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Abstract
The Fast Fourier Transform (FFT) is an algorithm that is used to compute the Discrete Fourier Transform (DFT) of N points. It is 

extensively applied in many domains that make use of sinusoidal signals. Some of the well-known FFT algorithms include Radix-2, 
Radix-4, and Split Radix algorithms, their time complexity is O (n log n). The Fourier Transform algorithm is computationally in-
tensive since it includes many additions, multiplications, and trigonometric functions. Thus, parallelizing the serial FFT algorithms 
would be very advantageous in terms of code complexity and execution time. This paper aims to provide a means for users to ef-
ficiently perform FFT of a polynomial over a finite field, and discusses ways of parallelizing FFT to reduce the communication over-
head. Cache-oblivious sub-routines will be used to minimize page faults incurred regardless of the underlying cache-hierarchy, and 
parallelization will serve in reducing the real time needed by the algorithm. Also, the user will be able to compute the discrete Taylor 
expansion of a polynomial in a finite field (this functionality is a prerequisite to being able to compute the FFT). To achieve this, a data 
type will be provided for the user so that he/she can easily input the required polynomial. The project will use Open MPI directives 
to allow some of the program’s segments to run in parallel in order to speed up the computation process. While this provides an ef-
ficient parallelized FFT, there is a significant communication overhead that should be considered.
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Introduction

Fourier Transform plays a key role in computational science; it 
has many real life applications in science and engineering. It is of-
ten used in digital signal processing applications such as voice rec-
ognition and image processing. Also, it is used for solving partial 
differential equations and quick multiplication of large integers.

The Discrete Fourier Transform is a specific kind of Fourier 
Transform; it maps a sequence over time to another sequence over 
frequency and vice-versa. DFT is very computationally exhaustive 

since it is based on summing a finite series of products of input 
signal values and trigonometric functions. The widespread use of 
DFTs is mainly due to the existence of fast algorithms, known as 
Fast Fourier transform (FFT), which compute the DFT of an input 
of size N in O (N log N) time instead of the O(N2) time needed by 
DFT.

In 1965, Cooley and Tukey published their famous FFT algo-
rithm in a paper. Their algorithm uses a recursive approach of solv-
ing DFT of any size N by dividing the DFT into smaller sub- prob-
lems which subsequently reduce the time complexity. Since then, 
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many variations of the algorithm have appeared. Fourier Trans-
form is needed in areas where high speed of computation is very 
necessary, so it was crucial to come up with faster algorithms. A 
convenient solution is to modify the sequential FFT algorithms into 
parallel ones.

At first, it was difficult to develop competent and portable paral-
lel FFTs because of the existence of many different parallel archi-
tectures. Recently, parallel programming has become less machine 
dependent, so parallel FFTs algorithms have appeared. This paper 
discusses the parallelization of these algorithms in order to pro-
duce efficient FFT with the least communication overhead.

Objectives and organization

•	 Performing an efficient Fast Fourier Transform over a finite 
field of length n = 2m where m is a power of 2, and developing 
a parallel version to speed up the runtime of the algorithm.

•	 Overcoming the high communications overhead imposed by 
the distributed-memory parallelism of small problems.

The rest of this work is organized as follows. Chapter 2 gives 
background information on FFT, Chapter 3 describes the FFT al-
gorithm used in this project, experimental work is discussed in 
Chapter 4, and Chapter 5 covers the parallelization approach while 
Chapter 6 displays and discusses all the numerical results. Finally 
chapter 7 is devoted for concluding points and future orientation.

Background Information

The DFT transforms N discrete samples x0, x1… xN-1 from a spa-
tial domain to the frequency domain according to the formula:

Where r = 0, 1… N-1. Implementing DFT requires matrix multi-
plication and takes O (N2) time complexity.

Radix-2 FFT algorithm divides the DFT of N discrete points 
(where N is a power of 2) into two equal parts, the first part com-
putes the Fourier transform of the even index numbers while the 

other part computes the Fourier transform of the odd index num-
bers. Finally, it merges them to obtain the Fourier Transform of the 
whole input. This algorithm runs in O (N log N) by using the divide 
and conquer approach.

The computation involving each pair of data is called a butterfly; 
every butterfly consists of one complex addition, one complex sub-
traction, and one complex multiplication.

