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Abstract

Infant survival is key to the new era of Sustainable Development Goals (SDGs). However, in Africa and Ghana especially, this is chal-
lenged by the alarming Infant Mortality Rate (IMR) - a direct consequence of population growth characterized by high fertility. The 
purpose of our study is to investigate the extent to which Infant Mortality Rate(IMR) occur conditionally on Total Fertility Rate(TFR) 
over the years and how these indicators are related using data from 1960 to 2020. We highlight the application of copula models in 
dealing with interdependencies between IMR and the TFR. In this study we compare several copula models using the differences in 
Akaike Information Criterion (AIC) to select the most appropriate" model for our data. The results indicate that the bivariate Clayton 
copula with continuous. Weibull margins best" describe the conditional distribution of IMR. Our results further indicate a 90.40% 
chance that IMR will exceed 120.5 deaths per 1000 live births if the TFR rise to 7 children per woman. We also conclude base on our 
model estimate that 2021 infant mortality will exceed its 2020 estimated value of 32.80 deaths per 1000 live births given the current 
fertility rate of 4 births per woman with a chance as low as 2%.
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Introduction
The transition of fertility and mortality levels from high to low 

is a key characteristic of a developmental process in any demo-
graphic region. The timing of fertility and mortality have varied 
considerably over the years. According to the general child survival 
hypothesis, a lower growth in the population is a consequence of 
reduced child mortality that is followed by a reduced fertility [29]. 
According to Centers for Disease Control and Prevention (CDC) 
USA, infant mortality is the death of an infant before his or her first 
birthday and hence the infant mortality rate (IMR) is the number 

of infant deaths for every 1,000 live births. The common causes 
range from infection to birth defects or accidents. However, the 
main causes of infant mortality is different and more pronounced 
in developing countries in Africa than it is in developed countries. 
In 2017 alone, 4.1 million deaths occurred in the first year of life 
[24]. The risk of a child dying before completing the first birthday 
of life was 51 per 1000 live births in Africa compared to 8 per 1000 
live births in Europe, which is over six times higher. Despite the 
global reduction in infant mortality rate from 65 deaths per 1000 
live births in 1990 to 29 deaths per 1000 live births in 2017, mater-
nal and child health still poses a threat [27].
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Total Fertility Rate (TFR) on the other hand defines the average 
number of children a woman would have assuming the current age 
specific birth rates remain constant throughout her childbearing 
years (15-49 years) [8]. It is calculated by summing across the av-
erage number of births per woman in five-year age groups. That is

 ----(1)

Where, Nbw: number of births to women aged, Pw: population 
women aged, k: five-year age groups, ASFRk : Age specific fertility 
rate in the kth age group. This means that TFR depends not only on 
the number of births but also on the number of women across the 
childbearing age groups.

While fertility rates are falling globally, it is important to note 
that an increase in the number of births does not necessarily lead 
to an increase in TFR. In 1950, women had an average of 4.7 chil-
dren in their childbearing years. However, by 2017, the global fer-
tility rate nearly halved to 2.4 and it is estimated to fall below 1.7 by 
2100 [20]. In Ghana, the TFR was 3.93 children per woman in 2017 
compared to 4.27 children per woman in 2010. Although there is a 
fall in fertility rate, the women resident in the rural areas in Ghana 
contributed more having a higher fertility rate of 5.44 compared 
to those in the urban area (fertility rate 3.92) [9]. The global fall in 
TFR has been attributed to more women in education and greater 
access to contraception [10] both being characteristics of urban life 
in Ghana. Yet, IMR declined from 64 deaths per 1000 live births in 
2003 to 50 deaths per 1000 live births in 2008 (GDHS, 2008) and 
from 47.5 deaths per 1000 live births in 2010 to 32.8 deaths per 
1000 live births in 2020 representing a 41% drop in mortality over 
a decade indicating an increasing population trend.

Past studies have shown that there is a relationship between a 
nation’s IMR and her TFR. [17] discuss the effects of IMR and TFR 
in Turkey [3]. Recounts, a regression model that incorporates in-
fant mortality as one of the predictors of TFR with the study in-
dicating a positive relationship between infant mortality ratio and 
TFR. [15] examined the relationship between female labor force 
participation rates, infant mortality rates and fertility rates in Aus-
tralia using Granger Causality tests. Modeling via copulas provides 
much flexibility as it allows the researchers to specify models for 
marginal distributions separately from the dependence structure 
that links the models to form a joint distribution [18]. This frees 
the researcher to consider a much wider class of multivariate dis-

tributions other than the commonly existing ones in the literature. 
Copula-based models have gained much popularity and success in 
the econometric and finance fields. In this paper, we apply copula-
based approach to model the distribution between the TFR and 
IMR, while taking into account the dependencies between them. 
We also compare several copula models using differences in the 
Akaike Information Criterion (AIC) to select the “most appropri-
ate” model for our data.

