
Acta Scientific COMPUTER SCIENCES

 Volume 4 Issue 1 January 2022

Query Optimization for Big Data Batch Processing and Stream Processing

Radhya Sahal*

CONFIRM Centre for Smart Manufacturing, University College Cork, Ireland

*Corresponding Author: Radhya Sahal, CONFIRM Centre for Smart Manufacturing,
School of Computer Science and IT, University College Cork, Ireland.

Research Article

Received: November 11, 2021

Published: December 13, 2021
© All rights are reserved by Radhya Sahal.

Abstract

Big data refers to huge and complex data sets made up of a variety of structured and unstructured data that are too big, too fast
and too hard to be managed by traditional techniques. Big data exceeds the processing capacity of conventional database systems.
Recently, new technologies have been invented to analyze and query this massive data. In this work, we have introduced two types of
big data query optimization including batch processing and streaming processing.

Keywords: Query; Optimization; DBMS; Batch Data Processing; MapReduce; Stream Data Processing

Introduction

Nowadays, IT has been concentrated in all enterprises and
companies, where the users deal with many computing applica-
tions. These applications allocate a large amount of data (e.g. facts,
statistics, numbers, text and images) and information (that data
has been processed and become meaningful for proper use). A
collection of these data and information is called a database [1].
The database is controlled and managed by Database Manage-
ment System (DBMS), such as Oracle, DB2, MS Access, MySQL, and
PostgreSQL. It allows the users to store, update, organize, protect
and retrieve their databases using a powerful query language [2].
A query language is a specialized language for retrieving informa-
tion from a database [3]. It is written in a predefined form, such as
SQL language. SQL stands for Structured Query Language, which
is used for accessing and modifying the database. The query lan-
guage contains three sequential phases to execute a given query,
depicted in figure 1 [2,4].

The query phases are listed as follows [5]:

•	 Parsing (translation) translates the query into internal form
and checks the syntax of relations in database.

•	 Optimization finds the best plan to execute the query. An
execution plan is a set of sequence operations to implement a
query with the lowest estimated cost. The query optimization
phase chooses the execution plan based on statistics of
database and resources (e.g. path, CPU, memory, and storage)
[6].

•	 Evaluation executes the execution plan and returns the query
answer.

Figure 1: Query Processing.

Citation: Radhya Sahal. “Query Optimization for Big Data Batch Processing and Stream Processing". Acta Scientific Computer Sciences 4.1 (2022): 04-07.

http://www.webopedia.com/TERM/L/language.html

One of Relational Database Management Systems (RDBMS) is
query optimization [7]. It is a tool, which decides for the best plan
to execute queries. A query optimizer determines the set of possi-
ble execution plans and chooses the best one according to the cost,
time, and resource consumption [8,9].

The architecture of the query optimizer is depicted in figure 2.
The planner is the main component of a query optimizer. It gener-
ates multiple query plans and chooses the best one for answering
a query. Moreover, the planner looks up statistics tables (tables
that hold the statistics and information of database tables such as
catalogues) and uses search strategies that compare the execution
plans based on their estimated costs to choose the cheapest plan
[5,7]. This thesis focuses on the cost model in the query optimizer
planner, which is used to profile the resource intensive of database
workload. The resource intensive (e.g., CPU-intensive, Memory-
intensive, and I/O-intensive) means how the performance of the
workload affected by allocating/de-allocating more resources [6].

Figure 2: Query optimizer architecture: two stages (Rewriting and Planning).

Big data has been spread rapidly in many domains, such as in-
formation systems. On the other hand, distributed computing is
growing every day with the increasing of workstations power and
the size of the dataset. Therefore, the development and implemen-
tation of the distributed system for Big Data applications are con-
sidered a challenge [10,11]. Two types of big data query processing
are batch processing and streaming processing (see Figure 3). The
details of query optimization for batch and streaming data process-
ing are elaborated following.