Radix-4 FFT algorithm takes an input of length N where N is a 
power of 4. It divides the sequence into 4 equal parts, computes 
the Fourier transform of each part, and then it merges them to get 
the Fourier Transform of the whole input. This approach reduces 
the number of complex multiplications and additions to (3N/8) log 
N which is more computationally efficient than Radix-2 FFT algo-
rithm.

Split Radix FFT algorithm, part of the input is computed using 
Radix-2 algorithm and other part is computed using Radix-4 algo-
rithm. It uses the property that all the even numbered points of the 
DFT can be performed independent to the odd numbered points. 
The Split Radix FFT combines the advantages of the Rdix-2 FFT and 
the Radix-4 FFT.

In brief, while Radix-4 FFT is more efficient than Radix-2 FFT, it 
has the drawback that the length of the input should be a power of 
4 which is not very convenient. From the three above algorithms, 
Radix-2 is the slowest, Radix-4 is the fastest, and Split radix per-
forms somewhere in the middle.

Finite field is a collection of elements that are closed under ad-
dition and multiplication, and it has the property of commutative 
and associative arithmetic operations.

Cache oblivious algorithm is an algorithm that is designed to 
take advantage of a CPU cache without having the size of the cache 
or the length of the cache lines as an explicit parameter. It is de-
signed to perform on multiple machines with different cache sizes, 
or for a memory hierarchy with different levels of cache having dif-
ferent sizes. It intends to minimize the number of page faults in-
curred regardless of the underlying cache-hierarchy. In this project, 
the cache oblivious algorithm will be used in transposing a matrix.
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Message Passing Interface (MPI) is a library used by multiple 
processors to send messages back and forth using send and receive 
commands. This approach provides a significant increase in perfor-
mance. The problem is split into parts, each of which is performed 
by a separate processor in parallel and the final result is gathered 
at the end. MPI provides an interface for the processors to commu-
nicate when they work in parallel.

In the development of parallel FFT algorithms, the two most 
used ones are the Binary Exchange algorithm and the Parallel 
Transpose algorithm. The major difference between these two ap-
proaches is the way of handling communication between different 
nodes. In the first, data is distributed equally among p processors 
and only the first log p stages of the computation require data ex-
change, with the remaining stages. The second algorithm attempts 
at solving the internode communication problem. An input of size 
n is conceptually represented as a √n x √n matrix wherein only one 
phase of communication is needed in between computations.

The algorithm

In 2010 Shuhong Gao and Todd Mateer published a paper “Ad-
ditive Fast Fourier Transforms over Finite Fields” that presents an 
algorithm that computes the FFT of a polynomial over a finite field. 
Their algorithm makes use of a finite Taylor expansion of the poly-
nomial. This project will be producing a direct implementation of 
the algorithms presented in their paper. The algorithm works as 
follows:

•	 Reduce a problem of size 𝑛 to 2 𝑛 problems of size 𝑛 
•	 For an input of degree less than n, obtain T such that 𝑇=√𝑛 .
•	 Compute the Taylor expansion of the polynomial at 𝑥𝑇−𝑥.

This yields T polynomials of degree less than T, which are 
used to construct a 𝑇×𝑇 matrix.

•	 Use matrix transposition to avoid passing over the matrix 
column-wise.

•	 Perform T FFT’s of size T to update the columns.
•	 Another matrix transposition and T FFT’s over the rows.
•	 Final Result is the concatenation of the row FFT’s.
•	 Apply technique recursively till base case, 𝑛 =2.

Figure a

This algorithm takes as input a polynomial of degree less than 
n, a number s which is initially zero and a number m which repre-
sents the size of the finite field, and it returns the FFT of the poly-
nomial over the finite field. The evaluation is a list of polynomials 
that have only one term with the exponent being 0.

The algorithm makes use of a Taylor expansion of the given 
polynomial at 𝑥 𝑥) where n =. It returns a list of t polynomials
whose degree is at most t-1. The results are then stored in a ma-
trix, where each term corresponds to a coefficient. An FFT is then 
performed over each column of the matrix. This would incur many 
page faults, especially on large matrices. Therefore, the matrix 
transposition module is used here to transpose the matrix. This 
makes it possible to traverse the transposed matrix’s rows, which 
is more ‘cache-friendly’.

