
ACTA SCIENTIFIC COMPUTER SCIENCES

 Volume 2 Issue 9 September 2020

On Modelware as the 5th Generation of Programming Languages

Christian Mancas*
DATASIS ProSoft srl, Department of Computer Science and Mathematics, Ovidius
University, Bucharest, Romania
*Corresponding Author: Christian Mancas, DATASIS ProSoft srl, Department of
Computer Science and Mathematics, Ovidius University, Bucharest, Romania.

Review Article

Received: July 16, 2020

© All rights are reserved by Christian
Mancas.

Published: August 19, 2020

Abstract

Keywords: Modelware; Model-Driven Development; 5th Generation Programming Languages; Conceptual Models; The (Elementary)
Mathematical Data Model; MatBase

This paper argues that the 5th generation of programming languages will be modelware, i.e. programming will be replaced by mod-
eling, which will significantly boost productivity and reduce errors, as there are already powerful tools that automatically translate
conceptual models into programs of the 3rd and 4th generations.

Introduction

Some 80 years ago, the first generation of computer program-
ming languages (machine code) was born [21]. Some 10 years lat-
er, the second generation (assemblers/autocoders) appeared. The
third generation (high-level programming languages) started ex-
actly 66 years ago, with IBM’s Fortran and is still flourishing today.
The fourth one, out of which only SQL remained (plus Datalog, but
only academically, not commercially), was born exactly 20 years
later [7] (some authors include in it object-oriented programming
languages too, but, being imperative, algebraic, procedural ones
like all other 3rd generation ones, while SQL is declarative, based
on first-order logic, we consider them belonging to the 3rd genera-
tion as well).

Only 8 years later (i.e. some 38 years ago already), Japan
launched a 5th Generation Project (soon paralleled by similar ones
in the U.S., U.K., and E.U.), based basically on massively parallel
computing and logic programming (KL1, based on Concurrent Pro-
log, just another 4th generation declarative, first-order logic pro-
gramming language) over knowledge bases, including techniques
from artificial intelligence (AI), fuzzy logic, and neural networks
[26]. After some 10 years, despite huge funding, this project failed,
mainly because, from the hardware point of view, better and much
cheaper architectures emerged and, from the software one, that it
was highly dependent on AI technology (which was in its infancy
at that time) and on the not at all efficient resolution evaluation
paradigm of Prolog.

 Anyhow, this evolution from binary coding to higher and high-
er abstraction levels will always continue for several reasons, out

of which the main ones are the general desire of mankind to ever
develop better and better tools allowing people to be much more
productive with less effort (i.e. “we want”) and the experience got
so far (i.e. “we can”).

Conceptual models as programs
From antique geographic maps to the Nash Equilibrium theory,

from Maxwell’s equations of the electro-magnetic waves (estab-
lished some 200 years before discovering of the radiophone…) to
the Big Bang theory, etc., mankind always designed and used con-
ceptual models. For simplicity, we consider conceptual models to
be well-defined, purposeful, coherent, and self-sufficient abstract
tools formulated in some well-structured language.

Even if still mostly used only to inspire computer programming
and/or to document and understand legacy code, from algorithm
workflow diagrams (flowcharts, [17]) to Entity-Relationship ones
[8,22], and to UML [4] and graph [2] ones, computer science too is
taught and applied with the help of conceptual models.

Conceptual modeling eventually emerged as a compulsory step
in the software development process (e.g. [13,22,25]). Little by
little, it became clear that, by associating to it corresponding code
generators, conceptual modeling will become the 5th generation of
programming languages (e.g. [29,33]).

For example, since some 15 years ago already, model-driven
programming was considered (e.g. [11,32]). Then, for example,
Broy., et al. [5] proposed a unification of modeling and program-
ming. This idea was not at all new: 18 years earlier, for example,
Hürlimann [18] introduced modeling languages that combine de-

Citation: Christian Mancas. “On Modelware as the 5th Generation of Programming Languages”. Acta Scientific Computer Sciences 2.9 (2020): 24-26.

clarative and algorithmic aspects of programming. One such exam-
ple, designed for mathematical programming, is AMPL [15]. Then,
for example, Völter [34] discussed it again in that technological
time and model-driven context.

