

Volume 2 Issue 2 February 2021

An Evolution in Medical Physics and Radiotherapy Practice

Seyed Alireza Mousavi Shirazi*

Nuclear Energy Engineering, Assistant Professor and Full Time Faculty Member in Department of Physics, South Tehran Branch, Islamic Azad University, Tehran, Iran *Corresponding Author: Seyed Alireza Mousavi Shirazi, Nuclear Energy Engineering, Assistant Professor and Full Time Faculty Member in Department of Physics, South Tehran Branch, Islamic Azad University, Tehran, Iran. Received: October 21, 2020 Published: January 22, 2021 © All rights are reserved by Seyed Alireza Mousavi Shirazi.

Introduction

Despite the advancement of technologies in medical radiation and nuclear to better treat cancerous tumors, I am a pioneer in the creation of a novel method and technology in medical physics and medical radiation both to achieve accurate dosimetry and obtaining the best-required irradiation time in the radiotherapy practice. In this investigation, I carried out much research in the fields of medical physics and medical radiation, and I applied some software and nuclear code, including MATLAB software and the MCNPX code.

Some of the features of this research are as follows:

- Designing a liver phantom taken from real liver tissue for dosimetry purposes.
- Simulation of the phantom and dosimetry of it.
- Accurate dosimetry of real liver tissue for the course of X-ray radiotherapy.
- Comparing the dosimetry results obtained from the liver phantom and the liver tissue to verify the designed phantom.
- Applicability of the phantom for dosimetry of a real liver tissue based on the obtained results.
- Obtaining the required irradiation time for this course.

Methodology

- Extraction of the materials of any organ in the abdominal tissue.
- Decomposing each of the materials in an adult liver tissue including water and some organic compounds into its con-

Figure 1: The full block diagram of the research.

stituent elements based on mass percentage and density of every element.

• Making a correlation between the accurate mass of every decomposed material of human liver tissue with masses of the phantom components.

- Simulation and dosimetry of real liver tissue by DICOM images, MATLAB software, and the MCNPX code.
- Application of the Di-Com images of CT scan belonging to a male's abdominal tissue from YZ direction in the Cartesian coordinates in a way that the front view of the liver appears.
- Recognizing the type of each material based on the level of grayness and Hounsfield Unit scale (HU) of DICOM CT slices.
- Making a large number of volumes as voxel and repeating them to build up the full geometry of tissue.
- Assignment of each radiodensity to that voxel.
- Filling up every voxel completely homogeneous with the existing materials in the abdominal tissue.
- Contouring the liver tissue and separating it in the abdominal tissue.
- Transferring the generated data into the MCNPX code.
- Designing a module based on absorbed dose to obtain the required irradiation time.
- Applicability of this method for every patient through his/ her own CT scan images to determine the admissible absorbed dose.

Figure 3: The equivalent liver phantom simulated by the MCNPX code.