It is a recursive algorithm, with the base case occurring when 
n = 2. At that point, the algorithm evaluates (using an evaluation 
subroutine) the polynomial at two points (specified by s), inserts 
them in a list and returns the list. The final list is a concatenation of 
all the polynomials returned by the base case.

Experimentation: Preparation and Discussion

Input

Below is an example of the input
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Figure b

Each line of the input file starts with a zero then with a descend-
ing order of beta polynomial and ends with the degree in x.

The first line can be read as follows:
(𝛽^31+ 𝛽^29+ 𝛽^28+ 𝛽^27+ 𝛽^26+ 𝛽^25+ 𝛽^23+  𝛽^21+ 

𝛽^19+ 𝛽^18+ 𝛽^17+ 𝛽^16+ 𝛽^15+ 
𝛽^13+ 𝛽^11+ 𝛽^10+ 𝛽^8+ 𝛽^6+ 𝛽^5+  𝛽^3+ 𝛽^1+ 𝛽^0)

𝑋^59920

Tools

•	 C language

Reason: Still widely used by the scientific community and it sup-
ports Open MPI frameworks.

•	 Computer cluster in order to observe the effects of paral-
lelization on multiple cores.

Methods

•	 Cache Oblivious techniques
•	 Open MPI library to parallelize the program and distrib-

ute it over a computer cluster.

Matrix transposition

This is the first module in the project. The algorithm proposed 
here assumes a one dimensional representation of a two dimen-
sional matrix, meaning that the 2d matrix is implemented as a stan-
dard array, with row and column boundaries to be inferred by the 
programmer. It is a cache- oblivious matrix transposition, so it is 
asymptotically optimal in performance with respect to the number 
of page faults incurred. The implementation is a generic one; it can 
transpose any given matrix of any data type. The performance of 
this module was extensively tested on several data types.

Below is a graph illustrating the difference between the cache-
oblivious implementation and a standard naive matrix transposi-
tion algorithm for different matrices sizes. The runtimes plotted 
are in seconds.
•	 Input: A 1d array representing the generic n x m source ma-

trix to be transposed, a 1d array onto which the source is to 
be transposed: it represents the m x n destination matrix, 
number of rows and columns of the source matrix, the indi-
ces of the row and columns of the matrix, and the size of the 
data type of the matrix.

•	 Output: The transpose of the source matrix in the destina-
tion matrix.

Figure c: Comparison between standard and  
cache-oblivious matrix transpositions.

Polynomial data type

The input will be a polynomial in x whose coefficients are also 
polynomials in another variable β where the β coefficients are ei-
ther 0 or 1. Here the polynomial is assumed to have a large degree.

Two choices are available to represent the polynomial data in-
put either by dense representation or by sparse one.

In the dense representation, to represent the β polynomial we 
will need to represent only their exponents. A dynamic array can 
be used to represent the polynomial’s exponent where each expo-
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nent would be stored at an index. However, this would take up 4 
bytes of space for every term, so in the worst case a polynomial 
would need to be represented by (4 * 64=256) bytes, assuming the 
Beta polynomials are at most of degree 63.

Another approach would be to use the polynomial powers as in-
dices to an array of bits and accordingly represent it as such. So if a 
polynomial contains the term 1, bit 0 would be set to 1 (Since β0 = 1, 
where 0 is the index). Similarly, the presence of β2 would be indicat-
ed by setting bit (2) to 1. Using this representation would take up 
64 bits = 8 bytes for the whole polynomial. However, there are no 
guarantees about the order in which the bits are stored, which can 
produce unexpected or unwanted results on different machines.

In a sparse representation, no space is allocated for a term in 
the β polynomials unless it is present and so, the coefficients are 
represented using a dynamic array of numbers with the degrees 
in x also represented as numbers. Since they are indistinguishable 
from one another, a marker is placed at the beginning of each term 
to mark the position of the degree in x.

Using the dense representation saves a huge amount of memory 
because one could represent the polynomials in β using 64 bits of 
memory storage. The downside to using the dense representation 
is that it would restrict the degree of the polynomials in β to 63. On 
the other side, if the polynomial is sparse many flops will be wasted 
to check empty bits. Also, the sparse representation would take up 
more space than the dense one, since every power of β would need 
an integer (32 bits = 4 bytes).

Finally, after comparing the pros and cons of the two approach-
es, sparse representation was chosen since it would be more ef-
ficient for the common applications of the program.

