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Abstract

Big data refers to huge and complex data sets made up of a variety of structured and unstructured data that are too big, too fast 
and too hard to be managed by traditional techniques. Big data exceeds the processing capacity of conventional database systems. 
Recently, new technologies have been invented to analyze and query this massive data. In this work, we have introduced two types of 
big data query optimization including batch processing and streaming processing. 
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Introduction 

Nowadays, IT has been concentrated in all enterprises and 
companies, where the users deal with many computing applica-
tions. These applications allocate a large amount of data (e.g. facts, 
statistics, numbers, text and images) and information (that data 
has been processed and become meaningful for proper use). A 
collection of these data and information is called a database [1]. 
The database is controlled and managed by Database Manage-
ment System (DBMS), such as Oracle, DB2, MS Access, MySQL, and 
PostgreSQL. It allows the users to store, update, organize, protect 
and retrieve their databases using a powerful query language [2]. 
A query language is a specialized language for retrieving informa-
tion from a database [3]. It is written in a predefined form, such as 
SQL language. SQL stands for Structured Query Language, which 
is used for accessing and modifying the database. The query lan-
guage contains three sequential phases to execute a given query, 
depicted in figure 1 [2,4]. 

The query phases are listed as follows [5]:

•	 Parsing (translation) translates the query into internal form 
and checks the syntax of relations in database. 

•	 Optimization finds the best plan to execute the query. An 
execution plan is a set of sequence operations to implement a 
query with the lowest estimated cost. The query optimization 
phase chooses the execution plan based on statistics of 
database and resources (e.g. path, CPU, memory, and storage) 
[6]. 

•	 Evaluation executes the execution plan and returns the query 
answer. 

Figure 1: Query Processing.
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One of Relational Database Management Systems (RDBMS) is 
query optimization [7]. It is a tool, which decides for the best plan 
to execute queries. A query optimizer determines the set of possi-
ble execution plans and chooses the best one according to the cost, 
time, and resource consumption [8,9].

The architecture of the query optimizer is depicted in figure 2. 
The planner is the main component of a query optimizer. It gener-
ates multiple query plans and chooses the best one for answering 
a query. Moreover, the planner looks up statistics tables (tables 
that hold the statistics and information of database tables such as 
catalogues) and uses search strategies that compare the execution 
plans based on their estimated costs to choose the cheapest plan 
[5,7]. This thesis focuses on the cost model in the query optimizer 
planner, which is used to profile the resource intensive of database 
workload. The resource intensive (e.g., CPU-intensive, Memory-
intensive, and I/O-intensive) means how the performance of the 
workload affected by allocating/de-allocating more resources [6]. 

Figure 2: Query optimizer architecture: two stages  (Rewriting and Planning). 

Big data has been spread rapidly in many domains, such as in-
formation systems. On the other hand, distributed computing is 
growing every day with the increasing of workstations power and 
the size of the dataset. Therefore, the development and implemen-
tation of the distributed system for Big Data applications are con-
sidered a challenge [10,11]. Two types of big data query processing 
are batch processing and streaming processing (see Figure 3). The 
details of query optimization for batch and streaming data process-
ing are elaborated following. 

Query optimization for batch data processing 

The structure formatting and key-value data store will be con-
cerned where the queries are transformed into data stages, includ-
ing a set of jobs run on batch processing. Batch processing happens 
between blocks of data that have already been stored over some 
time. Hadoop MapReduce is the best framework for processing 
data in batches.

Figure 3: Query batch data processing vs. query stream data processing1. 
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Besides efficiency, Hadoop MapReduce provides two simple, 
user-friendly interfaces; Map and Reduce function. Furthermore, 
Hadoop MapReduce supports query processing by integrating 
high-level declarative languages such as Hive and Pig to simplify 
data applications’ programming [12-14]. These MapReduce-based 
query languages hide implementation details (e.g., access methods, 
query plan optimization) and offer developers and Big Data ana-
lysts an SQL-like interface. Regarding this thesis, Hive language is 
used where the HiveQL queries are translated into MapReduce jobs. 
From the inside, each MapReduce job is flushed back to Hadoop 
Distributed File System (HDFS) as a backup for fault tolerance. The 
next MapReduce job reads the intermediate results of the previous 
job to continue processing. The HDFS I/O cost is significantly high-
er than local storage, which includes a network cost. So, exploiting 
the shared jobs within multiple queries can reduce HDFS I/O cost 
of intermediate results. Consequently, the shuffling cost of inter-
mediate results can be cheaper than generating too large a size of 
intermediate results when no sharing data is exploited [15-20]. 

Query optimization for stream data processing 

Industries realize a competitive advantage in being able 
to act on high volume and high-velocity streams of data. 
Stream processing allows the data analysis systems to 
process data in real-time as they arrive and quickly detect 
conditions within a small period from receiving the data. 
Different query streaming open-source engines have been 
developed to leverage windowing operations by repeatedly 
iterating over a series of micro-batches, in much the same 
way as static queries operate over stored data. Examples of 
the open-source streaming-based engines that use the win-
dowing concept are Spark SQL2, Flink Table API3, StromSQL4, 
SamzaSQL5, and KSQL6.

Typically, a window join query consumes infinite input data 
streams and produces output data streams (i.e., joined tuples) as 
long as the input streams continue streaming in [21]. Traditional 
cardinality based cost models for join optimization cannot produce 
joined results due to their mechanisms to estimate the required 

time to join query based on computations over the static dataset 
and query completion. However, stream queries have to handle un-
known and potentially infinite data with no guarantee on when the 
query will eventually terminate. Different optimization techniques 
for stream query optimization are available; however, the work 
on optimizing the stream query based on window size has limited 
solutions. IoT devices and applications offer dynamic and loosely 
controlled networks with almost complete autonomy of devices 
and result in unpredictable behaviours such as data drifts, e.g. vari-
able stream rate. No single optimal window configuration (one size 
fits all) is possible due to the variable input stream rate.

Furthermore, a limitation of computing resources and applica-
tion requirements is also dynamic for IoT, making the query win-
dow configuration selection even further complicated. An optimal 
window configuration for a given query over a stream can become 
obsolete due to any changes in stream rate or infrastructure. The 
authors in have proposed a dynamic window-based selector, which 
provides a mechanism to select the proper window configuration 
considering stream attributes, changing stream rates, workload 
requirements, and resource capacity constraints during the query 
optimization process [22,23]. 
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