Our work is novel in two ways: (1) we use a copula model to 
study and capture the scale-free interdependencies [6] between 
the TFR and IMR and (2) describe the extent to which IMR occur 
conditionally on the TFR (conditional survival rate).

The rest of this paper is organized as follows. Section 4 de-
scribes the methods involved. We discuss the marginal distribution 
criteria, some bivariate copula models and the estimation proce-
dure used. The results and discussions are presented in Section 5 
and Section 6 concludes with a discussion of future research.

Materials and Methods
In this section we present the data source and the methods used 

for our study. Our copula analysis is based on the elliptical fam-
ily (Gaussian and t copulae) and the Archimedean family (Clayton, 
Frank, Joe and Gumbel copulae). We also consider the following 
two-parameter mixed distributions: Clayton-Gumbel (BB1), Joe-
Gumbel (BB6), Joe-Clayton (BB7) in addition to Tawn 1 and Tawn 
2. The distributional properties of these copulae are stated in ap-
pendix A.

Data and source

The Data used for this study contains IMR and TFR indicators 
of Ghana from 1960 to 2020 obtained on-line from the Ghana Eco-
nomic outlook and world-bank as referenced [5,8,16,17,24].

Copulas and sklar’s theorem

Informally, Copulas are functions that “couple” multivariate 
distribution functions to their marginal distributions [20]. Ac-
cording to Sklar [22], an n-dimensional joint distribution can be 
decomposed into its n-univariate marginal distributions and an 
n- dimensional copula. For the purposes of our work, we take n = 
2. To this end, let Y = (Y1, Y2)l be a random vector with cumulative 
distribution function G and, for i ∈ {1, 2}, let Fi denote the marginal 
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distribution of Yi. Then there exists a copula C: [0, 1]2 → [0, 1] such 
that, for all y = (y1, y2) ∈ R2,

G(y) = C {F1 (y1), F2 (y2)}-------(2)

Definition (Copula)

A bivariate copula C, of the random vector Y is thus a function 
that maps the univariate marginal distributions F1, F2 to the joint 
distribution G, and we write Y ∼ G = C(F1,F2). If F1, F2 continuous, 
then C is unique, which is the case we consider here. The usefulness 
of (2) is seen in the converse of Sklar’s theorem: if C is a copula and 
F1 and F2 are distribution functions, then the function G defined by 
(2) is a joint distribution function with marginals F1 and F2.

F(x,y) = C[F1(x),F2(y)], x, y ∈ R,---(3)

Modeling with copula

As a direct consequence of equation (3), a model for (X, Y) can 
be structured with C ∈ C(θ), F1 ∈ F1(σ), F2 ∈ F2(γ) selected from a 
known parametric family with parametric vectors, θ, σ and γ. The 
joint density of the bi-variate cdf with uniform marginals is bound-
ed by the so-called Frechet - Hoeffding bound defined as

))-------(4)

Where Ui are uniform random variates. More generally, the cop-
ula representation for the Frechet - Hoeffding bounds is defined as 
W (u1,u2) ≤ C(u1,u2) ≤ M(u1,u2), ui ∈ [0,1] see [13].

Selecting marginal distributions

Model selection criteria based on Akaike Information Criterion 
is defined in terms of copula density, c as;

 ---------(5)

Where, N, K are the number of data points and model param-
eters respectively. To allow for quick comparison and ranking of 
candidate models, the AIC difference, ∆AICj = AICj − min (AIC), is 
used herein. See [1].

Fitting copula models

In this section, the copula analysis is based on the Elliptical 
family (Gaussian and t-copula) and Archimedean family (Clayton, 
Frank, Joe, Gumbel). Other two parameter mixed distribution as 
Clayton - Gumbel (BB1), Joe- Gumbel (BB6), Joe - Clayton (BB7) as 

well as Tawn 1 and Tawn 2 are herein considered. The distribu-
tional properties of these copulae are attached as appendix A.