To use matrix transposition, each element of the matrix has to 
have the same size, which was not possible with our chosen rep-
resentation. Therefore, a conversion subroutine is developed that 
converts from a given representation to another.

Beta division

In a given finite field whose size is, the maximum degree a poly-
nomial in the field can achieve is m-1. When multiplying two poly-

nomials in the field, the degree of the obtained polynomials may 
exceed the set limit. To ensure the multiplication remains within 
the field, we take the polynomial modulo a primitive polynomial 
of degree.

This module accepts a primitive polynomial (As a linked list), 
a power of β, and a Boolean array of size m, where the answer is 
stored. If the array[k] is set to true, this means that the term 𝛽 is 
in the result. To reduce polynomials, one must reduce each term 
individually and add them to obtain the result.

Data representation

To implement the algorithms, a polynomial representation is 
needed. A linked list representation would cause the polynomial 
to be stored in chunks across memory, which would increase the 
number of page faults incurred, especially when dealing with large 
polynomials. Therefore, we decided to represent the polynomial 
using a data structure called ‘pol’. This structure was implemented 
as a dynamic array of integers, each term of the polynomial can be 
represented in the following manner:

(N,,,…,, E)

N: Number of elements in the term (k+ 1). This is used to mark 
the position of the exponent in this term, since they are all integers 
and are otherwise indistinguishable. The degree of the β variable 
present in the coefficient of the term. These should be stored in de-
scending order. In a finite field of size=, K can be at most m. E: The 
exponent of this term.

To add two polynomials, we merge the terms of the two poly-
nomials in descending order of exponents. In the case where two 
exponents are the same, their coefficients are also merged in de-
scending order as well. In the case where the two coefficients share 
a term 𝛽, this term is not included in their merge. If the merge of
the two coefficients yields 0 (the two coefficients are equal), their 
exponent is not added in the merge of the two polynomials.

In addition to the array of integers, the data structure has two 
other members, one which represent the size of the array in mem-
ory and the other representing the last filled index.
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Data type to hold list of polynomials

The algorithms we are discussing return a list of polynomials 
rather than a single one. Therefore, we need to define a data type 
that is a list polynomials, along with the ability to concatenate two 
lists. This method accepts two pointers to polynomial lists and re-
turns a pointer to a new, dynamically allocated list that is the con-
catenation of the supplied lists. The new list contains the elements 
of the first list, followed by the elements of the second list.

Taylor series expansion

This method accepts a pointer to a polynomial, an integer n and 
another integer t, where the polynomial is of degree less than n. It 
returns a pointer to a list of polynomials that represent the Taylor 
expansion of the polynomial at 𝑥 𝑥).

This expansion is a finite expansion, and has exactly L =ceiling 
(n/t) polynomials. To obtain the original polynomial, the first poly-
nomial is multiplied by 𝑥 𝑥), the second is multiplied by 𝑥 𝑥) … the
polynomial is multiplied by 𝑥 𝑥). This algorithm is recursive with
the base case occurring when n is less than t. At that point, the algo-
rithm inserts the polynomial in a list and returns the list. The final 
answer is a concatenation of the lists obtained from the base case.

Evaluation

This subroutine is a crucial part of the FFT algorithm. It takes 
a polynomial, an integer and a field size m and evaluates the poly-
nomial at a certain point specified by s and the primitive polyno-
mial associated with the given field. To evaluate the polynomial, we 
need to make use of a list of β polynomials which can be generated 
from a primitive polynomial. These tables, along with the primitive 
polynomials, are stored in a header file “tables. h”. The tables are 
created on the heap at the beginning of the program and are de-
allocated at the end.

The evaluation step requires multiplying two polynomials in β. 
After the multiplication, we use the Beta division module to obtain 
the appropriate element in the finite field as an array of Booleans. 
The final step of this subroutine converts the Boolean array repre-
sentation to our chosen representation.

Structure of the program

The user will create a polynomial using the representation that 
we have provided and call the method that we have defined to com-
pute the FFT. If the degree of the polynomial is sufficiently small, a 
list of polynomials will be returned. If not, the algorithm will use 
the Taylor expansion of the polynomial to create a matrix and then 
recursively call itself on the columns and the rows of this matrix. 
The results from each row and each column are concatenated to-
gether and returned back to the user as a list of polynomials.

