theoretical foundation for MPC 
has emerged so that for real-life large scale MIMO applications 
controllers with non-conservative stability guarantees can be de-
signed routinely and with ease. The big drawback of MPC is the 
relatively formidable on-line computational effort which limits its 
applicability to relatively slow and/or small problems. Rather than 
solving the optimization problem online, recently, Bemporad., et al. 
proposed an approach where all computation is moved offline, for 
linear systems with a quadratic performance index, linear systems 
with a linear performance index, and hybrid systems with a linear 
performance index. The idea stems from observing that the linear 
part of the objective and the right-hand side of the constraints in 
the optimization problem depend linearly on the state vector x(t), 
which is treated as a vector of parameters. Then the optimization 
problem can be recast as a multiple parametric program and can be 
solved off-line by using the appropriate solver. The off-line solution 
is shown to be a piecewise linear function of the state and therefore 
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the on-line computation reduces to a simple function evaluation. A 
fundamental question about MPC is its robustness with respect to 
model uncertainty and noise. When we say that a control system 
is robust we mean that stability is achieved and the performance 
specifications are met for a specified range of model variations and 
a class of noise signals (uncertainty range) [8].

Results

The following figures show the second-order cruise control 
system without any type of control. Figure 7A shows the second-
order plant model without the control. Figure 7B shows the sec-
ond-order plant model plant’s block diagram components. Figure 
7C shows the output plot of the second-order plant model without 
the control.

Figure 7A: Second-Order Plant Model without Control Block 
Diagram.

Figure 7B: Second-Order Plant Model Inside Plant.

Figure 7C: Second-Order Plant Model without Control Plot.

In order to have a good representation of the Cruise Control us-
ing Linear Model Predictive Control, a simulation was use to repre-
sent the plant and the LMPC. Input response was used (Speed) and 
the output response of the model was represented using the scope, 
we can see the behavior on the system showing in the plot. It was 
modeled using 10 seconds.

As we know, the Nonlinear Model Predictive Control does not 
start from an initial speed of zero.  We needed to create a constant 
speed every cycle to add it to the reference speed.  The constant 
speed we chose was 40 MPH.  The reference speed we set as 70 
MPH. Tuning was needed for the NLMPC to observe a good re-
sponse in addition to a zero steady-state error.

In order to tune the NLMPC, we needed to modify the param-
eters for the sample time, prediction horizon, and control horizon.  
The value for the sample time was set to 0.07 seconds.  The value 
for the prediction horizon was set to 130.  The value for the control 
horizon was set to 1.

Overall, we observed that the Linear Model Predictive Control 
and Nonlinear Model Predictive improved the conventional cruise 
control system of the PHEV compared to the baseline cruise con-
trol system’s plant without control. LMPC provided a baseline of 
our MPC control for the cruise system, before implementing the 
NLMPC. Overall, speeds greater than 70 MPH is not recommended 
for conventional cruise controls systems using either the Linear 
Model Predictive Control (LMPC) or Nonlinear Model Predictive 
Control (NLMPC) stated in this paper. As speeds increases, so does 
the potential computation time the control system needs to com-
pensate for road conditions and predictions. Thus, speeds greater 
than 70 MPH would be more suited to Adaptive Cruise Control 
(ACC) systems, which may be explored in future research based on 
some parameters of the Chrysler Pacifica Hybrid minivan. 

Currently there about three types of cruise control systems. The 
three types of cruise controls systems are speed limiter, Adaptive 
Cruise Control (ACC), and semi-autonomous cruise control. A speed 
limiter system will limit how fast the driver can accelerate based on 
the vehicle’s speed limiter which in turn is capped by the vehicle’s 
manufacturer as a specified set point value. Adaptive Cruise Con-
trol (ACC) uses sensors such as cameras and radar-based (radio 
detection and ranging) systems and LiDAR-based (light detection 
and ranging) systems. This can also be used in conjunction with 
sensor fusion and possible Kalman filtering techniques. Semi-
autonomous Cruise Control can be considered as Adaptive Cruise 
Control (ACC) in addition to driver assistance features, such as side 
blind zone monitoring, lane guidance, steering guidance, and an 
automated braking systems [9].

The Model Predictive Control (MPC) system that was discussed 
in this paper can be used as a cost-efficient method before entering 
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the domains of Adaptive Cruise Control (ACC) and Semi-autono-
mous Cruise Control systems.

These advancements will be crucial for the higher levels of 
semi-autonomous and fully autonomous of electric vehicles as de-
fined by SAE International’s “SAE J3016 Recommended Practice: 
Taxonomy and Definitions for Terms Related to Driving Automa-
tion Systems for On-Road Motor Vehicles” specification. This speci-
fication is generally referenced as the SAE Levels of Driving Auto-
mation. Per SAE, “SAE J3016 defines the SAE Levels from Level 0 
(no driving automation) to Level 5 (full driving automation) in the 
context of motor vehicles and their operation on roadways.” [10].

The SAE levels of autonomous vehicles are summarizes in Table 
1 as shown below [10,11].

SAE Levels of Autonomous Vehicles
Level 0 No Automation
Level 1 Driver Assistance
Level 2 Partial Automation
Level 3 Conditional Automation
Level 4 High Automation
Level 5 Full Automation

Table 1: SAE Levels of Autonomous Vehicles.

Ultimately, the automotive industries’ goals to have fully electric 
vehicles with self-driving capabilities and therefore removing the 
need for a steering wheel and therefore input from the driver from 
the vehicle.

Conclusion

In conclusion, Model Predictive Control (MPC) is an effective 
control method in implementing to control a PHEV’s conventional 
cruise control system.  Overall MPC contributes to improved con-
trol in either linear or nonlinear forms versus no controller.  MPC is 
another type of controller that can be implemented in automotive 
applications in addition to the Proportional–Integral–Derivative 
(PID) controllers that are currently used in industry in automotive 
calibration. Besides switching from a conventional cruise control 
system to an adaptive cruise control (ACC) system, other factors 
such as aftermarket shocks, suspension/chassis components which 
in turn could lower rider height to achieve a lower center of gravity, 
performance tires, and potential weight reduction i.e., the removal 

of the spare tire and additional passenger seating row may help 
to provide better performance results. As lithium-ion batteries be-
come more cost efficient to produce and also optimize the high-
voltage (HV) battery pack’s weight and cell configuration, could led 
to potential weight reductions, which in turn can lower not only the 
HV battery pack’s weight, but also the total vehicle weight.

Future Work

As plug-in hybrid electric vehicles (PHEVs), battery electric ve-
hicles (BEVs), and mild hybrids become more complex, then more 
advanced control techniques will be needed.  Future improvements 
to this simulation would be to use real-world data and also to ex-
pand the concept of linear Model Predictive Control (LMPC) and 
nonlinear Model Predictive Control (NLMPC) described in this pa-
per to Adaptive Cruise Control (ACC). A Model Predictive Estima-
tor is also being considered for both Conventional Cruise Control 
and Adaptive Cruise Control (ACC). Another expansion would be to 
consider Artificial Neural Networks (ANNs) and Machine Learning 
(ML) techniques can also be applied in addition to Model Predictive 
Control in order to further enhance an MPC-based conventional 
cruise control system as shown in [12]. This source is for commer-
cial vehicles but can be adaptive for passenger vehicles. 
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