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   Manual analysis of lesions in serial Computed Tomography (CT) scans is often performed in 2D, making it time-consuming and 
error-prone. There is a growing need for automated, explainable tools that support radiologists in clinical environments. This study 
presents a novel, human-centric Artificial Intelligence (AI) framework that combines classical computer vision for automatic align-
ment, machine learning and deep learning for tissue sectioning, and unsupervised learning techniques for lesion detection. These 
were used to create a Proof-of-Concept Graphical User Interface tool. Developed over a 12-week period in collaboration with George 
Eliot Hospital (GEH) and ROKE as part of the National Health Service (NHS) AI Skunkworks programme. The proposed framework 
offers a novel contribution by integrating explainable AI techniques with human-centred design to improve CT scan analysis. It ad-
vances current research by focusing on clinical usability, transparency, and co-development with healthcare professionals.
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Abstract

Introduction

The healthcare industry is potentially on the cusp of a transfor-
mative giant step driven by Artificial Intelligence (AI) models that 
assist clinical stakeholders, particularly in radiology departments 
[1]. There remains, however, a chasm between the hype of AI and 
what is really being delivered in terms of clinical benefit at the pa-
tient’s bedside [2].

Trustworthiness and clinical reliability of AI algorithms are 
some of the key issues preventing wider adoption, which could 
then become the standard of care [3]. AI is a tool that needs to be 
used to assist the human expert and evaluation should be of the 
outcomes achieved by the integrated working of the combination of 
the human-AI expert rather than of the AI algorithm in isolation [4]. 
Thus, unless there is a strong emphasis on embedding a culture of 
human-centred AI (HCAI) throughout the design, implementation, 
deployment, optimisation, and evaluation processes, AI will fail to 
realise its potential [5].
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We describe herein the development of a novel AI algorithm to 
assist the radiologist and critically evaluate the human-centricity 
of the project. We share the lessons learnt as we attempt to inter-
weave a human-centric focus into all aspects of the project.

The problem we address is that of the current manual process 
for radiology assessments, which relies on a laborious, time-inten-
sive, error-prone process of serial measurement and analysis of 

CT scan lesions over time in 3D. Because of human-centred factors, 
2D measurements are usually taken by the reporting radiologists. 
The actual lesional change is in 3D, which is in turn a proxy for the 
evaluation of disease (cancer) progression, which then forms the 
basis for clinical decision-making of treatment options.

Our project looked to develop an AI model with a human-
centred approach to speed up the analysis of CT scans. The NHS 

AI Skunkworks team funded this 12-week research project, and 
GEH clinicians and ROKE, an AI company that provided the techni-
cal expertise, collaborated to deliver it. The project utilised vari-
ous techniques, including classical computer vision for automatic 
alignment, machine learning and deep learning for tissue section-
ing and unsupervised learning techniques for lesion detection.

Methods
Overview

The project was delivered using an agile methodology in twelve 
weeks and was split into six two-week sprints. Data of 2 CT scans 
each (a baseline scan and a subsequent follow-up) from 100 pa-
tients, all of whom had developed lesions, was used. Figure 2 
shows the data flow.

To create a Proof-of-Concept Graphical User Interface tool, 
three techniques were used: data ingest, classical computer vision, 
and deep learning. The features built in each stage fed into the 
Graphical User Interface (GUI) tool, as shown in Figure 3.

The INTRPRT Guideline [6] was used to retrospectively analyse 
the human-centricity of the project. The guideline consists of six 
themes: incorporation (IN), interpretability (IN), targets (T), re-
porting (R), priors (PR), and task (T). Incorporation is the inclusion 
of clinical experts in the project’s team. Interpretability is the type 
of technique used (including visualisation and human-understand-
able features). Targets define the end users. Reporting is evaluating 
the model’s performance in human factor goals. Priors include the 
previous information used to define the algorithm. Finally, the task 
is evaluating how the algorithm fulfils the required clinical tasks. 
The aim of the evaluation using the guideline was to determine how 
human-centric the design and application of the algorithm were. 
This is explored further in the discussion.

The methods have been split into four sections: alignment, tis-
sue sectioning, lesion detection, and GUI development.
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Figure 1: Project techniques.
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Alignment
Accurate assessment of whether a suspicious cancer lesion has 

increased in volume or not requires alignment of the lesion in the 
3D body habitus across multiple scans done over a period of time. 
This is to account for the dynamic anatomy of the lesion relative to 
the body parts because the lesion takes up different positions rela-
tive to adjoining other body parts, for example, when breathing or 
when there are changes in body composition. Thus, there needs to 

be a system of intelligent and automated alignment of this lesion 
to accurately determine how it has changed over time. Three align-
ment techniques of Phase correlation, keypoint detection, and Co-
herent Point Drift (CPD) were tested. An example of how this was 
achieved is illustrated in the following patient, where an algorithm 
was implemented to find the location of the table in a scan based 
on the observation that the table appears as a vertical line when 
viewed in the sagittal plane (Figure 4).
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Figure 2: Data flow.