Sample output

Figure d

Parallelization

At the first step the data is divided equally among all MPI pro-
cesses (sent to appropriate indices to eliminate need for trans-
position at the first step). Data is distributed over all MPI nodes, 
which then perform the FFT on their data (columns) and update 
their values. Then they all transpose their own matrices (makes 
sending easier, chunks instead of individual) before sending data 
to each other. Finally, they perform the final FFTs over their data; 
all processors send their lists to processor 0 which then prints out 
the ending result.

Approaches to parallelization

While computing FFT, data elements are exchanged very fre-
quently in order to compute the butterfly relation. Because of this, 
parallel computing models (except for shared memory) must take 
care of handling communication delays across multiple processors.
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There are many forms of parallel architectures available. In 
shared memory multiprocessors all the processes can access all 
memory while in distributed parallelization different processes 
have access to different portions of memory. Message based multi-
processors is also a form of parallelization, recently the Message 
Passing Interface (MPI) has become a very popular form of writing 
parallel programs for massively parallel multi-processors.

One of the approaches to parallelize FFT is to perform all but-
terfly computations in parallel, and to gather the results at the end 
of each stage. The issue with this approach is the communication 
overhead because at the end of each stage all the processors have 
to communicate with each other, and the system will not proceed 
to the next stage until all the output from the earlier stage is pro-
duced. This is a very good candidate to be implemented in a shared 
memory system.

Another approach is to increase the scope of parallelization with 
stages, in the first stage only one processor will be active while all 
the other available processors are idle. However, the number of 
processors used will be increased in the following stages.

In order to reduce the communication overhead, the “Commu-
nicate twice” algorithm is used. Since the next processor is aware 
of the data that it is waiting for from the earlier processor, it could 
perform the same computation that the previous processor is per-
forming and then use the result for its stage computation. Some 
processors could be performing similar and repeated computa-
tions, but this approach is efficient for fast processor nodes.

This can be implemented using any number of processors. When 
we cannot divide the data elements at any stage, then the processor 
that was supposed to divide the data set will continue to perform 
computations on the entire data set from the previous stage. In this 
approach, we map out the entire communication for each stage for 
all the processors before beginning to compute the FFT.

Blocking MPI communication was used instead of non-blocking 
communication as it will not make any difference in performance 
in this case and just increase the amount of memory required be-
cause of the requirements of MPI COMM_WORLD.Isend() method.

Comparison of the Parallelizing Algorithms

Figure e: Comparison of the algorithm implemented in 4  
processor system with the “Communicate twice algorithm” and 

with “Scope of parallelization increases with stages”.

Clearly, the Communicate twice algorithm beats the other one.

The table below describes a static heuristic to determine the 
number of processors to use given the input size in a MPI based 
cluster.

Input size range Number of processors to use
1-256 1

256-16384 2
16384-1.5×105 4
1.5×105-1×106 8

Table 1

Empirical Results

Serial Program Runtime

Degree FFT Length Run Time in seconds

6 24 0.01

17 28 0.18

53 28 1.14

110 28 2.05

250 28 2.13

520 216 563.01

1200 216 738.60

2000 216 881.39

3000 216 886.68

Table 2
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The above able shows the run time of the serial program (with-
out parallelization) given different degrees and FFT lengths. It’s 
evident that the running time increases as the degree increases.

Runtime after segmentation

The above results doubt the code implementation in the first 
place, so time segmentation was needed.

Evaluation is broken down into preparation time (omitted here) 
and calculation time. Calculation time is further broken down into 
addition and multiplication. Only multiplication is shown here as 
it is the dominant factor. The tested degrees are 1200, 1500, and 
2000.

Degree in x: 1200 GF: 232 

Total runtime = 74.3082 seconds

Total time Percentages
Evaluation 81.9 93%

Total Calculation Time 79.03
Multiplication 68.66 78.35%
Transposition 0.05 0.06%

Taylor Expansion 0.983 1.12%

Table 3

Degree in x: 1500, GF: 232 
Total runtime = 87.63 seconds

Total time Percentages

Evaluation 81.9 93%
Total Calculation Time 79.03

Multiplication 68.66 78.35%
Transposition 0.05 0.06%

Taylor Expansion 0.983 1.12%
Conversion 0.43 0.49%

Table 4

Degree in x: 2000 GF: 232 
Total Runtime = 88.13 seconds

Total time Percentages

Evaluation 82.1 93.158%
Total Calculation time 79.4

Multiply 68.66 77.908%
Transposition 0.05 0.057%

Taylor Expansion 0.983 1.115%
Conversion 0.43 0.488%

Table 5

Runtime for Large Degrees after Further Segmentation.