Moreover, several steps were already taken for automatically
generating code in 3rd and 4th generation programming languages
from such models. For example, a plethora of model-driven tools
(e.g. [31]) were already developed, e.g., Xpand [12], PathMATE
[30], SMARTGenerator [3], Acceleo [1], Integranova [20], Magic-
Draw [27], openMDX [28], Rhapsody [19]. Except for MagicDraw,
all of them do not support databases (dbs), but only software ap-
plications. Dually, products like the famous erwin suite [14] only
support dbs.

“Modelware” has long been used for the building of models and
associated modelling tools for software systems [6,35,36]. The
term “modelware” is also used in AI, but with a different meaning,
namely: a reused object that makes the machine learning model
reusable and reproducible [37].

More and more of us understand today by modelware a de-
clarative executable problem domain model of what (not how)
the computer should do. Its input should be a model expressed in
some data and workflow formalism and its output a corresponding
db application for managing data according to the workflow and
the business rules formalized in the model as constraints.

It was proven that, through the use of sets of innovative mod-
eling techniques, supported by integrated model-driven devel-
opment (mdd) tool suites, orchestrated by mdd processes and
methodologies that enable scalable model-driven development
software, productivity increases, while error possibilities (and
hence, debugging) dramatically decreases (e.g. [10]).

For example, the (Elementary) Mathematical Data Model ((E)
MDM, [23,25]) is such a formalism – an example of a 5th generation
programming language. With both its Entity-Relationship Data
Model and, especially, (E)MDM graphic user interfaces (GUI), Mat-
Base is one of the modelware tools that saves programming, letting
its users to solely focus on conceptual data modeling [24]. Start-
ing from a model, both of its versions (MS Access and C# and SQL
Server, respectively) automatically generates both the correspond-
ing db, GUI, and event-driven methods in object-oriented classes
for enforcing the non-relational constraints [23,25].

Dually, however, it is also true that some authors advocate the
contrary: for example Cleaveland [9], in the context of embedded-
software development, states that programming should rather be

considered a form of modeling, with the programming language
constituting an executable metalanguage, in which models of dy-
namical systems are encoded and simulated, or “run”. Modeling
instead plays a design role, with some models used as a basis for
the generation of code. It is true that the embedded-software con-
text is a very peculiar one, due to its drastically limitations in both
available memory size and required execution speed, but also to its
significant degree of simplicity as compared to general information
systems.

Conclusion
The strive for efficient software development, both in produc-

tivity gain and in the reduction of errors, needs a higher-level pro-
gramming paradigm than the current standard ones (belonging to
the 3rd and 4th generations). The first attempt in this direction, done
some 40 years ago, failed as it was too early both conceptually and
technologically.

Latest developments in this field, both academical and commer-
cial, strongly suggest that the 5th generation level will be the mod-
elware in its latest coordinates, i.e. programming will solely consist
in modeling, with model-driven system software automatically
translating conceptual models into 3rd and 4th language generation
programs.

For example, [16] reports that in a project developed using such
an approach, productivity increased more than 10 times and, as an
expected bons, there has also been a 90% reduction of the errors.

Bibliography

1. Acceleo. Acceleo (2019).

2. Bang-Jensen J and Gutin GZ. Digraphs: Theory, Algorithms and
Applications (2nd edition). Springer-Verlag, London (2009).

3. BITPlan. SMARTGenerator (2018).

4. Booch G., et al. The Unified Modeling Language User Guide
2nd ed. Addison-Wesley Professional/Pearson Education, NJ
(2005).

5. Broy M., et al. “Towards a Unified View of Modeling and Pro-
gramming”. In: Margaria T., Steffen B. (eds) Leveraging Ap-
plications of Formal Methods, Verification and Validation:
Discussion, Dissemination, Applications. ISoLA 9953 (2016):
238-257.

6. Bryant BR. “Grammarware, Semantics and Modelware” (2019).

7. Chamberlin DD and Boyce RF. “SEQUEL: A Structured English
Query Language”. In: Proc. ACM SIGFIDET Workshop on Data
Description, Access and Control (1974): 249-264.

Citation: Christian Mancas. “On Modelware as the 5th Generation of Programming Languages”. Acta Scientific Computer Sciences 2.9 (2020): 24-26.