Kendall’s tau and Tail dependence

The Kendall’s tau in a bivariate copula C with uniform marginals 
is given as;

Where E[C (U, V)] is the expected value of the joint cop-
ula distribution. See [14]. The index of upper tail depen-

dence,  is an upper tail dependence if 

IU ∈ (0, 1] and no dependence in the upper tail if IU = 0. Also, if

 exist, then C has dependence in the lower 

tail if IL ∈ (0, 1] and no dependence in the lower tail if IL = 0.

Maximum Likelihood Estimation (MLE)

Let (y1,···, yn) be observations with fj(.;θj) and Fj(.;θj) as the jth 

marginal density and distribution function respectively. Then the 
MLE in the bivariate case involves maximizing the log likelihood.

see [24]. The ML estimator of θ is , 
where α denote the parameter of the copula C and θ is a parameter 
vector. The parameter estimation is based on the two - staged In-
ference Functions for Marginals (IFM) method (due to [23]) stated 
without loss of generality as;

and

Results and Discussion
Preliminary analysis
Summary statistics

Finding drawn from summary statistics for the entire 60 year 
period reveal that the distributions of IMR and TFR are less peaked 
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than normal with respective estimated kurtosis of 1.59 and 1.43 
against 3.00 (normal kurtosis). The empirical mean for infant mor-
tality is estimated to be 82.01 deaths per 1000 live births with 
corresponding fertility rate of 5.58 births per woman in her active 
reproductive life cycle.

Correlation analysis

Figure 1 below shows a pairwise correlation obtain via the Ken-
dall’s tau, τk correlation measure along with bivariate scatter plot 
and probability histogram on IMR and TFR indicators in Ghana. 
The correlation coefficient show a strong association measure of 
0.92 between IMR and TFR.

Choice of a copula model

Assuming our data, consisting of IMR and TFR follows the vari-
ous copula models (Elliptical family, Archimedean family, and oth-
ers), we estimated their parameters via MLE, the Kendall tau τk, 
tail dependency, and the Akaike Information Criterion (AIC) for 
each copula. Table 1 below shows the estimated parameters from 
fitted copulae with their respective standard errors in the bracket, 
τk, lower and upper tail dependence, and Akaike information crite-
ria. While it is important to note that a tail dependence measure of 
zero (Ii = 0) as in the case of Frank and Gaussian copulae does not 

Figure 1: Correlation analysis on IMR and TFR in Ghana from 
1960 - 2020.

Copula
Parameter

Estimate
τk IL IU AIC ∆ AIC

Clayton α = 32.62 (4.02) 0.94 0.98 0.00 -284.80 0.00
Gumbel α = 3.87 (0.46) 0.74 0.00 0.80 -95.01 189.79
Frank α = 37.27(4.68) 0.90 0.00 0.00 -187.40 97.40
Joe α = 3.52 (0.48) 0.57 0.00 0.78 -56.51 228.29
Gaussian ρ = 0.94 (0.01) 0.77 0.00 0.00 -118.46 166.34

student -t par1 = 0.99 
par2 = 2.00 0.90 - - -179.25 105.55

Tawn 1 par1 = 5.93(NA) par2 = 0.94 ( NA ) 0.79 0.00 0.85 -107.46 177.34
Tawn 2 par1 =3.93(NA) par2 = 0.99 ( NA ) 0.74 0.00 0.80 -92.61 192.19

BB1
θ = 5.00 (NA)

δ = 2.88 ( NA
0.90 0.95 0.73 -219.41 65.39

BB6
θ = 1.00 (NA)

δ = 3.86 ( NA )
0.74 0.00 0.80 -92.97 191.83

BB7
θ = 1.00 (NA)

δ = 6.00 (NA )
0.75 0.89 0.00 -179.78 105.02

 Table 1: Results for fitting bivariate Copula to IMR and TFR data.

suggest independence, only BB1 accounted for dependence in the 
upper and lower tails of its distribution. BB7 copula has a lower 
tail dependence measure of 0.95 whereas the Tawn 1 has the high-
est upper tail dependence of 0.85 with Gumbel, Tawn 2, and BB6 
having the same tail measure of 0.80. Generally, the Clayton copula 
is the best in terms of fit with ∆AIC = 0.00 and a lower tail depen-
dence measure of 0.98; thus, there is a 98 percent probability that 
IMR falls below a certain rate condition that the TFR also falls be-
low a certain rate in the same time period.
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Choice of marginal distribution

We chose the marginal distributions of IMR and TFR base on the 
smallest value of ∆AIC. A summary of results from fitted marginals 
which includes the parameters estimates with standard errors in 
brackets, AIC, and ∆AIC are shown in table 2 below. The empirical 

result based on ∆AIC from Table 2 shows that the Weibull marginal 
is ideal for IMR and TFR in Ghana.