Query optimization for batch data processing

The structure formatting and key-value data store will be con-
cerned where the queries are transformed into data stages, includ-
ing a set of jobs run on batch processing. Batch processing happens
between blocks of data that have already been stored over some
time. Hadoop MapReduce is the best framework for processing
data in batches.

Figure 3: Query batch data processing vs. query stream data processing1.

05

Query Optimization for Big Data Batch Processing and Stream Processing

Citation: Radhya Sahal. “Query Optimization for Big Data Batch Processing and Stream Processing". Acta Scientific Computer Sciences 4.1 (2022): 04-07.

1https://k21academy.com/microsoft-azure/data-engineer/batch-processing-vs-stream-processing/

https://k21academy.com/microsoft-azure/data-engineer/batch-processing-vs-stream-processing/

Besides efficiency, Hadoop MapReduce provides two simple,
user-friendly interfaces; Map and Reduce function. Furthermore,
Hadoop MapReduce supports query processing by integrating
high-level declarative languages such as Hive and Pig to simplify
data applications’ programming [12-14]. These MapReduce-based
query languages hide implementation details (e.g., access methods,
query plan optimization) and offer developers and Big Data ana-
lysts an SQL-like interface. Regarding this thesis, Hive language is
used where the HiveQL queries are translated into MapReduce jobs.
From the inside, each MapReduce job is flushed back to Hadoop
Distributed File System (HDFS) as a backup for fault tolerance. The
next MapReduce job reads the intermediate results of the previous
job to continue processing. The HDFS I/O cost is significantly high-
er than local storage, which includes a network cost. So, exploiting
the shared jobs within multiple queries can reduce HDFS I/O cost
of intermediate results. Consequently, the shuffling cost of inter-
mediate results can be cheaper than generating too large a size of
intermediate results when no sharing data is exploited [15-20].

Query optimization for stream data processing

Industries realize a competitive advantage in being able
to act on high volume and high-velocity streams of data.
Stream processing allows the data analysis systems to
process data in real-time as they arrive and quickly detect
conditions within a small period from receiving the data.
Different query streaming open-source engines have been
developed to leverage windowing operations by repeatedly
iterating over a series of micro-batches, in much the same
way as static queries operate over stored data. Examples of
the open-source streaming-based engines that use the win-
dowing concept are Spark SQL2, Flink Table API3, StromSQL4,
SamzaSQL5, and KSQL6.

Typically, a window join query consumes infinite input data
streams and produces output data streams (i.e., joined tuples) as
long as the input streams continue streaming in [21]. Traditional
cardinality based cost models for join optimization cannot produce
joined results due to their mechanisms to estimate the required

time to join query based on computations over the static dataset
and query completion. However, stream queries have to handle un-
known and potentially infinite data with no guarantee on when the
query will eventually terminate. Different optimization techniques
for stream query optimization are available; however, the work
on optimizing the stream query based on window size has limited
solutions. IoT devices and applications offer dynamic and loosely
controlled networks with almost complete autonomy of devices
and result in unpredictable behaviours such as data drifts, e.g. vari-
able stream rate. No single optimal window configuration (one size
fits all) is possible due to the variable input stream rate.

Furthermore, a limitation of computing resources and applica-
tion requirements is also dynamic for IoT, making the query win-
dow configuration selection even further complicated. An optimal
window configuration for a given query over a stream can become
obsolete due to any changes in stream rate or infrastructure. The
authors in have proposed a dynamic window-based selector, which
provides a mechanism to select the proper window configuration
considering stream attributes, changing stream rates, workload
requirements, and resource capacity constraints during the query
optimization process [22,23].

Acknowledgements
This research has emanated from research supported by a re-

search grant from Science Foundation Ireland (SFI) under Grant
Number SFI/16/RC/3918 (CONFIRM), and Marie Skłodowska-
Curie grant agreement No. 847577 co-funded by the European Re-
gional Development Fund.

