
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 1 January 2022

How to Implement an Algorithm in Hardware

Rustem Popa*

Department of Electronics and Telecommunications, “Dunarea de Jos” University in
Galati, Romania

*Corresponding Author: Rustem Popa, Department of Electronics and
Telecommunications, “Dunarea de Jos” University in Galati, Romania.

Research Article

Received: November 23, 2021

Published: December 23, 2021
© All rights are reserved by Rustem Popa.

Abstract

After a brief review of the possibilities of implementing an algorithm, we analyze the implementation of an algorithm for coloring
a monochrome image in an FPGA (Field Programmable Gate Array) circuit. Each pixel in shades of gray in the monochrome image
receives one of 16 possible colors, according to its position in the color image. Although the approximation is crude, given that the
original image has more than 16 million distinct colors, a comparison between the two images indicates a PSNR (Peak Signal to Noise
Ratio) value of almost 25 dB, and the appearance of the color image is acceptable. The algorithm was implemented in the MATLAB
environment and then in the FPGA using the integrated Xilinx ISE design environment. The color images generated in this way were
identical, but the execution speed in FPGA was 185 times faster.

Keywords: Image Processing; Image Coloring; Circuit Simulation; Field Programmable Gate Arrays (FPGAs); MATLAB Environment

Introduction

When developing or testing an algorithm we usually write a
program in an appropriate programming language and then test it
on a general purpose computer. Execution time is usually not criti-
cal, but it can be substantially reduced by using parallel program-
ming techniques. So the algorithm is implemented in the software
and is executed on a general hardware structure, such as a PC. If
the complexity of the algorithm is not very high, then we can use
a classic microcontroller structure, and the program instructions
are stored in an internal ROM memory of the microcontroller. An-
other option is to implement the algorithm in a hardware struc-
ture adapted to run the algorithm as efficiently as possible. There
are many algorithms, based for example on artificial intelligence,
which are implemented directly in ASIC (Application Specific In-
tegrated Circuit) integrated circuits (neural networks, fuzzy logic,
etc.).

However, to test a prototype, before manufacturing it in large
series on an ASIC, an FPGA circuit is usually used. In this case, the
algorithm is implemented with maximum efficiency, by building a
parallel hardware structure using the internal resources available
in the FPGA. In this paper our goal is to implement in FPGA a simple
algorithm for coloring a monochrome image and then to verify the
operation of the algorithm by comparison with its implementa-
tion in MATLAB. There are numerous examples in the literature
of highly complex algorithms implemented in FPGAs, such as an
evolutionary image filtering algorithm presented in [1] or the PSO
(Particle Swarm Optimization) algorithm presented in [2].

Implementation of the algorithm in MATLAB

We chose to process a well-known image with a resolution of
256 x 256 pixels, each pixel being represented on 8 bits. The “Lena”
color image we used was downloaded from the Internet, being
used in the paper [3], and the equivalent monochrome image was

Citation: Rustem Popa. “How to Implement an Algorithm in Hardware". Acta Scientific Computer Sciences 4.1 (2022): 41-45.

used in [4] and downloaded from that location. In this example we
used a nonlinear mapping, in which 16 distinct color steps are gen-
erated, based on the Table 1. For each monochrome pixel, which
has a value between 0 and 255, we assigned another 3 values, each
of 8 bits, for each color pixel in the matrices R, G and B, and then we
concatenated the results, obtaining the color image [5].

The result of coloring the monochrome image using 16 color steps
can be seen in figure 3.

 Figure 1: Color image of “Lena” [3].

 Figure 2: Monochrome image of “Lena” [4].

For example, the value of the first pixel in the monochrome im-
age is 42, then we assign to the corresponding pixels in the 3 ma-
trices R, G, and B the values 102, 31, and 73 respectively and so on.

 Figure 3: Colored image in MATLAB.

