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Abstract

Many genome-scale models of metabolism [GSMs] have been constructed to study the effects of changing native gene expression 
on its metabolism. Kinetic models of metabolism [KMs] can be a useful tool to study the effects of transgenes and regulations on the 
time-course metabolic profile of the host. However, the availability of KMs is substantially lesser with smaller scope than GSMs. A 
possibility is to generate KMs from GSMs but such tool is not available. Here, we present a converter to convert substrate-product 
pairs in GSM rate laws to enzyme kinetic equations in KM using default enzyme kinetics. Our testing results suggests that simulatable 
KMs can be successfully generated from GSMs to generate time-course metabolic profiles.
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Introduction

Mathematical modelling and simulation is an important tool 
to understand the behaviour of biological systems for metabolic 
engineering [1], systems biology [2,3], and synthetic biology [4-
7]. Genome-scale models [GSMs, also known as constraint-based 
models] and kinetic models [KMs] are the two main modelling 
approaches [8,9]. GSMs are steady-state stoichiometric models 
which lacks enzymatic regulation [10] and difficult to add genes 
[transgenes] into the system as its original purpose is to evalu-
ate changes in native gene expression on its metabolism [11,12]. 
However, there are many GSMs. On the other hand, kinetic models 
[KMs] can have regulation and is much easier to add transgenes. 
Since, the first GSM was for Haemophilus influenzae RD [13], GSMs 
have been reconstructed for 6239 organisms [5897 bacteria, 127 
archaea, and 215 eukaryotes] with numerous applications by Feb-
ruary 2019 [11]. However, the number of KMs available is much 
smaller and simpler than GSMs [9]. Hence, the metabolic engineer-
ing industry is calling for whole cell KMs of metabolism [10,14]. 

One of the ways to implement draft KMs is by converting the 
substrate and products of each rate law [15] in GSMs to enzyme 
kinetic equations in KMs but such tool is not available. In this study, 
we present a tool to convert reactions in GSMs to KM using default 
enzyme kinetics and incorporated this tool into AdvanceSyn Tool-
kit [8]. Tested on GSM models; e_coli_core [16], iAF1260 [17] and 
Recon3D [18]; we achieved the conversion of simulatable GSMs to 
simulatable KMs. 

Implementation

Cameo [19] is utilised via AdvanceSyn Toolkit [8] to read and 
extract individual reaction string of the target GSM into Python 
pandas dataframe [20], where the reaction string is processed into 
reactants, products and enzyme, before converting into an Advanc-
eSyn Model [ASM] specification is based on Antimony language 
[21], which is both modular and compatible with AdvanceSyn 
Toolkit [8]. The set of reactants and products form the metabolite 
list, which is converted into the objects section of ASM specifica-
tion. The initials section of ASM specification consists of the initial 
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concentrations of metabolites, which were defaulted to 10 uM. The 
variables section of the ASM specification defines the concentra-
tions, kcat [turnover number] and Km [Michaelis-Menten constant] 
of the enzymes, which were defaulted to 1 uM, 13.7 per second and 
130 uM respectively. The default kcat and Km values were median 
values from a survey of more than 1000 enzymes by Bar-Even., et 
al. [22]. All four default values [concentrations of metabolites and 
enzymes, and kcat and Km of enzymes] could be changed by the user 
during model conversion. The reaction section of the ASM specifi-
cation consists of a list of reaction steps where each reaction step is 
then represented by Michaelis-Menten type rate law [23] extended 

for multiple substrates in the form of . Mi-

chaelis-Menten type rate law [23] had been used for many kinetic 
models of biochemical reactions [24-28], which had been shown 
to be a suitable approximation for biochemical system modelling 
[15,29,30] and was used for all reactions in a whole-cell kinetic 
model of Saccharomyces cerevisiae [31]; hence, considered to be a 
suitable default choice for biochemical rate laws [32]. This enables 
subsequent generation simulatable ordinary differential equations 
where the concentration of each metabolite over time is modelled 

as and each produc-

tion and usage term represent a reaction step.

Testing the converter

Three GSM models; e_coli_core [16], iAF1260 [17], and Recon3D 
[18]; were used to test the implemented converter. Model e_coli_
core [16], is a subset of iAF1260 [17], which containing only the 
central metabolism of E. coli [16], is often used for tool testing [33-
35] as it is the smallest GSM model in BiGG database [36] in terms 
of number of metabolites, reactions, or genes. Hence, e_coli_core 
can be used to test the functionality of the implemented convert-
er. On the other hand, iAF1260 [17] consisting 1668 metabolites, 
2382 reactions, and 1261 genes and Recon3D [18], the largest GSM 
in BiGG database [36] in terms of number of metabolites, reactions 
and genes [5835 metabolites, 10600 reactions, 2248 genes], are 
substantially larger models and can be used to test the scalability 
of our implemented GSM to KM converter.

Tested on e_coli_core [16], our results suggest that a GSM model 
can be successfully converted into kinetic model [Figure 1], which 
is simulatable using AdvanceSyn Toolkit [8] as 67 of the 72 me-
tabolites [93%] illustrated concentrations different from the initial 
concentration of 10 uM after 6 hours simulation time [Figure 2]. 
This suggests that the required functionality of our implemented 
GSM to KM converter is met. Our results also show that iAF1260 
[17] can be converted and simulated to produce time-course me-
tabolite concentrations [Figure 3], suggesting that our GSM to KM 
converter can be used to convert larger GSM models.

Figure 1: Reaction network for e_coli_core [16] model. Each reaction is modelled in Cytoscape [41] as a multi-step reaction where all 
reactants are aggregated into a reaction substrate complex (rNs) before metabolizing into a reaction product complex (rNp), which 

is used to form the products. The “N” in rNs and rNp refers to reaction number. Metabolite X (labelled yellow) represents the product 
of pseudo-reactions [42] in GSMs (for example, reactions with substrate but without product), such as fumarate exchange (EX_fum_e) 

which is coded as “fum_e ⇌”.
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Figure 2: Concentrations of metabolites simulated from kinetic model converted from e_coli_core [16] model at 6 hours. Red bars repre-
sent metabolites with concentration higher than initial concentration of 10 uM while green bars represent metabolites with concentra-

tion lower than initial concentration of 10 uM. Yellow bars represent metabolites with no change in concentration after 6 hours.

Figure 3: Sample of time-course metabolite concentrations simulated from kinetic models converted from iAF1260 [17] and Recon3D 
[18] models over 6 hours. Panels A and B shows a sample of metabolic profiles from simulating the kinetic models converted from 

iAF1260 and Recon3D, respectively.
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Overall, our testing results suggests that our GSM to KM con-
verter can automatically convert GSMs to KMs. This is similar to 
that of AutoKEGGRec [37], which generates draft GSM models from 
KEGG pathway maps [38,39], and CarveMe [40], which generates 
draft GSM models from annotated genomes. Thus, completing the 
toolchain from pathway maps or annotated genomes to KMs via 
GSMs.

Conclusion

We present a tool to convert reactions in GSMs to KMs by con-
verting the substrate and products of each rate law [15] in GSMs 
to enzyme kinetic equations in KMs using default enzyme kinetics 
and incorporated this tool into AdvanceSyn Toolkit [8], and tested 
the conversion of simulatable GSMs to simulatable KMs.

Supplementary Materials

Data files for this study can be downloaded from http://bit.ly/
GSM_to_KM.
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The conversion tool presented in this manuscript is incorporat-
ed and can be found in AdvanceSyn Toolkit [https://github.com/
mauriceling/advancesyntoolkit].
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