The time was segmented further. The tested degrees are 10,0
00|20,000|30,000|40,000|50,000 “n” is the number of points the 
polynomial will be evaluated at, so the degree of the polynomial 
must be less than n.

Degree of the polynomial (x10, 000): n= 65,536, GF: 64

Total time: 89.468451 seconds
Evaluation: total time: 79.018496 seconds
Convert to a general polynomial for multiplication: 1.330156 sec-
onds
Arithmetic: 73.741317 seconds

•	 Getting first term to multiply with: 1.934307 seconds
•	 Power (degree): time spent: 0.992673
•	 Multiplication time: 6.943383 seconds
•	 Division time: 39.841526
•	 Reduce time: 18.955932 seconds
•	 Evaluation end time: 1.292979 seconds

Taylor: 2.391822 seconds
Conversion: 0.644655 seconds
Transposition: 0.047351 seconds
FINAL STEP TIME (concatenation): 4.998192 seconds
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Degree of the polynomial (x20, 000): n= 65,536 GF: 64

Total time: 75.681523 seconds
Evaluation: total time: 66.522444 seconds
Convert to a general polynomial for multiplication: 1.216757 sec-
onds
Arithmetic: 61.587403 seconds

•	 Getting first term to multiply with: 1.426823 seconds
•	 Power (degree): time spent: 0.869765
•	 Multiplication time: 5.780981 seconds
•	 Division time: 33.482148
•	 Reduce time: 15.814538 seconds

Evaluation end time: 1.125878 seconds
Taylor: 1.678628 seconds
Conversion: 0.551574 seconds
Transposition: 0.045514 seconds
FINAL STEP TIME (concatenation): 4.877057 seconds

Degree of the polynomial (x30, 000) n= 65,536 GF: 64

Total time: 77.489933 seconds
Evaluation: total time: 68.152884seconds
Convert to a general polynomial for multiplication: 1.223030sec-
onds
Arithmetic: 63.179807 seconds

•	 Getting first term to multiply with: 1.467617seconds
•	 Power (degree): time spent 0.893853
•	 Multiplication time: 5.927357 seconds
•	 Division time: 34.356698
•	 Reduce time: 16.216129 seconds

Evaluation end time: 1.146678seconds
Taylor: 1.787188 seconds
Conversion: 0.560490 seconds
Transposition: 0.046106 seconds
FINAL STEP TIME (concatenation):4.893375 seconds

Degree of the polynomial (x40, 000) n= 65,536 GF: 64

Total time: 76.134272 seconds
Evaluation: total time: 66.935502 seconds
Convert to a general polynomial for multiplication: 1.219473 sec-
onds
Arithmetic: 61.980878 seconds

•	 Getting first term to multiply with : 1.440934 seconds
•	 Power (degree) : time spent 0.876509
•	 Multiplication time: 5.821588 seconds
•	 Division time:33.688455
•	 Reduce time: 15.914761seconds

Evaluation end time: 1.130903 seconds
Taylor: 1.787188
Conversion: 0.560490
Transposition: 0.046106
FINAL STEP TIME (concatenation):4.893375

Degree of the polynomial (x 50, 000) n= 65,536 GF: 64

Total time: 80.527825 seconds
Evaluation: total time: 70.878010 seconds
Convert to a general polynomial for multiplication: 1.226665 sec-
onds
Arithmetic: 65.875284 seconds

•	 Getting first term to multiply with : 1.520289seconds
•	 Power (degree) :0.927680
•	 Multiplication time: 6.183681 seconds
•	 Division: 35.848519
•	 Reduce time: 16.905305 seconds

Evaluation end time: 1.167658seconds
Taylor: 1.996446
Conversion: 0.586650 seconds
Transposition: 0.045994 seconds
FINAL STEP TIME (concatenation): 4.895934 seconds.
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This table shows the percentages of the time consumed by ev-
ery method.

