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This paper argues that the 5th generation of programming languages will be modelware, i.e. programming will be replaced by mod-
eling, which will significantly boost productivity and reduce errors, as there are already powerful tools that automatically translate 
conceptual models into programs of the 3rd and 4th generations. 

Introduction

Some 80 years ago, the first generation of computer program-
ming languages (machine code) was born [21]. Some 10 years lat-
er, the second generation (assemblers/autocoders) appeared. The 
third generation (high-level programming languages) started ex-
actly 66 years ago, with IBM’s Fortran and is still flourishing today. 
The fourth one, out of which only SQL remained (plus Datalog, but 
only academically, not commercially), was born exactly 20 years 
later [7] (some authors include in it object-oriented programming 
languages too, but, being imperative, algebraic, procedural ones 
like all other 3rd generation ones, while SQL is declarative, based 
on first-order logic, we consider them belonging to the 3rd genera-
tion as well). 

Only 8 years later (i.e. some 38 years ago already), Japan 
launched a 5th Generation Project (soon paralleled by similar ones 
in the U.S., U.K., and E.U.), based basically on massively parallel 
computing and logic programming (KL1, based on Concurrent Pro-
log, just another 4th generation declarative, first-order logic pro-
gramming language) over knowledge bases, including techniques 
from artificial intelligence (AI), fuzzy logic, and neural networks 
[26]. After some 10 years, despite huge funding, this project failed, 
mainly because, from the hardware point of view, better and much 
cheaper architectures emerged and, from the software one, that it 
was highly dependent on AI technology (which was in its infancy 
at that time) and on the not at all efficient resolution evaluation 
paradigm of Prolog.

 Anyhow, this evolution from binary coding to higher and high-
er abstraction levels will always continue for several reasons, out 

of which the main ones are the general desire of mankind to ever 
develop better and better tools allowing people to be much more 
productive with less effort (i.e. “we want”) and the experience got 
so far (i.e. “we can”).

Conceptual models as programs
From antique geographic maps to the Nash Equilibrium theory, 

from Maxwell’s equations of the electro-magnetic waves (estab-
lished some 200 years before discovering of the radiophone…) to 
the Big Bang theory, etc., mankind always designed and used con-
ceptual models. For simplicity, we consider conceptual models to 
be well-defined, purposeful, coherent, and self-sufficient abstract 
tools formulated in some well-structured language.

Even if still mostly used only to inspire computer programming 
and/or to document and understand legacy code, from algorithm 
workflow diagrams (flowcharts, [17]) to Entity-Relationship ones 
[8,22], and to UML [4] and graph [2] ones, computer science too is 
taught and applied with the help of conceptual models.

Conceptual modeling eventually emerged as a compulsory step 
in the software development process (e.g. [13,22,25]). Little by 
little, it became clear that, by associating to it corresponding code 
generators, conceptual modeling will become the 5th generation of 
programming languages (e.g. [29,33]).

For example, since some 15 years ago already, model-driven 
programming was considered (e.g. [11,32]). Then, for example, 
Broy., et al. [5] proposed a unification of modeling and program-
ming. This idea was not at all new: 18 years earlier, for example, 
Hürlimann [18] introduced modeling languages that combine de-
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clarative and algorithmic aspects of programming. One such exam-
ple, designed for mathematical programming, is AMPL [15]. Then, 
for example, Völter [34] discussed it again in that technological 
time and model-driven context.

Moreover, several steps were already taken for automatically 
generating code in 3rd and 4th generation programming languages 
from such models. For example, a plethora of model-driven tools 
(e.g. [31]) were already developed, e.g., Xpand [12], PathMATE 
[30], SMARTGenerator [3], Acceleo [1], Integranova [20], Magic-
Draw [27], openMDX [28], Rhapsody [19]. Except for MagicDraw, 
all of them do not support databases (dbs), but only software ap-
plications. Dually, products like the famous erwin suite [14] only 
support dbs.

“Modelware” has long been used for the building of models and 
associated modelling tools for software systems [6,35,36]. The 
term “modelware” is also used in AI, but with a different meaning, 
namely: a reused object that makes the machine learning model 
reusable and reproducible [37]. 

More and more of us understand today by modelware a de-
clarative executable problem domain model of what (not how) 
the computer should do. Its input should be a model expressed in 
some data and workflow formalism and its output a corresponding 
db application for managing data according to the workflow and 
the business rules formalized in the model as constraints. 

It was proven that, through the use of sets of innovative mod-
eling techniques, supported by integrated model-driven devel-
opment (mdd) tool suites, orchestrated by mdd processes and 
methodologies that enable scalable model-driven development 
software, productivity increases, while error possibilities (and 
hence, debugging) dramatically decreases (e.g. [10]).

For example, the (Elementary) Mathematical Data Model ((E)
MDM, [23,25]) is such a formalism – an example of a 5th generation 
programming language. With both its Entity-Relationship Data 
Model and, especially, (E)MDM graphic user interfaces (GUI), Mat-
Base is one of the modelware tools that saves programming, letting 
its users to solely focus on conceptual data modeling [24]. Start-
ing from a model, both of its versions (MS Access and C# and SQL 
Server, respectively) automatically generates both the correspond-
ing db, GUI, and event-driven methods in object-oriented classes 
for enforcing the non-relational constraints [23,25].

Dually, however, it is also true that some authors advocate the 
contrary: for example Cleaveland [9], in the context of embedded-
software development, states that programming should rather be 

considered a form of modeling, with the programming language 
constituting an executable metalanguage, in which models of dy-
namical systems are encoded and simulated, or “run”. Modeling 
instead plays a design role, with some models used as a basis for 
the generation of code. It is true that the embedded-software con-
text is a very peculiar one, due to its drastically limitations in both 
available memory size and required execution speed, but also to its 
significant degree of simplicity as compared to general information 
systems. 

Conclusion
The strive for efficient software development, both in produc-

tivity gain and in the reduction of errors, needs a higher-level pro-
gramming paradigm than the current standard ones (belonging to 
the 3rd and 4th generations). The first attempt in this direction, done 
some 40 years ago, failed as it was too early both conceptually and 
technologically. 

Latest developments in this field, both academical and commer-
cial, strongly suggest that the 5th generation level will be the mod-
elware in its latest coordinates, i.e. programming will solely consist 
in modeling, with model-driven system software automatically 
translating conceptual models into 3rd and 4th language generation 
programs.

For example, [16] reports that in a project developed using such 
an approach, productivity increased more than 10 times and, as an 
expected bons, there has also been a 90% reduction of the errors.
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