Results based on ∆AIC from table 2 above, suggest the Weibull 
marginal as ideal for IMR and TFR data in Ghana.

IMR TFR

Distribution Parameter 
Estimate AIC ∆ AIC Parameter 

Estimate AIC ∆ AIC

Exponential Rate = 0.012 (0.002) 661.64 72.41 Rate = 0.18 (0.02) 333.79 145.50

Gamma
Shape = 6.62 (1.17)

Rate =0.04(0.01)
593.09 3.86

Shape = 24.01 (4.32)

Rate = 4.30(0.78)
191.32 3.03

Lognormal
Meanlog= 4.33(0.05)

Sdlog = 0.41 ( 0.04)
596.47 7.24

Meanlog =1.70( 0.03)

Sdlog = 0.21 ( 0.02)
192.37 4.08

Weibull
Shape = 3.10 (0.33)

Scale = 92.09(4.00)
589.23 0.00

Shape = 5.94(0.63)

Scale = 6.04 (0.14)
188.29 0.00

Normal
Mean = 82.01 (3.84)

Sd = 29.98 (2.71)
591.99 2.76

Mean = 5.58 (0.14)

Sd = 1.12(0.10)
190.49 2.20

Pareto
Shape = 0.47

Scale = 39.61
663.64 74.41

Shape = 0.47

Scale = 2.68
321.35 133.06

Loglogistic
Shape = 4.07 (0.42)

Scale = 78.17 (4.39)
601.14 11.91

Shape = 7.79 (0.79)

Scale = 5.52 (0.16)
199.00 10.71

Student- t df = 0.19 (0.02) 951.44 362.21 df = 0.49 (0.08) 537.81 349.52

Table 2: Summary results from Fitting IMR and TFR in Ghana from 1960 - 2020.

Fitting copula with continuous marginals

The panel plots compares results from 5000 simulated samples 
from Clayton, Frank and Gaussian copulae with bivariate Weibull 
marginals.

The τk from the simulated Clayton copula with bivariate Weibull 
marginals is 2% stronger than the empirical τk (0.92) when com-
pared. In addition, fitted results as per figure 2 are shown in table 
3 below. Where Margin 1: Marginal for IMR, Margin 2: Marginal for 
TFR.

Further analysis with clayton copula

The suitability of the resulting Clayton copula model is com-
pared with the fit from 5000 simulated samples from arbitrary 
marginals corresponding to IMR and TFR indicators as shown in 
table 2. The results along with their ∆AIC values are shown in table 
4 below.

 Figure 2: Panel Plot using Clayton, Frank and Gaussian copulae 
with Weibull margins.
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Bivariate

Copula
Copula Margin 1 Margin 2 AIC ∆ AIC

Clayton α = 31.76(0.59)
Shape = 3.14(0.03)

Scale = 92.87(4.00)

Shape = 6.01(0.06)

Scale = 6.07(0.01)
37452.00 00.00

Frank α = 36.02(0.46)
Shape = 3.52(0.03)

Scale = 95.16 (0.30)

Shape = 6.37(0.06)

Scale = 6.12 (0.01)
44856.00 7404.00

Gaussian ρ = 0.94(0.00)
Shape = 3.52 (0.04)

scale = 94.97 (0.4)

Shape = 6.35 (0.07)

Scale = 6.12 (0.01)
50974.00 13522.00

 Table 3: Summary of fitted bivariate copula.

Copula Margin 1 Margin 2 AIC ∆ AIC
Clayton Weibull Weibull 37452 0000.00
Clayton Lognormal Lognormal 38648 1196.00
Clayton Weibull Lognormal 39596 2144.00
Clayton Lognormal Weibull 39446 1994.00
Clayton Exponential Weibull 46452 9000.00
Clayton Weibull Gamma 39310 1858.00
Clayton Weibull Normal 39296 1844.00
Clayton Loglogistic Gamma 41228 3776.00

Table 4: Summary of fitted Clayton Copula with arbitrary  
marginals.