Method Percentage
Evaluation 88.59%

Evaluation end time 1.459%
Taylor 2.49 %

Conversion 0.73%
Transposition 0.057%
Concatenation 6.1199%

Table 6

The time segmented over the evaluation time can be summa-
rized by the below table which shows the percentages of the time 
consumed by every method at the arithmetic phase.

Method Percentage
First Term 2.3%

Power 1.408%
Multiplication 9.386%

Division 54.4187%
Reduce 25.654%

Table 7

Performance of the program

The below graphs and tables show the FFT serial algorithm per-
formance with and without matrix transposition.

Keywords

•	 L1 cache miss ratio= L1-dcache-loads / L1-dcache-load-
misses

•	 Branch misprediction ratio= branch-misses/branch-in-
structions

Explanation

During the execution of certain programs there are places where 
the program execution flow can continue in several ways; these are 
called branches, or conditional jumps.

The CPU uses a pipeline which allows several instructions to be 
processed at the same time. When the code for a conditional jump 
is read we do not know yet the next instruction to execute and in-
sert into the execution pipeline. This is where branch prediction 
comes in. Branch misprediction occurs when a CPU mispredicts the 
next instruction to process in branch prediction.

Case 1

Polynomial of degree 520 n=65536
GF= 64

Event-name Without matrix 
transposition

With matrix 
transposition

CPU-cycles 2,193,468,010,014 2,194,145,260,022
instructions 3,698,446,719,817 3,697,179,220,419

cache-references 366,886,017 343,884,206
cache-misses 15,817,918 15,393,933

branch-instructions 563,043,373,262 562,765,944,034
branch-misses 2,558,673,550 2,589,657,405

bus-cycles 56,322,337,940 56,332,772,079
L1-dcache-loads 2,017,858,910,433 2,017,026,179,171
L1-dcache-load-

misses
384,228,167 386,480,719

L1-dcache-stores 323,665,757,681 323,353,365,872
L1-dcache-store-

misses
229,960,900 231,344,155

Table 8

Case 2

Polynomial of degree 250 n=256
GF= 64

Case 3

Polynomial of degree 110 n=256
GF= 64

Case 4

Polynomial of degree 53 n=256
GF= 32
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Event Name Without matrix 
transposition

With matrix 
transposition

CPU-cycles 8,161,909,071 8,189,436,498
instructions 13,686,272,124 13,735,624,755

cache-references 1,542,568 1,105,916
cache-misses 29,468 17,258

branch-instructions 2,077,395,578 2,079,959,524
branch-misses 8,981,676 9,030,479

bus-cycles 209,993,408 210,745,762
L1-dcache-loads 7,527,538,026 7,560,537,057

L1-dcache-load-misses 1,143,744 1,044,672
L1-dcache-stores 1,170,401,934 1,173,295,772

L1-dcache-store-misses 669,412 651,673

Table 9

Event Name Without matrix 
transposition

With matrix 
transposition

CPU-cycles 826,615,299 837,354,461

instructions 1,464,547,751 1,463,360,275

cache-references 119,248 134,029

cache-misses 26,921 26,059

branch-instructions 219,821,118 219,156,654

branch-misses 2,927,846 3,000,674

bus-cycles 21,462,852 24,158,737

L1-dcache-loads 692,798,833 708,064,919

L1-dcache-load-misses 131,347 180,819

L1-dcache-stores 150,852,880 155,195,655

L1-dcache-store-misses 116,660 139,699

Table 10

Case 5

Polynomial of degree 17 n=256
GF= 64

Case 6

Polynomial of degree 6 n=16
GF= 32

Event Name Without matrix 
transposition

With matrix  
transposition

CPU-cycles 4,421,989,961 4,425,418,090
instructions 7,432,963,707 7,436,855,738

cache-references 1,148,443 877,996
cache-misses 24,471 12,639

branch-instructions 1,122,114,787 1,118,566,337
branch-misses 4,892,571 4,890,994

bus-cycles 113,900,786 114,354,419
L1-dcache-loads 4,059,008,253 4,069,216,932

L1-dcache-load-misses 621,772 655,535
L1-dcache-stores 639,134,629 647,647,211
L1-dcache-store-

misses
381,899 416,739

Table 12

Event Name Without matrix 
transposition

With matrix 
transposition

CPU-cycles 731,899,581 717,187,838
instructions 1,293,806,536 1,266,444,766

cache-references 83,502 86,941
cache-misses 18,060 11,162

branch-instructions 192,885,703 191,895,217
branch-misses 2,606,660 2,642,066

bus-cycles 20,384,651 19,039,016
L1-dcache-loads 617,259,028 633,458,627
L1-dcache-load-

misses
106,955 116,621

L1-dcache-stores 130,129,567 131,271,138
L1-dcache-store-

misses
62,530 73,300

Table 11

The table below compares the run times of FFT with and with-
out matrix transposition. An improvement in the running time can 
be noticed.
Note GF=64.
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Event Name Without matrix  
transposition

