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The Riemann zeta function is the function of the complex vari-
able s = a + bi (i =          ), defined in the half plane a >1 by the abso-
lute convergent series

Abstract
I have already discovered a simple proof of the Riemann Hypothesis. The hypothesis states that the nontrivial zeros of the Rie-

mann zeta function have real part equal to 0.5. I assume that any such zero is s =a+ bi. I use integral calculus in the first part of the 
proof. In the second part I employ variational calculus. Through equations (50) to (59) I consider (a) as a fixed exponent, and verify 
that a = 0.5. From equation (60) onward I view (a) as a parameter [6] (a<0.5) and arrive at a contradiction. At the end of the proof 
(from equation (73)) and through the assumption that (a) is a parameter, I verify again that a = 0.5.

Subj-class: Functional Analysis, Complex variables, General Mathematics.
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Introduction

We begin with the equation

Proof of the hypothesis

(1)

And in the whole complex plane by analytic continuation [1].

The function           has zeros at the negative even integers -2, -4, 
… and one refers to them as the trivial zeros. The Riemann hypoth-
esis states that the nontrivial zeros of          have real part equal to 
0.5. 

                              (2)

And with
s= a+bi                                                                   (3)

(4)

It is known that the nontrivial zeros of          are all complex. 
Their real parts lie between zero and one. 

If  0 < a < 1 then [1]

(5)

[x] is the integer function
Hence 

(6)

Therefore

(7)

(8)

(9)

Separating the real and imaginary parts we get

(10)

(11)

According to the functional equation [3], if            =0 then              = 
0. Hence we get besides equation (11)

(12)

In equation (11) replace the dummy variable x by the dummy 
variable y

(13)
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If we replace the dummy variable z by the dummy variable x, the 
integral takes the form

We form the product of the integrals (12) and (13). This is jus-
tified by the fact that both integrals (12) and (13) are absolutely 
convergent (this is necessary according to [2]). As to integral (12) 
we notice that 

(where ((z)) is the fractional part of z, 0  ((z))<1)

(t is a very small positive number) (since ((x)) =x whenever 0 x<1) 

And as to integral (13) we have [2]  

(t is a very small positive number)(since ((y))=y whenever 0 ≤ y<1) 

Since the limits of integration do not involve x or y, the product 
can be expressed as the double integral 

(14)

Thus 

(15)

(16)

That is 

Consider the integral on the right-hand side of equation (17)

(17)

(18)

In this integral make the substitution x = 

The integral becomes

(19)

That is 

(20)

This is equivalent to 

(21)

(22)

Rewrite this integral in the equivalent form

(23)

Thus equation 17 becomes

(24)

Write the last equation in the form

(25)

dy=0
Let p <0 be an arbitrary small positive number [5]. We consider 

the following regions in the x –y plane.
The region of integration I = [0, ∞)× [0, ∞)                                            (26)

The large region I1 =[ p, ∞ )×  [ p, ∞ )                                                        (27)

The narrow strip I2 =[ p, ∞)×  [0,p ]                                                      (28)

The narrow strip I3 = [0,p]× [ 0, ∞)                                                        (29)

Note that 

I = I1 ∪ I 2 ∪ I 3                                                                                           (30)

Denote the integrand in the left hand side of equation (25) by
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(31)

Let us find the limit of F (x,y) as x → ∞ and y → ∞. This limit is 
given by 

(32)

((z)) is the fractional part of the number z, 0  ((z)) < 1

The above limit vanishes, since all the functions [ - ((y)) ], cos 
(blog xy ), - ((   )), and ((x)) remain bounded as x → ∞  and y → ∞ 

Note that the function F (x,y) is defined and bounded in the re-
gion I1. We can prove that the integral 

(34)

(33)

where t is a very small arbitrary positive. number. Since the in-
tegral

Hence the boundedness of the integral 

is bounded, it remains to show that lim(t → 0)

Consider the region

I4 = I2 ∪ I3 (35)

We know that 

(36)

And that 

F(x,y) dx dy is bounded (37)

From which we deduce that the integral

Remember that 

F(x,y) dx dy is bounded (38)

(39)

Consider the integral

(40)
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(This is because in this region ((y)) = y). It is evident that the 
integral 

dx is bounded, this was proved in the course of proving that the 
integral F(x,y) dx dy is bounded

Also it is evident that the integral 

is bounded. Thus we deduce that the integral (40) F(x,y) dx 

dy is bounded.

Hence, according to equation (39), the integral F(x,y) dx dy

is bounded.