25

On Modelware as the 5th Generation of Programming Languages

https://www.eclipse.org/acceleo/
https://wiki.bitplan.com/index.php/SmartGENERATOR
https://fedcsis.org/resources/keynotes/2013/download/grammarware_semantics_and_modelware.pdf
https://usi-pl.github.io/pl/fa-2014/papers/chamberlin74.pdf
https://usi-pl.github.io/pl/fa-2014/papers/chamberlin74.pdf
https://usi-pl.github.io/pl/fa-2014/papers/chamberlin74.pdf

• Prompt Acknowledgement after receiving the article
• Thorough Double blinded peer review
• Rapid Publication
• Issue of Publication Certificate
• High visibility of your Published work

Assets from publication with us

Website: www.actascientific.com/
Submit Article: www.actascientific.com/submission.php
Email us: editor@actascientific.com
Contact us: +91 9182824667

8. Chen PP. “The entity-relationship model: Toward a unified
view of data”. ACM TODS 1.1 (1976): 9-36.

9. Cleaveland R. “Programming is modelling”. In: Margaria T.,
Steffen B. (eds) Leveraging Applications of Formal Methods,
Verification and Validation. Modeling. ISoLA 11244 (2018):
150-161.

10. Cordis. Modelware: a new approach to model-driven develop-
ment” (2005).

11. Cretu LG and Dumitriu F. Model-Driven Engineering of Infor-
mation Systems. Principles, Techniques, and Practice. Apple
Academic Press, Palm Bay, FL (2014).

12. Eclipse Foundation. Xpand (2016).

13. Embley DW and Thalheim B. Handbook of Conceptual Model-
ling. Theory, Practice and Research Challenges. Springer, Ber-
lin, Germany (2011).

14. erwin. erwin EDGE Portfolio (2020).

15. Fourer R., et al. AMPL. A Modeling Language for Mathematical
Programming 2nd ed. Duxbury/Thomson (2003).

16. Genicore AB. Modelware Is the New Software. Digitization of
Project Lazarus (2017).

17. Goldstine H and von Neumann J. Planning and coding of prob-
lems for an electronic computing instrument, Part II, Volume
1. In: Taub, A. (Ed., 1963), John von Neumann Collected Works.
5. Macmillan. (1974): 80-151.

18. Hürlimann T. “Modeling Languages: A New Paradigm of Pro-
gramming” (1998).

19. IBM. IBM Rational Rhapsody family (2020).

20. Integranova Software Solutions. Integranova (2020).

21. Knuth DE and Pardo LT. “Early development of programming
languages”. In: Encyclopedia of Computer Science and Tech-
nology. Marcel Dekker, NY 7 (1977): 419-493.

22. Mancas C. Conceptual Data Modeling and Database Design:
A Completely Algorithmic Approach. Volume I: The Shortest
Advisable Path. Apple Academic Press/CRC Press (Taylor and
Francis Group), Palm Bay, FL (2015).

23. Mancas C. “MatBase Constraint Sets Coherence and Minimali-
ty Enforcement Algorithms”. In: Benczur, A., Thalheim, B., Hor-
vath, T. (eds.), Proc. 22nd ADBIS Conf. on Advances in DB and
Inf. Syst., LNCS. Springer, Cham, Switzerland 11019 (2018):
263-277.

24. Mancas C. “MatBase - a Tool for Transparent Programming
while Modeling Data at Conceptual Levels”. In: Proc. 5th Int.
Conf. on Comp. Sci. and Inf. Techn. AIRCC Pub. Corp., Chennai,
India (2019): 15-27.

25. Mancas C. Conceptual Data Modeling and Database Design: A
Completely Algorithmic Approach. Volume II: Refinements for
an Expert Path. Apple Academic Press/CRC Press (Taylor and
Francis Group), Palm Bay, FL (in press) (2021).

26. Moto-oka T. Fifth Generation Computer Systems. North Hol-
land (1982).

27. No Magic. MagicDraw (2020).

28. openMDX. openMDX (2020).

29. Pastor O and Ruiz M. “From Requirements to Code: A Concep-
tual Model-based Approach for Automating the Software Pro-
duction Process”. International Journal of Conceptual Modeling
(2018): 274-280.

30. Pathfinder Solutions. PathMATE (2017).

31. Soukaina M., et al. “Model Driven Engineering (MDE) Tools: A
Survey”. American Journal of Science, Engineering and Technol-
ogy 3.2 (2018): 29-33.

32. Stahl T and Völter M. “Model-Driven Software Development.
Technology, Engineering, Management. John Wiley and Sons,
Chichester, U.K (2006).