With matrix 
transposition

CPU-cycles 10,781,711 20,070,172

instructions 18,251,289 24,653,384

cache-references 39,575 69,115

cache-misses 6,989 7,534

branch-instructions 3,751,765 1,194,815

branch-misses 80,789 36,551

bus-cycles 1,946,153 814,768

L1-dcache-loads 12,552,270 20,827,214

L1-dcache-load-misses 17,995 40,723

L1-dcache-stores 2,635,962 8,029,156

L1-dcache-store-misses 1,135 60,796

Table 13

Degree Time for Naïve FFT in 
seconds

Time for Transposed FFT in 
seconds

10,000 87.076441 86.545085
20,000 74.410854 74.172684
30,000 75.786633 75.315532
40,000 74.287920 74.063398
50,000 78.769958 78.412049

Table 14

Serial Vs Parallel

FFT of length 216, field of size 264

Figure f

Degree Time of serial  
program

Time of parallel 
(4 nodes) program

10,000 86.54 21.45
20,000 74.17 18.61
30,000 75.31 18.81
40,000 74.06 18.78
50,000 78.41 19.41

Table 15

Using the serial program, the maximum time consumed is ap-
proximately 90 seconds, so for a bigger matrix of size 65,536 
65,536 the time consumed will be approximately 5,898,240 sec-
onds (68.266 days).

Using the parallel program, the maximum time consumed is ap-
proximately 20 seconds. An FFT of size 232 which is approximately 
4 billion would have to perform 216 FFTs of size 216 on the columns 
and the same number over the rows. In parallel, the work will take 
only half an hour (26 times faster than the serial FFT) [1-17].

Thus, there is a clear improvement in the run time when the 
program is parallelized.

Parallel program runtimes

Processes Time
2 44.10
4 21.3
8 10.8

16 7.86
32 5.62

Table 16
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Run time of the parallelized FFT Program is decreasing as the 
number of processes increases.

Chapter 7 Conclusion and Future Work

Fast Fourier Transform (FFT) is used widely in many scientific, 
engineering and mathematical applications. In some cases, it is 
used to analyze a huge set of input data. Hence, parallel FFT algo-
rithms are desirable.

This paper establishes that FFT algorithms can be parallelized 
and we can also reduce the execution time. The “communicate 
twice” algorithm reduces runtime considerably than the other al-
gorithms used in, and it can be implemented using any number of 
processors. But, the engineering compromise here is that it is not a 
good cluster citizen because it increases the load of the processor 
and increases the cumulative CPU cycles spent on the operation.

The project used the FFT algorithm proposed by Shuhong Gao 
and Todd Mateer which runs in O(log n x log (log n)) time. The 
implementation was divided into several modules. Matrix transpo-
sition was the first module to be implemented; there was a clear 
improvement in the running time of the cache-oblivious matrix 
transposition compared to the naïve one. Sparse representation 
was used to represent the polynomial data type, and a converter 
to convert between sparse and dense representation was created. 
Also, a data type to hold list of polynomials was developed.

The paper discussed some approaches to parallelization and 
chooses the “communicate twice” algorithm as the best one of 
them. The runtime of the serial FFT program was compared for 
different degrees and FFTs lengths. Further segmentation of the 
running time was done in order to run the program on high de-
grees. Also, the performance was compared with and without ma-
trix transpositions. Indeed, with matrix transposition the perfor-
mance was better. Finally, the run time of the serial FFT program 
was compared to that of the parallelized program for high degrees. 
It’s evident that the time taken by the parallel program is much less 
than that taken by the serial one, and it decreases as the number of 
processes increases.

Future improvements of division and multiplication algorithms 
need to be taken into account if we need to intensively test FFTs 
of much higher degrees. Also, we need to work on compact data 
representation.
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