Figure 3: GUI tool overview.
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The key steps in the algorithm used to detect the table in a full 
3D scan. The top row of Figure 4 illustrates that the first image 
is the original sagittal slice, the second image is a binary version 
where pixels above a threshold are retained, and the third image 
then relates to a Hough transformation, being used to find vertical 
lines. The lower image then shows the surface of the table iden-
tified. Pixels vertically below the highlighted red points are then 
trivially removed, such that the table has been filtered out.

The first method of Phase correlation [7] calculated shifts of 
pixels of images between two sequential scans. An algorithm was 
then created using algebraic matrix transformation methods to en-
able 3D alignment by shifting and overlaying a sequential second 
scan onto the previous scan.

The keypoint detection method was to extract and match key-
points and descriptors, filter the matched keypoints, estimate the 
homography of the matching, and finally, apply this to the 2D slice 
to produce an aligned scan. 

The CPD [8] allows non-rigid transformations of certain points 
in the sequential images to be aligned in a controlled manner using 
probability density estimations of the prevalence of these points 
in the images. This was then done iteratively through a machine 
learning algorithm and tested for accuracy.

Tissue sectioning
Tissue sectioning is the process of automatically differentiating 

between different types of tissue (e.g., ‘bone’ and ‘fat’) or simply 
determining arbitrary classes (e.g., ‘class 1’ and ‘class 2’) and as-
signing a per-pixel label to all 2D and 3D pixels with which tissue 
type they belong to. Two techniques were used. Firstly, the Textons 
[9] pre-processing technique and subsequently, three different 
clustering algorithms were used. Secondly, a simple self-supervised 
method called DINO [10] was used.

Lesion detection
This used an unsupervised deep learning technique to detect 

and signpost any abnormal lesions to the radiologist. As it is un-
supervised, it does not need vast numbers of abnormal images but 
uses lots of normal tissue from few images to train itself. For the 
ellipsoid detection, various open-source computer vision methods 
for contour detection and processing were used [11,12] to develop 
a method that would return a set of ellipses with geometric infor-
mation for each 2D slice. Figure 5 shows the result for a 2D axial 
slice.

As the unsupervised technique did not yield the required accu-
racy, a Density-Based Spatial Clustering of Applications with Noise 
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Figure 4: The key steps in the algorithm used to detect the table in a full 3D scan. 
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(DBSCAN) supervised clustering algorithm was superimposed on 
the initial unsupervised technique and developed to provide the 
3D centre of the lesion, a 3D bounding box, a volumetric measure-
ment, the number of ellipses in each axis that supported that el-
lipsoid, and the tissue class (given by the texton tissue sectioner) 
[14]. When compared to the actual scan, if any differences were 
detected, then this would signify an anomaly. Checking associated 
ellipses across axes aided in eliminating false positives.

A rudimentary GUI-based demonstrated system was built using 
Qt5 with Python binding from PySlide2. Desired functionality to its 
full complexity was not achieved. However, a prototype was built 
adequate for end-user testing. 

Results
Alignment

Regarding edge detection, performance with preprocessing 
showed greatly improved robustness as compared to the trial of 

methods without this preprocessing step. Results from the phase 
correlation method showed the best alignment. 

The second method of Keypoint-based methods was applied to 
only full 2D slices, not localised regions. This is because there was 
a challenge in ensuring enough matching key points were extract-
ed to estimate a homography and the results were inferior to the 
phase correlation approach. 

Figure 6 shows the results of keypoint alignment on scans from 
patient 1. The overall alignment is strong, despite misalignment for 
the axial slice (around the edge of skin tissue and the bones at the 
bottom) and the ORB technique [16] (Orientated FAST and Rotat-
ed BRIEF) of key points in the sagittal plane (alignment becomes 
worse for the top and bottom).

Figure 7 shows the results of alignment on slices from scan 2. 
There was a high magnitude of change to the patient between the 
two scans.
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Figure 5: 2D ellipses detected in a single axial slice. (Left) the original image, (middle) the sectioned image, and (right) found ellipses 
drawn on the image. A high number of non-lesion ellipses are present in most axial views, which motivated moving to full 3D ellipsoidal 

triggering. 

