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A common theme in population genetics is to examine the pop-
ulation genetic structure [1]; which is the distribution of genetic 
variants, also known as genetic diversity, over space and time [2]. 
Changes in variant frequencies due to randomness is commonly 
known as genetic drift [3], which has the potential to result in re-
duction of genetic variation [4]. This differs from selective pres-
sure, which promotes fitter genotypes for survival [5]. The fun-
damental unit of genetic diversity is an allele [6], which can be 
defined as a variant form of a gene. Various factors; such as, popu-
lation size [7] and migration [8]; may result in changes to popula-
tion genetic variation. Studies have called for the monitoring and 
maintenance of genetic diversity [9] as it is a necessary compo-
nent for adaptation [10,11]. However, there has also been cases of 
increased fitness as a consequence of reduced diversity [12] as a 
result of genetic purging, which is the reduction or elimination of 
deleterious allele in the population [13]. 

As the study of population genetics is primarily observational 
and monitoring [14], simulation is often used to gain insights into 
the fate of evolving populations [15,16]. Computer simulation has 
also been used test predictions on genetic drift in education setting 
[17] and research setting [18,19]. A number of simulation tools 
had been developed for population genetics [20] but most require 
a firm understanding of the mathematical models of genetic drift. 
This results in substantial learning curve, which is not suitable as 
an educational tool. Andrews., et al. [21] suggests that 74.6% of 
biology undergraduates has at least one misconception on genetic 
drift, underpinning the importance of using simple tools for educa-
tion. Brewer and Zabinski [22] proposed that low-cost, hands-on 
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Introduction

Island is implemented as a command-line tool using Python 
3 and Python-Fire module (https://github.com/google/python-
fire), which aims to simplify the implementation of command-line 
interface in Python 3. This has been exemplified in previous tools 
[24,25]. The design of Island is predicated on simplicity of use. 
There are three steps to using Island to examine population genet-
ics. 

Firstly, a population is generated from a comma-delimited 
file containing allelic frequencies using gpop command. For 

Using island to examine population genetics

tools are the key to make abstract concepts, such as genetic drift, 
more intuitive to the student. This led to classroom exercises using 
beans and dice [15], or M&M chocolate candies [23] to teach popu-
lation genetics. Based on this principle, computational tools are 
merely a speed-up implementation as understanding population 
genetics should be underpinned by the fundamental principles of 
genetic diversity and randomness. 

In this communication, a Python-based command-line tool, Is-
land, is presented as a simple forward simulation tool for popu-
lation genetics based on Mendelian inheritance. Forward simula-
tions start from an initial population and track its evolution under 
various genetic models, over multiple generations [18]. A popula-
tion is generated as a file from set of allelic frequencies of various 
genes provided as a comma-delimited file. The population is then 
simulated over generations and each generation results in a popu-
lation file. Each generation can then be examined independently to 
observe changes in allelic frequencies over generations.
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example, the command-line statement, python island.

py gpop --populationfile=test_pop --ploidy=2 

--generation_count=0 --population_size=10 

--parameterfile=island_parameter.csv; takes the allelic 
frequency file, island_parameter.csv, to generate the population as 
a file, test_pop, of 10 organisms (population_size=10) where each 
organism is a diploid (ploidy=2) and the current generation count 
is zero to denote ancestral generation. The organisms are identi-
fied by an incremental number within the generation. The genera-
tion count is not used in the simulation but improves documenta-
tion of the simulation. 

The format of the parameter file of allelic frequencies is as fol-
lows: (a) A comma-delimited header row of gene name and allelic 
names but since the allelic names of each gene are different, the 
allelic names tend to be a running symbol of “AF1, AF2, …” to de-
note allelic frequency 1 and allelic frequency 2, respectively. (b) 
The allelic frequencies of each gene are represented as a comma-
delimited data row of gene name, followed by allelic frequencies. 
For example, ACTB,0.5,0.25,0.25 represents 50%, 25%, and 
25% of ACTB allele 1, 2, and 3, respectively. The names of alleles 
are not used in Island; instead, each allele of a gene is denoted by 
running incremental order of appearance. 

Secondly, a population is simulated using simulate 
command. For example, python island.py simu-

late --populationfile=test_pop --simulation_

type=simple --population_size=10 --genera-

tions=10; takes the population file test_pop to run a simple 
simulation (simulation_type=simple) for 10 generations (genera-
tions=10) where the population size at the end of each generation 
is fixed at 10 organisms (population_size=10). Currently, there 
is only simple simulation, which is one that (a) assumes diploid 
organisms, (b) one random crossover per chromosome pair, (c) 
crossover is generated prior to mating to simulate random haploid, 
(d) no mutation, (e) random mating without possibility of self-mat-
ing, (f) mating only within generation, and (g) population size may 
be changed. The change of population size is to cater for population 
bottleneck [26,27] and the rate of its subsequent recovery [28]. 
Each generation will generate a population file with incremental 
number; for example, in this case, test_pop.1 and test_pop.10 files 
will represent the population of the first and 10th generation of 
simulation respectively; which can then be used initiate further 
simulations if necessary.

Finally, each generation, represented by its population file, can 
be analysed independently and collated to examine changes in al-
lelic frequencies over generations. Currently, only tabulation of 
allelic counts is available. The command, python island.py 

tabulateCount --ploidy=2 --populationfile=test_

pop; analyses the population in test_pop file where each organism 
is a diploid (ploidy=2) to generate a table of expected and observed 
allelic counts for further statistical analyses.

Based on these steps, Island can be used to examine several in-
teresting hypotheses in population genetics; such as,

In summary, this communication presents the structure of Is-
land and its potential use in forward simulation of population 
genetics [18] from a simple description file of allelic frequencies. 
This is entirely based on Mendelian inheritance. Future work can 
expand on various simulation scenarios previously reviewed [20] 
and cater to non-Mendelian genetics, as well as interfacing with 
other simulation tools for selective pressure; such as, Avida [30] 
and DOSE [8]; for mixed genetic drift / selective pressure simula-
tions. Moreover, additional analytical operations such as coefficient 
of inbreeding [31] and fixation index [32], can be added.

Conclusion and future work

•	 Act as control (genetic drift) simulations against simulations 
with selective pressure.

•	 Effects of initial population genetic diversity in subsequent 
generations.

•	 Effects of population size in subsequent genetic diversity.
•	 Effects of gene flow [29] to populations of differ-

ent diversities by combining two population files us-
ing combinepop command. For example, python 

island.py combinepop --populationfile1=test_

pop.2 --populationfile2=test_pop.3 

--outputfile=test_pop.comb, combines the organ-
isms in test_pop.2 (populationfile1=test_pop.2) and test_
pop.3 (populationfile2=test_pop.3) into test_pop.comb 
(outputfile=test_pop.comb) where the organisms will be re-
numbered.

Island is part of the Bactome project (https://github.com/
mauriceling/bactome) and is licensed under GNU General Public 
Licence version 3 for academic and non-commercial purposes only.
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