33. Thalheim B and Jaakkola H. “Models as Programs: The Envi-
sioned and Principal Key to True Fifth Generation Program-
ming”. In: Proc. 29th European-Japanese Conf. (2019): 170-
189.

34. Völter M. “From Programming to Modeling - and Back Again”.
IEEE Software 28 (2011): 20-25.

35. Wimmer M and Kramler G. “Bridging grammarware and mod-
elware”. In: Proc. Satellite Events at the MoDELS 2005 Conf.,
LNCS 3844 (2005): 159-168.

36. Withears D., et al. “Software/Modelware Application Require-
ments (Panel)”. In: Proc. IEEE 1992 Winter Simulation Conf.
(1992): 205-210.

37. Zhao H., et al. “Domain-Specific Modelware: To Make the Ma-
chine Learning Model Reusable and Reproducible”. In: Proc.
12th ACM/IEEE Int. Symp. on Empirical Soft. Eng. and Mea-
sure., ACM, NY (2018).

Citation: Christian Mancas. “On Modelware as the 5th Generation of Programming Languages”. Acta Scientific Computer Sciences 2.9 (2020): 24-26.

26

On Modelware as the 5th Generation of Programming Languages

https://dl.acm.org/doi/10.1145/320434.320440
https://dl.acm.org/doi/10.1145/320434.320440
https://cordis.europa.eu/article/id/97188-modelware-a-new-approach-to-modeldriven-development
https://cordis.europa.eu/article/id/97188-modelware-a-new-approach-to-modeldriven-development
https://projects.eclipse.org/projects/modeling.m2t.xpand
https://erwin.com/products/
https://vanderbei.princeton.edu/307/textbook/AMPLbook.pdf
https://vanderbei.princeton.edu/307/textbook/AMPLbook.pdf
https://www.genicore.se/documents/STEW2017.pdf
https://www.genicore.se/documents/STEW2017.pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.4686&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.332.4686&rep=rep1&type=pdf
https://www.ibm.com/developerworks/downloads/r/rhapsodydeveloper/index.html
https://www.integranova.com/
https://aircconline.com/csit/abstract/v9n11/csit91102.html
https://aircconline.com/csit/abstract/v9n11/csit91102.html
https://aircconline.com/csit/abstract/v9n11/csit91102.html
https://aircconline.com/csit/abstract/v9n11/csit91102.html
https://www.nomagic.com/products/magicdraw
https://www.openmdx.org/
https://emisa-journal.org/emisa/article/view/194
https://emisa-journal.org/emisa/article/view/194
https://emisa-journal.org/emisa/article/view/194
https://emisa-journal.org/emisa/article/view/194
https://pathfindersolns.com/
https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=325&doi=10.11648/j.ajset.20180302.11
https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=325&doi=10.11648/j.ajset.20180302.11
https://www.sciencepublishinggroup.com/journal/paperinfo?journalid=325&doi=10.11648/j.ajset.20180302.11
https://bernhard-thalheim.de/ModellingToProgram/LinkedDocuments/ModelsAsProgramsEJC2019proceeding.pdf
https://bernhard-thalheim.de/ModellingToProgram/LinkedDocuments/ModelsAsProgramsEJC2019proceeding.pdf
https://bernhard-thalheim.de/ModellingToProgram/LinkedDocuments/ModelsAsProgramsEJC2019proceeding.pdf
https://bernhard-thalheim.de/ModellingToProgram/LinkedDocuments/ModelsAsProgramsEJC2019proceeding.pdf
https://www.computer.org/csdl/magazine/so/2011/06/mso2011060020/13rRUy3gn5B
https://www.computer.org/csdl/magazine/so/2011/06/mso2011060020/13rRUy3gn5B
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/7508/1992_0021.pdf?sequence=1&isAllowed=y
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/7508/1992_0021.pdf?sequence=1&isAllowed=y
https://repository.lib.ncsu.edu/bitstream/handle/1840.4/7508/1992_0021.pdf?sequence=1&isAllowed=y
https://dl.acm.org/doi/10.1145/3239235.3267439
https://dl.acm.org/doi/10.1145/3239235.3267439
https://dl.acm.org/doi/10.1145/3239235.3267439
https://dl.acm.org/doi/10.1145/3239235.3267439

	_GoBack