Figure 6: Keypoint alignment of the 2D central Axial (top) Coronal (middle), and Sagittal (bottom) slice from patient 1 using both SIFT 
feature extraction algorithm and ORB feature detector.
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Coherent point drift quickly showed promise on 2D slices. 
Patient 1 had little body shape change, such that a naïve overlay 
achieved good alignment. Patient 2 had severe body shape changes 
as well as severe changes in the orientation of his bones. Thus, they 
were used comparatively for the results across the project.

While some minor displacements remain, the results in this 
case (Figure 9) are impressive. The hyperparameters of the CPD 
algorithm [8] required tuning for this particular patient and took 
approximately an hour to complete. However, applying this to 
other patients resulted in inconsistencies and the initially accurate 
results were not achieved when we had a higher number of more 
varied image samples.
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Figure 7: Keypoint alignment of the 2D central axial (top), coronal (middle), and sagittal (bottom) slices from patient 2 using both SIFT 
and ORB feature detectors [16].

Figure 8: CPD rigid and non-rigid methods, compared to no alignment for two patients.

Figure 9: Before and after full 3D non-rigid CPD-based alignment.
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Tissue sectioning
Figure shows results for three clustering algorithms with the 

preprocessing texton step. The results were not as robust as ex-
pected.

The colour maps are arbitrary, with a distinct colour only mean-
ing that a distinct class has been found relative to other colours in 
each image. In the upper right and lower left images, the relevant 
clusterers were instructed to seek 27 separate tissue classifica-
tions, i.e., 27 separate clusters. 

Figure shows the results of the three clustering algorithms 
without the preprocessing step. The results of this led to superior 

sectioning results. The BGM and Mean Shift algorithms proved to 
achieve a more robust tissue separation. This was validated by a 
senior Consultant Radiologist.
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Figure 10: Tissue class labelled image from some of the clusterers trialled on texton features using Gabor kernels.

Figure 11: Tissue class labelled images from some of the clusterers trialled on raw intensity values.



20

Using INTRPRT Guideline to Assess Human-Centric AI Design in CT Tissue Growth Detection

The above figure, the colour maps are arbitrary, with a distinct 
colour only meaning that a distinct class has been found relative 
to other colours in each image. The DINO techniques were also tri-
alled; however, the results were not as robust as expected. This, 
combined with the high cost in terms of time (the training time for 
the models was 8 days), meant that the DINO technique was not 
feasible and thus little value was seen in progressing with DINO-
based methods in this project.

Lesion Detection – prompts radiologist to look at lesion—tech-
niques were explored—unsupervised learning

For ellipsoid detection, the outlines of ellipses found in 2D were 
used to detect the presence of dense regions in 3D. One of around 
30 detected ellipsoids corresponded to the true lesion in each scan. 
There was clearly a higher density of perimeter points around the 
true lesion than in other ellipsoids. In Figure 10, an ellipsoid has 
been accurately identified, and it triggered an accurate masked 
data prediction, which in turn accurately highlighted a lesion.

For lesion detection, the project provided ‘ground truth’ data 
from nine patients, whose scans were marked up by radiologists 
and radiographers, identifying lesions using existing methods.

Table 1 shows the results of the ellipsoid detector and/or high-
lighting via masked data prediction for the 9 patients in the vali-

Patient Scan Slice Lesion Detected Ellipsoid Detection Masked Data

11 Abdo2 60 Large liver lesion Yes Yes Yes
11 Thorax2 317 Lung nodule Yes No Yes
11 Abdo1 615 Bone lesion Yes No Yes
12 Abdo1 100 Multiple liver lesions Yes Yes No
12 Abdo2 220 Renal Cyst No No No
13 Abdo1 135 Liver cyst Yes No Yes
14 Abdo2 281 Fibroid uterus Yes Yes Yes
15 Abdo1 322 Right ureteral lesion Yes No Yes
16 Thorax1 259 Left hilar nodule No No No
17 Abdo1 88 Liver lesion Yes Yes Yes
17 Abdo1 207 liver lesion Yes Yes Yes
18 abdo1 47 liver lesion No No No
18 Abdo1 142 liver lesion No No No
18 Abdo1 165 liver lesion No No No
18 Abdo1 135 Pancreatic cyst No No No
19 Thorax1 19 lymph node Yes Yes Yes
19 Thorax1 130 thoracic mass No No No

Table 1: Result of ellipsoid/detection/masked data highlighting against true lesions.

dation set. Table 2 summarises this into a per-patient level. These 
results were produced using a single set of parameters. The valida-
tion concluded that, for the nine patients, either ellipsoid detection 
or masked data prediction was useful in seven cases for at least 
one lesion. 
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Figure 12: The masked infill method applied to a detected ellipsoid, which coincided well with the known lesion location on patient 17, 
abdominal scan 1.
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Patient Lesion(s) Detected
11 Yes
12 Yes
13 Yes
14 Yes
15 Yes
16 No
17 Yes
18 No
19 Yes

Table 2: Result of whether the ellipsoid detector or masked data 
highlighting was found to be useful on a per-patient basis in the 

validation set.