Implementation of the algorithm in FPGA

We used a project structure similar to the one used in [6,7].
Schematics diagram of the project is represented in figure 4. The

Gray level Values in matrices R, G, B
R G B

0 - 15 107 49 97
16 - 31 77 11 57
32 - 47 102 31 73
48 - 63 104 22 70
64 - 79 123 72 128
80 - 95 110 44 90

96 - 111 152 83 102
112 - 127 203 80 85
128 - 143 220 107 99
144 - 159 242 132 115
160 - 175 235 137 138
176 - 191 221 178 169
192 - 207 239 183 170
208 - 223 235 211 183
224 - 239 255 224 181
240 - 255 255 255 200

Table 1: Conversion Table.

42

How to Implement an Algorithm in Hardware

Citation: Rustem Popa. “How to Implement an Algorithm in Hardware". Acta Scientific Computer Sciences 4.1 (2022): 41-45.

pixel values of the monochrome image are read from a file and
stored in the memory block entitled “memory”. As shown in [8],
the file containing the image information must be in HEX format.
The transformation from JPG format to HEX format was done in
MATLAB. The image has 256 x 256 pixels, which is a total number
of 65536 pixels, each of them represented on 8 bits. We choose a
memory with 16 address lines (numbered from 15 to 0 in figure 4)
and 8 bits of output data (numbered from 7 to 0). A “counter” block
generates the addresses applied to the memory and each pixel in
image is read and processed during a clock period. So, for all 65536
pixels in the image we need the same number of clock periods. The
coloring algorithm as was described above is implemented in the
“color” block.

We simulate the operation of the circuit using a Verilog file for
testing, which generates 3 files that contain the 3 color matrices.
These output files may be in any convenient format: binary, deci-
mal or hexadecimal. We preferred the binary format, because the
information in these files is in text format, that is, for each bit of 1
or 0 we have the ASCII code of that character. A simple program can
convert this information into 8 bits samples. In figure 5 we repre-
sented the colored image generated in FPGA, an image absolutely
identical to the one generated in MATLAB (PSNR is infinite).

Results and Discussion

If we compare the two images in figures 1 and 5 we find that
there are differences. The initial image can have over 16 million
colors (256 x 256 x 256), resulting from all possible combinations
of values for matrices R, G, and B. We used only 16 colors to assign,
according to table 1, one color for each group of gray pixels with
similar values. There are also pixels that have erroneous colors, we
notice that some brown pixels in the original figure appear in pur-
ple on the colored image. If we compare the two images, a PSNR of
24.15 dB is obtained. For more color levels, then the errors would
have been smaller. The waveforms in the figure 6 represent the re-
sult of the simulation for the first pixels in the image. The value of
the first pixel is 00101010 in base 2, that is 2A in hexadecimal or
42 in decimal. The values of the three RGB outputs are: output_r
= 01100110, that is 102 in decimal, output_g = 00011111, that is
31 in decimal, and output_b = 01001001, that is 73 in decimal. So,
we got exactly the values written in the “color.v” file for pixels with
values between 32 and 47, as we can see in table 1.

The hardware resources required to implement the project are
listed in the HDL Synthesis Report. We need a 16-bit up counter,
three 8-bit registers, 28 comparators, and a memory of 65536 x
8 bits, that is 512 kb. As an example, we can use the XC3S1600E
circuit, which contains about 1600k equivalent logic gates and a
RAM memory of 648 kb.

 Figure 4: Schematics diagram of the project.

 Figure 5: Colored image in FPGA.

43

How to Implement an Algorithm in Hardware

Citation: Rustem Popa. “How to Implement an Algorithm in Hardware". Acta Scientific Computer Sciences 4.1 (2022): 41-45.

We used the ISE Design Suite 14.1 from Xilinx and the MATLAB
R2014a environment on a computer with an Intel i3-6006U pro-
cessor at 2 GHz. If we consider a modest clock of about 100 MHz

for FPGA, the total coloring time of the image is 655 μs (i.e. 65536
pixels x 10 ns/pixel). The execution time in MATLAB for the same
algorithm is 121.19 ms. So, the execution of this algorithm is 185
times faster in hardware than in software.

 Figure 6: R, G, and B outputs for the first four pixels of the image.