Bibliography

1.	 HFK Abraham., et al. “Database System Concepts”. The 6th Edi-
tion. McGraw-Hill (2011).

2.	 R Sahal., et al. “Automatic calibration of database cost model
in cloud computing”. in 2012 8th International conference on
informatics and systems (INFOS) (2012): CC-25-CC-34.

06

Query Optimization for Big Data Batch Processing and Stream Processing

Citation: Radhya Sahal. “Query Optimization for Big Data Batch Processing and Stream Processing". Acta Scientific Computer Sciences 4.1 (2022): 04-07.

2https://spark.apache.org/sql
3https://ci.apache.org/projects/flink/flink-docs-master/dev/table/tableApi.html
4http://storm.apache.org/releases/1.1.2/storm-sql.html
5https://github.com/milinda/samza-sql
6https://www.confluent.io/product/ksql

https://www.octawian.ro/fisiere/situri/asor/build/html/_downloads/fefeca9718f2713b96903ded3606962a/Silberschatz_A_databases_6th_ed.pdf
https://www.octawian.ro/fisiere/situri/asor/build/html/_downloads/fefeca9718f2713b96903ded3606962a/Silberschatz_A_databases_6th_ed.pdf
https://ieeexplore.ieee.org/document/6236558
https://ieeexplore.ieee.org/document/6236558
https://ieeexplore.ieee.org/document/6236558
https://spark.apache.org/sql
https://ci.apache.org/projects/flink/flink-docs-master/dev/table/tableApi.html
http://storm.apache.org/releases/1.1.2/storm-sql.html
https://github.com/milinda/samza-sql
https://www.confluent.io/product/ksql

•	 Prompt Acknowledgement after receiving the article
•	 Thorough Double blinded peer review
•	 Rapid Publication
•	 Issue of Publication Certificate
•	 High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

3.	 G Papakonstantinou and J Kontos. “A query-oriented file orga-
nization technique”. International Journal of Systems Science 5
(1974): 743-751.

4.	 H Turtle and J Flood. “Query evaluation: Strategies and optimi-
zations”. Information Processing and Management 31 (1995):
831-850.

5.	 S Chaudhuri. “An overview of query optimization in relational
systems”. in Proceedings of the seventeenth ACM SIGACT-SIG-
MOD-SIGART symposium on Principles of database systems,
Seattle, Washington, United States (1998): 34-43.

6.	 R Sahal S., et al. “GPSO: An improved search algorithm for
resource allocation in cloud databases”. in 2013 ACS Inter-
national Conference on Computer Systems and Applications
(AICCSA) (2013): 1-8.

7.	 JC Freytag. “The Basic Principles of Query Optimization in
Relational Database Management Systems”. in Proceedings
of 11th IFIP World Computer Congress, San Francisco (1989):
801-807.

8.	 S Chu., et al. “From theory to practice: Efficient join query eval-
uation in a parallel database system”. in Proceedings of ACM
SIGMOD International Conference on Management of Data
(2015): 63-78.

9.	 FA Omara., et al. “Optimum Resource Allocation of Database
in Cloud Computing”. Egyptian Informatics Journal 15 (2014):
1-12.

10.	 R Akerkar. “Big data computing”. CRC Press (2013).

11.	 Gkoulalas-Divanis and A Labbi. “Large-Scale Data Analytics”.
Springer (2016).

12.	 Thusoo A., et al. “Hive: a warehousing solution over a map-
reduce framework”. PVLDB 2 (2009): 1626-1629.

13.	 Thusoo A., et al. “Hive-a petabyte scale data warehouse using
Hadoop”. in 26th IEEE International Conference on Data Engi-
neering (ICDE) (2010): 996-1005.

14.	 Olston B., et al. “Pig latin: a not-so-foreign language for data
processing”. in Proceedings of ACM SIGMOD international con-
ference on management of data (2008): 1099-1110.