Fully labelling the total of 100 patients in the dataset or a sec-
ond round of validation was not possible due to time constraints.

Discussion
A simple overlay of two images, as is current radiology practice, 

for manual discovery and measurement of unexpected features is 
often not an accurate comparison method. This is due to differ-
ences in patient position, body shape changes between sequential 
scans, and differing lung volumes during each of the scans. Thus, 
radiologists often must manually reposition scans, deciding on po-
sition manually using trial and error, which is tedious, time-con-
suming, and prone to human error. There is little to no recourse 
when the patient is misaligned in coronal and sagittal directions. 
In many cases, there are shifts of several millimetres, leading to 
disparate structures appearing at the same slice indices.

Thus, we identified this clinical need of the radiologist and pa-
tients for time-efficient CT scan analysis and more precise tissue 
growth/regression detection for the benefit of the end users, i.e., 
clinicians and patients. We worked in conjunction with Roke and 
created a proof-of-concept that supports radiologists in achieving 
a more time-efficient analysis of CT scans. Our project goes beyond 
just the technical aspects of creating an algorithm; it embodies a 
human-centric approach from the outset and throughout the de-
sign process. Other studies that have used a human-centric pro-
cess to build a clinician-AI team where the AI acts as an intelligent 
assistant to improve the clinician’s workflow are examples of our 
strategy. Introduction of a human-centric AI assistant to aid radi-
ologists in multimodal breast image classification [15].

For alignment, 3D methods aim to align all body parts simulta-
neously or follow a ‘rigid’ approach where they don’t stretch any 

part of the image. Our project has experimented with a mixture of 
both. As a result, alignment showed strong promise, with phase 
correlation and coherent point drift techniques being particularly 
promising. Phase correlation achieved robust local 3D alignment 
but did not correct for patient body shape changes or lung volume 
problems. Non-rigid alignment methods were used to tackle lung 
volume and body shape issues. Keypoint-based methods showed 
promise for global alignment over 2D slices, but their success rate 
was lower than phase correlation. The coherent point drift algo-
rithm achieved excellent global alignment for some patients but 
would benefit from automated tuning on a per-patient basis.

The tissue sectioning work achieved assumable results using 
a custom clustering algorithm and deep learning models, but the 
results were less convincing and required higher engineering ef-
fort. Lesion detection also showed some success, particularly with 
the validated set of nine patients. However, more robust and thor-
ough validation was required to improve results. Finally, the GUI 
development was used to demonstrate the Proof of Concept. For 
implementation, it needed to be integrated into the current soft-
ware used by radiologists so it could seamlessly work with the ra-
diologists’ workflow.

In many other studies, there was a gap between designers and 
end users, which led to challenges related to transparency and us-
er-centred interaction in real practice [17]. To analyse this, we have 
used the INTRPRT Framework [6]. 

Incorporation
Our aim was to foster a sense of collaboration between the tech-

nology and the users. As a result, end users and designers drove 
and co-produced this project. During the project’s 12 weeks, de-
signers established weekly meetings under the direction of clini-
cians. During these regular meetings, the researchers investigated 
the end users’ needs. This played a vital role in ensuring the end 
users’ willingness to adopt the technology in real practice. We em-
phasise that the collaboration between radiologists and developers 
needs to be improved in order to increase the viability and usability 
of this technology in the radiologist’s real-time workflow.

Interpretability
According to Explainable medical imaging, AI needs human-

centred design. Guidelines and evidence from a systematic review 
[6] confirmed that transparency is viewed as an affordance from 
an AI and human-centred design perspective, or the interaction be-
tween an algorithm and its users, rather than as a feature of the 
machine learning model.

Citation: Reham Ahmad., et al. “Using INTRPRT Guideline to Assess Human-Centric AI Design in CT Tissue Growth Detection". Acta Scientific Clinical Case 
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There are various methods of ensuring transparency with re-
gard to interpretability: attention mechanisms, human factors, 
deep neural networks, visualisation, clustering, uncertainty mea-
surement, and relation analysis between input features and out-
put. Our project mainly utilised visualisation. Incorporation of 
human factors as well would have been ideal and the lack of this 
proves to be a limitation of this project. This could be an avenue 
for future work.