Conclusion

In this paper we have considered a very simple algorithm that
has been implemented in an FPGA. Following the same steps, more
complicated algorithms can be implemented, provided that the ex-
isting hardware resources in the FPGA are sufficient. In our exam-
ple, the existence of a large enough memory is essential for image
storage, many smaller FPGA circuits do not have sufficient memory
resources. The advantages of implementing algorithms in FPGA cir-
cuits are due to the optimization of available hardware resources
and obtaining speeds tens of times higher than equivalent software
implementations. If the algorithm is simple enough, then it can be
implemented directly in an HDL language, such as the Verilog lan-
guage, as we did in this experiment. All three component blocks of
the project were generated using Verilog code, and then the graphic
symbols were generated and they were interconnected as shown
in the schematics diagram in figure 4. For more complicated algo-
rithms there is also the option of automatic generation of HDL code
(Hardware Description Language) using HDL Coder from MATLAB.
FPGA circuits provide very good support for future implementa-
tions of highly complex algorithms in hardware.

Conflict of Interest

The author does not have conflicts of interests.

1. R Dobai and L Sekanina. “Image Filter Evolution on the Xilinx
Zynq Platform”. 2013 NASA/ESA Conference on Adaptive Har-
dware and Systems (AHS-2013), IEEE Xplore (2013).

2. Y Maeda and N Matsushita. “Simultaneous Perturbation Par-
ticle Swarm Optimization and Its FPGA Implementation”. in:
A. Lazinica (ed.) Particle Swarm Optimization, In Tech, Croatia
(2009): 347-362.

3. G Grammatikopoulos., et al. “Simple Matlab Tool for Automa-
ted Malignant Melanoma Diagnosis”. WSEAS Transactions on
Information Science and Applications, March (2007).

4. T Chen., et al. “Combined Digital Signature and Digital Wa-
termark Scheme for Image Authentication”. Info-tech and In-
fo-net, 2001. Proceedings. Beijing 5 (2001).

5. R C Gonzalez., et al. “Digital Image Processing using MATLAB”.
2nd ed., Gatesmark Publishing, ch. 7 (2009): 318-376.

6. R Popa. “ECG Signal Filtering in FPGA”. The 6th International
Symposium on Electrical and Electronics Engineering, ISEEE
2019, Galaţi, Romania, 18-20 October 2019, (2019).

Bibliography

44

How to Implement an Algorithm in Hardware

Citation: Rustem Popa. “How to Implement an Algorithm in Hardware". Acta Scientific Computer Sciences 4.1 (2022): 41-45.

https://ieeexplore.ieee.org/document/6604241
https://ieeexplore.ieee.org/document/6604241
https://ieeexplore.ieee.org/document/6604241
https://www.researchgate.net/publication/259296904
https://www.researchgate.net/publication/259296904
https://www.researchgate.net/publication/259296904
https://www.researchgate.net/publication/3935609
https://www.researchgate.net/publication/3935609
https://www.researchgate.net/publication/3935609
https://ieeexplore.ieee.org/document/9136119/
https://ieeexplore.ieee.org/document/9136119/
https://ieeexplore.ieee.org/document/9136119/

7. M S Pavel and R Popa. “An Algorithm for Pseudocoloring Im-
ages in FPGA”. The 7th International Symposium on Electrical
and Electronics Engineering, ISEEE 2021, Galaţi, Romania, 28-
30 October 2021, pp. 8 in Abstract Volume (paper 26) (2021).

8. Van Loi Le. “FPGA4Student”. Site with Verilog/VHDL Projects,
(2016).

• Prompt Acknowledgement after receiving the article
• Thorough Double blinded peer review
• Rapid Publication
• Issue of Publication Certificate
• High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

45

How to Implement an Algorithm in Hardware

Citation: Rustem Popa. “How to Implement an Algorithm in Hardware". Acta Scientific Computer Sciences 4.1 (2022): 41-45.

https://www.fpga4student.com/2016/11/image-processing-on-fpga-verilog.html
https://www.fpga4student.com/2016/11/image-processing-on-fpga-verilog.html

	_GoBack