15.	 S Wu., et al. “Query optimization for massively parallel data
processing”. in Proceedings of the 2nd ACM Symposium on
Cloud Computing (2011): 12.

16.	 R Sahal., et al. “SOOM: Sort-Based Optimizer for Big Data
Multi-Query”. Big Data 8 (2020): 38-61.

17.	 X-Y Gao., et al. “Exploiting Sharing Join Opportunities in Big
Data Multiquery Optimization with Flink”. Complexity 2020
(2020).

18.	 R Sahal., et al. “Exploiting Coarse-grained Reused-based Op-
portunities in Big Data Multi-Query Optimization”. Journal of
Computational Science 26 (2018): 432-452.

19.	 R Sahal., et al. “iHOME: Index-based JOIN Query Optimization
for Limited Big Data Storage”. Journal of Grid Computing 16
(2018): 345-380.

20.	 R Sahal., et al. “Big data multi-query optimisation with Apache
Flink”. International Journal of Web Engineering and Technol-
ogy 13 (2018): 78-97.

21.	 R Sahal., et al. “Big data and stream processing platforms for
Industry 4.0 requirements mapping for a predictive mainte-
nance use case”. Journal of Manufacturing Systems 54 (2020):
138-151.

22.	 R Sahal., et al. “On Evaluating the Impact of Changes in IoT
Data Streams Rate over Query Window Configurations”. in
Proceedings of the 13th ACM International Conference on Dis-
tributed and Event-based Systems (2019): 262-263.

23.	 R Sahal., et al. “Industry 4.0 towards Forestry 4.0: Fire Detec-
tion Use Case”. Sensors 21 (2021): 694.

07

Query Optimization for Big Data Batch Processing and Stream Processing

Citation: Radhya Sahal. “Query Optimization for Big Data Batch Processing and Stream Processing". Acta Scientific Computer Sciences 4.1 (2022): 04-07.