Now consider the integral

(41)

We write it in the form

( This is because in this region ((x)) = x)

Now we consider the integral with respect to y 

(where t is a very small arbitrary positive number). (Note that 
((y))=y whenever 0 y<1).

Thus we have (lim t → 0)

and (lim t → 0)

Hence the integral (43) ((y)) dy is bounded.

Since ((y)) cos (b logxy) dy ((y)) dy,

we conclude that the integral 

is a bounded function of x. 

Since 

Let this function be H(x). Thus we have 

((y)) cos (b logxy)dy |= H (x)   K (K is a positive number)

(44)

(42)

(43)

Now  equation (44) gives us 

(45)

According to equation (42) we have 

(46)

F(x,y) dx dy is bounded, then 

dx is also bounded. Therefore the integral 

dx is bounded. (47)

We denote the integrand of (47) by 

(48)

Let δ G [F] be the variation of the integral G due to the variation 
of the integrand  δ F.

Since 
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G [F] =  ∫ F dx (the integral (49) is indefinite)

(here we do not consider a as a parameter, rather we consider 
it as a given exponent)

We deduce that 

that is 

δ G [F] = δ F (x) 

But we have 

(49)

(50)

(the integral (51) is indefinite) (51)

Using equation (50) we deduce that 

δ G[F] =  ∫ dx δF( the integral (52) is indefinite) (52)

Since G[F] is bounded across the elementary interval [0,p], we 
must have that
δ G[F] is bounded across this interval                                                    (53)
From (52) we conclude that

(54)

Since the value of [ F δ x ] (at x = p)is bounded, we deduce from 
equation (54) that 
lim (x → 0) F δ x must remain bounded.                                            (55)

Thus we must have that  

(56)

First we compute 

(57)

Applying L 'Hospital ' rule (this is justified according to [4]) we get

(58)

We conclude from (56) that the product 

(59)

Assume that a =0.5. (remember that we considered a as a given 
exponent). This value a =0.5 will guarantee that the quantity

will remain bounded in the limit as (x → 0). 

Therefore, in this case (a=0.5) (56) will approach zero as (x → 0) 
and hence remain bounded.

Now suppose that a< 0.5. In this case we consider a as a param-
eter [6]. Hence we have 

(60)

Thus

(61)

But we have that 

(62)

Substituting from (61) we get

(63)

We return to equation (49) and write 

(64)

Let us compute 

(65)

Thus equation (64) reduces to 

(66)

Note that the left – hand side of equation (66) is bounded. Equa-
tion (63) gives us

(67)

(t is the same small positive number 0<t<p)

We can easily prove that the two integrals     x dF and     dx  

are absolutely convergent. Since the limits of integration 

do not involve any variable, we form the product of (66) and (67) 

(K is a bounded quantity) (68)

That is 

We conclude from this equation that 

(69)

is bounded.

(since lim(x → 0) δ x = 0, which is the same thing as lim(t → 0) δ 
x = 0) 

Since         ( at p) is bounded, we deduce at once that         must 
remain bounded in the limit as (t → 0), 

(70)
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which is the same thing as saying that F must remain bounded 
in the limit as (x → 0). Therefore. 

must remain bounded. (71)

But

(72)

It is evident that this last limit is unbounded. This contradicts 
our conclusion (71) that

must remain bounded (for a< 0.5 )

Therefore the case a<0.5 is rejected. We verify here that, for a = 
0.5 (71)remains bounded as (x → 0).

We have that

Therefore

(73)

We consider the limit 

(74)

(75)

We write 

a = (lim x → 0) ( 0.5 + x ) 

Hence we get 

(76)

(77)
(Since lim(x → 0)   x x = 1) 

Therefore we must apply L 'Hospital ' rule with respect to x in 
the limiting process (75) 

(78)

Now we write again 

a = (lim x → 0 ) ( 0.5 + x ) 

Thus the limit (78) becomes 

(79)

(80)

We must apply L'Hospital ' rule [4]

 Thus we have verified here that, for a = 0.5 (71) approaches 
zero as (x → 0) and hence remains bounded.

We consider the case a >0.5. This case is also rejected, since ac-
cording to the functional equation [3], if (          =0) (s = a+ bi) has a 
root with a>0.5, then it must have another root with another value 
of a < 0.5. But we have already rejected this last case with a<0.5.

Thus we are left with the only possible value of a which is a = 0.5.
Therefore a = 0.5.
This proves the Riemann Hypothesis 

The Riemann Hypothesis which states that the nontrivial zeros 
of the Riemann zeta function have real part equal to 0.5, according 
to the above, is now proved.

Conclusion
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