Targets
The primary end user targeted for this technology (encom-

passed in the GUI) is the radiologist. Therefore, radiologists as-
sisted in the data collection and validation processes, with a senior 
radiologist overseeing the entire project. The secondary end users 
are other clinicians, and the ultimate beneficiary is the patient. Ex-
ploring and quantifying the benefits to patients would be an av-
enue for future work.

Reporting
The reporting step ensures that evaluation directly corresponds 

to the needs of all the end users, whether it be the radiologist, clini-
cian, or patient. There are four approaches: metrics based on hu-
man perception, quantification of the quality of explanations for a 
specific purpose, qualitative validation of transparent systems, and 
finally, user studies on target populations. We conducted the third 
approach. This approach lacked numbers for validation; the proj-
ect provided ‘ground truth’ data from only nine patients, whose 
scans were marked up by radiologists and radiographers identify-
ing lesions using existing methods. A limitation: the ground truth 
lacks quantitative metrics of success, instead having qualitative 
measures.

Priors
There are two different types of prior knowledge that can con-

tribute to the development of a transparent ML algorithm: prior 
documented clinical knowledge informed by the end user and 
prior computer vision techniques. Our project used, in the ma-
jority, the latter. Previous ‘edge detection’ algorithms [18], phase 
correlation [7] techniques, keypoint detection methods [19], and 
CPD [8] methods were used to inform alignment. Various meth-
ods [11,12] were used for lesion detection as well. Using robust 
prior documented clinical knowledge would have been a possible 
improvement that would have improved affordability and usability 
for the end user. As prior documented clinical knowledge has not 
been fully utilised, it is a limitation of this project.

Task
This technology was designed with the aim of integrating into 

the radiologists’ workflow in real time. Its end goal is to aid radiolo-
gists with the detection of changes in lesions. While the methods 
of alignment, tissue sectioning, and lesion detection have the po-
tential to improve the time taken by the radiologist, they currently 
do not produce a percentage change in the volume of a lesion. This 
could be a key limitation for future work; the percentage change 
plays a key role in the clinical outcomes of radiology.

The GUI needed to be able to seamlessly integrate into the ra-
diologists’ workflow. Thus, to ensure this, it should have been in-
tegrated into the current technology used by the radiologist. This 
was not possible due to the time constraints of the project and thus 
is a limitation. It would be a useful and vital avenue for future work. 
The INTRPRT Guideline [6] was applied to our project retrospec-
tively. The application of the INTRPRT framework simultaneously 
to the 12-week project would have been an improvement, and any 
future work should carry this out.

Our project designers emphasise that collaboration with radi-
ologists is necessary for further extension. As the field of radiog-
raphy is already beginning to use artificial intelligence, to prepare 
the radiography workforce and other clinicians for a future with 
AI, prospective research projects for the design, validation, imple-
mentation, and evaluation of AI models should be launched with 
the workforce to generate the required evidence base. According 
to literature [20], this will lead to a combined design of a model 
according to the needs of end users, identify any potential bias and 
confirm that the model transparency technique is consistent with 
flow-appropriate validation procedures and a regulatory frame-
work. 

To put it simply, our vision for the use of AI in healthcare goes 
beyond technology and instead focuses on creating a mutually 
beneficial partnership between these technological designers and 
end users. The quest for an AI model that is more human-centric 
is more than just a technical aim; it is a commitment to integrating 
empathy into the core of care innovation and building a future in 
which cutting-edge technology is skilfully integrated into patient 
care. 
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Conclusions and Recommendations
In summary, our project’s CT analysis product has made im-

provements in alignment and overlay methods. It has demonstrat-
ed a human-centric process of designing a radiology AI algorithm. 
The design process right at the outset and throughout incorporat-
ed the end-user clinician trio of a radiologist, a radiographer, and 
also a clinician (a urologist) who is the end user for the radiologist 
report in terms of providing care for the patient acts according to 
the outcome of the radiology diagnostic report. Interpretability 
or transparency could be better, but the alignment algorithm was 
simpler to understand with less of a “black box” component to it. 
Apart from the patient, all target end users were made aware of the 
outcome and its applicability was tested in a clinical setting. This 
was a pilot project and validation needed more numbers. Time mo-
tion studies to analyse the workflow of the tasks were limited and 
could be done in the future. Further work is required to develop 
promising AI techniques beyond this 12-week project. Whilst 
there is much work still to do to make this a useable solution and 
more human-centric, it is clear the technology has the potential 
to provide a much-needed ‘support tool’ needed by Radiologists 
across the NHS.
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