https://www.tandfonline.com/doi/abs/10.1080/00207727408920138
https://www.tandfonline.com/doi/abs/10.1080/00207727408920138
https://www.tandfonline.com/doi/abs/10.1080/00207727408920138
https://www.sciencedirect.com/science/article/abs/pii/030645739500020H
https://www.sciencedirect.com/science/article/abs/pii/030645739500020H
https://www.sciencedirect.com/science/article/abs/pii/030645739500020H
https://web.stanford.edu/class/cs345d-01/rl/chaudhuri98.pdf
https://web.stanford.edu/class/cs345d-01/rl/chaudhuri98.pdf
https://web.stanford.edu/class/cs345d-01/rl/chaudhuri98.pdf
https://web.stanford.edu/class/cs345d-01/rl/chaudhuri98.pdf
https://ieeexplore.ieee.org/document/6616472
https://ieeexplore.ieee.org/document/6616472
https://ieeexplore.ieee.org/document/6616472
https://ieeexplore.ieee.org/document/6616472
https://www.semanticscholar.org/paper/The-Basic-Principles-of-Query-Optimization-in-Freytag/8f14dd0dd7ea659b354c078c74446919037ce1b6
https://www.semanticscholar.org/paper/The-Basic-Principles-of-Query-Optimization-in-Freytag/8f14dd0dd7ea659b354c078c74446919037ce1b6
https://www.semanticscholar.org/paper/The-Basic-Principles-of-Query-Optimization-in-Freytag/8f14dd0dd7ea659b354c078c74446919037ce1b6
https://www.semanticscholar.org/paper/The-Basic-Principles-of-Query-Optimization-in-Freytag/8f14dd0dd7ea659b354c078c74446919037ce1b6
https://dl.acm.org/doi/10.1145/2723372.2750545
https://dl.acm.org/doi/10.1145/2723372.2750545
https://dl.acm.org/doi/10.1145/2723372.2750545
https://dl.acm.org/doi/10.1145/2723372.2750545
https://www.sciencedirect.com/science/article/pii/S1110866514000036
https://www.sciencedirect.com/science/article/pii/S1110866514000036
https://www.sciencedirect.com/science/article/pii/S1110866514000036
https://www.taylorfrancis.com/books/edit/10.1201/b16014/big-data-computing-rajendra-akerkar
https://www.semanticscholar.org/paper/Large-Scale-Data-Analytics-Gkoulalas-Divanis-Labbi/bb2c2af2475a6b91d8712e155deacd4337e6c7d7
https://www.semanticscholar.org/paper/Large-Scale-Data-Analytics-Gkoulalas-Divanis-Labbi/bb2c2af2475a6b91d8712e155deacd4337e6c7d7
http://www.vldb.org/pvldb/vol2/vldb09-938.pdf
http://www.vldb.org/pvldb/vol2/vldb09-938.pdf
https://actascientific.com/journals.php
https://actascientific.com/journals.php
https://actascientific.com/journals.php
https://dl.acm.org/doi/10.1145/1376616.1376726
https://dl.acm.org/doi/10.1145/1376616.1376726
https://dl.acm.org/doi/10.1145/1376616.1376726
https://dl.acm.org/doi/10.1145/2038916.2038928
https://dl.acm.org/doi/10.1145/2038916.2038928
https://dl.acm.org/doi/10.1145/2038916.2038928
https://www.researchgate.net/publication/338929941_SOOM_Sort-Based_Optimizer_for_Big_Data_Multi-Query
https://www.researchgate.net/publication/338929941_SOOM_Sort-Based_Optimizer_for_Big_Data_Multi-Query
https://www.hindawi.com/journals/complexity/2020/6617149/
https://www.hindawi.com/journals/complexity/2020/6617149/
https://www.hindawi.com/journals/complexity/2020/6617149/
https://www.sciencedirect.com/science/article/abs/pii/S1877750317306142
https://www.sciencedirect.com/science/article/abs/pii/S1877750317306142
https://www.sciencedirect.com/science/article/abs/pii/S1877750317306142
https://link.springer.com/article/10.1007/s10723-018-9431-9
https://link.springer.com/article/10.1007/s10723-018-9431-9
https://link.springer.com/article/10.1007/s10723-018-9431-9
https://www.semanticscholar.org/paper/Big-data-multi-query-optimisation-with-Apache-Flink-Sahal-Khafagy/b937b9c0f70320d50c90078448ceec25b27de652
https://www.semanticscholar.org/paper/Big-data-multi-query-optimisation-with-Apache-Flink-Sahal-Khafagy/b937b9c0f70320d50c90078448ceec25b27de652
https://www.semanticscholar.org/paper/Big-data-multi-query-optimisation-with-Apache-Flink-Sahal-Khafagy/b937b9c0f70320d50c90078448ceec25b27de652
https://www.researchgate.net/publication/344251792_Big_Data_and_IoT_platforms_for_Industry_40_and_its_use_case_for_predictive_maintenance
https://www.researchgate.net/publication/344251792_Big_Data_and_IoT_platforms_for_Industry_40_and_its_use_case_for_predictive_maintenance
https://www.researchgate.net/publication/344251792_Big_Data_and_IoT_platforms_for_Industry_40_and_its_use_case_for_predictive_maintenance
https://www.researchgate.net/publication/344251792_Big_Data_and_IoT_platforms_for_Industry_40_and_its_use_case_for_predictive_maintenance
https://dl.acm.org/doi/10.1145/3328905.3332509
https://dl.acm.org/doi/10.1145/3328905.3332509
https://dl.acm.org/doi/10.1145/3328905.3332509
https://dl.acm.org/doi/10.1145/3328905.3332509
https://www.mdpi.com/1424-8220/21/3/694
https://www.mdpi.com/1424-8220/21/3/694

	_GoBack