From table 4 above, it is clear that the Clayton copula better de-
scribes the conditional distribution of IMR given TFR. The cumula-
tive and survival densities of the bivariate Clayton copula with α = 
31.76 are provided as Appendix A. The results show there is 27% 
chance that infant mortality will exceed 124.30 given that total fer-
tility is 6.75 births per woman. Thus, if IMR falls below its 1960 
estimate of 124.30 deaths per 1000 live births, there was approxi-
mately 73% chance that TFR will rise above 6.75 births per woman 
in the following year (1961). Similarly, there was only a 3% chance 
that in 2020 Infant mortality rate (32.80) will exceed its 2019 es-
timate of 33.80 deaths per 1000 live births given the total fertility 
rate was 3.82 births per woman. It is projected that by the end of 
2021, there is only 2% chance that infant mortality will exceed its 

2020 estimated value of 32.80 deaths per 1000 live births given the 
current fertility rate of 4 births per woman.

Conclusion
The Clayton copula with bivariate Weibull marginals provide an 

ideal description for the conditional distribution of IMR given TFR 
in Ghana. The estimated parameter value ( ) for the bivariate Clay-
ton copula is 31.76 (high) suggesting a strong dependence mea-
sure of 0.94 in the lower tail. In addition, the probability densities 
revealed that there can be as high as 90.40% chance that in a given 
year the IMR can exceed 120.50 deaths per 1000 live births given 
that the TFR in the country is 7 children per woman. This is about 
42.00% higher than the average IMR of 85.04 deaths per 1000 live 
births for the entire period.

Similar trends inherent from the probability estimates in Ap-
pendix A attest that population growth has a direct consequence 
on IMR. Also, the conditional density estimates project that by the 
end of 2021, there could be as low as 2% chance that infant mortal-
ity will exceed its 2020 estimated value of 32.80 deaths per 1000 
live births given the current fertility rate of 4 births per woman.
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Appendix A: C(u ,v), u, v  [0,1].

Note: : 

IMR TFR C(u,v) IMR TFR C(u,v)
[1,] 124.30 6.75 0.73 [31,] 79.80 5.60 0.49
[2,] 123.10 6.79 0.76 [32,] 77.50 5.50 0.47
[3,] 122.10 6.83 0.79 [33,] 75.60 5.40 0.46
[4,] 121.40 6.86 0.81 [34,] 74.30 5.32 0.44
[5,] 121.00 6.89 0.85 [35,] 73.30 5.24 0.43
[6,] 120.80 6.92 0.87 [36,] 72.30 5.17 0.41
[7,] 120.70 6.94 0.87 [37,] 71.10 5.10 0.39
[8,] 120.70 6.95 0.87 [38,] 69.70 5.04 0.38
[9,] 120.70 6.96 0.87 [39,] 68.10 4.97 0.36
[10,] 120.50 6.96 0.84 [40,] 66.20 4.90 0.35
[11,] 120.10 6.95 0.82 [41,] 64.20 4.83 0.33
[12,] 119.30 6.94 0.81 [42,] 62.10 4.75 0.32
[13,] 118.10 6.92 0.79 [43,] 60.20 4.68 0.30
[14,] 116.40 6.89 0.77 [44,] 58.50 4.61 0.28
[15,] 114.20 6.86 0.76 [45,] 56.90 4.55 0.27
[16,] 111.60 6.82 0.74 [46,] 55.50 4.49 0.25
[17,] 108.90 6.77 0.72 [47,] 54.20 4.44 0.24
[18,] 106.20 6.72 0.69 [48,] 52.80 4.39 0.22
[19,] 104.00 6.67 0.68 [49,] 51.20 4.35 0.21
[20,] 102.30 6.61 0.66 [50,] 49.40 4.31 0.19
[21,] 101.10 6.54 0.65 [51,] 47.50 4.27 0.17
[22,] 100.20 6.47 0.63 [52,] 45.60 4.23 0.16
[23,] 99.50 6.39 0.62 [53,] 43.70 4.19 0.14
[24,] 98.40 6.31 0.60 [54,] 42.00 4.15 0.13
[25,] 96.90 6.22 0.58 [55,] 40.40 4.10 0.11
[26,] 94.70 6.13 0.57 [56,] 38.90 4.04 0.09
[27,] 92.10 6.03 0.55 [57,] 37.40 3.98 0.08
[28,] 89.00 5.93 0.54 [58,] 36.10 3.93 0.06
[29,] 85.80 5.82 0.52 [59,] 34.90 3.87 0.05
[30,] 82.70 5.71 0.51 [60,] 33.88 3.82 0.03

[61,] 32.80 3.77 0.02
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