			(marine 14							
			voxel1							
		Each of organs (Mat X)	voxel2 ∶	mer→ Related radioo	densities and HU					
			voxeln							
4862-	6738 5 -2.7843 -221 u=6738	18010-1	(2102-	3100 20 -2 1255	-221 002100	free card			
4863-	6739 5 -2.7853 -221 u=6735	impin=1		2104-	3101 20 -2.1365	-221 4+3101	impine1			
4864-	6740 5 -2.7863 -221 u=6740	impin*1		2105-	3102 20 -2.1375	-221 ++3102	improved			
4865-	6741 5 -2.7873 -221 u=6741	impin=1		2106=	3103 20 +2.1385	221 u#3103	inn mm1			
4866-	6742 5 -2.7883 -221 u=6742	impin=1		2107=	3104 20 =2.1395	221 u=1104	inn rev1			
4867-	6743 5 -2.7893 -221 u=6743	impin*1		2100-	3105 20 -2.1406	-221 u=3105	imp:n=1			
4868-	6744 5 -2.7904 -221 u=6744	impin*1		2109-	3106 20 -2.1416	-221 u=3106	imp:n=1			
4869-	6745 5 -2.7914 -221 u=6745	5 imp:n=1		2110-	3107 20 -2.1426	-221 u=3107	imp:n=1			
4870-	6746 5 -2.7924 -221 u=6746	impin*1		2111-	3108 20 -2.1436	-221 u=3100	imp:n+1			
4871-	6747 5 -2.7934 -221 u=6747	7 imp:n=1		2112-	3109 20 -2.1446	-221 u=3109	imp:n=1			
4872-	6748 5 -2.7944 -221 u=6748	3 imp:n=1		2113-	3110 20 -2.1456	-221 u=3110	imp:n=1			
4873-	6749 5 -2.7954 -221 u=6745	imp:n=1		2114-	3111 20 -2.1467	-221 u=3111	imp:n+1			
4874-	6750 5 -2.7965 -221 u=6750	imp:n=1		2115-	3112 20 -2.1477	-221 u=3112	impin=1			
4675-	6751 5 -2.7975 -221 u=6751	l imp:n=1		2116-	3113 20 -2.1487	-221 u=3113	impin=1			
4676-	6752 5 -2.7985 -221 u=6752	imp:n=1		2117-	3114 20 -2.1497	-221 u=3114	impin=1			
4677-	6753 5 -2.7995 -221 u=6753	imp:n=1		2118-	3115 20 -2.1507	-221 u=3115	imp:n+1			
4678-	6754 5 -2.8005 -221 u=6754	imp:n=1		2119-	3116 20 -2.1517	-221 u=3116	imp:n=1			
4079-	6755 5 -2.6015 -221 U*6755	5 18p:n=1		2120-	3117 20 -2.1528	-221 u=3117	imp:n=1			
4000-	6756 5 -2.0026 -221 U*6756	5 180:1-1		2121-	3118 20 -2.1538	-221 u=3118	imp:n=1			
4001-	6757 5 -2 8046 -221 0-6757	100.0-1		2122-	3119 20 -2.1548	-221 u=3119	imp:n+1			
4000-	(750 5 -2.0040 -221 0-0730	1.00.00		2123-	3120 20 -2.1558	-221 u=3120	imp:n=1			
4003-	6760 5 -2.8066 -221 0=6760	incinal		2124-	3121 20 -2.1568	-221 u=0121	imp:n=1			
4005-	3122 0 2210 -2211 2212 -22	11 2214 -2215 lars1 us112	2 (10.010.01	2125-	3122 0 2210 -221	1 2212 -2213	3 2214 -2215	lat=1 u=3123	impin=1	
4004-	fille-256-255 -45-44	-256-255		2126-	fill=-256:2	55 -45:44 -2	256:255			
4007-	1000 508 4013 4021 40	25 4008 4026 4012 4019 40	22 4010 4025	2127-	1000 241682	3R 2036 2050	0 2059 2063 2	:059 2076 201	10 2056 20	55
4000-	4031 4016 4027 4013 4	011 4017 4020 4014 4022 4	018 4028 4010	2120-	2064 2056 2	062 2072 201	95 2092 2095	2098 2083 20	104 2112 2	074
4009-	4019 4029 4024 4006 4	005 4012 4027 4038 4024 4	011 4046 4051	2129-	2030 1981 1	963 1954 19	99 1986 1961	1958 1982 19	H04 2015 1	000 199
4890-	4025 4028 4033 4020 4	024 4028 4010 4006 4013 4	022 4030 4036	2130-	1074 1796 A	224 1045 104	00 4018 2082	2091 2090 21	100 2000 2	000
4891-	4027 4014 4032 4030 4	037 4037 4025 4023 4014 4	030 4036 4020		2076 2091 2	096 2097 201	65 2085 2076	2117 2090 21	104 2090 2	000
4892-	4007 4012 4022 4016 4	018 4010 4012 4036 4043 4	036 4025 4018	2132-	2073 2002 2	098 2109 201	10 2140 2112	2072 2045 20	140 2063 2	111
4893-	4019 4015 4028 4017 4	1008 4026 4019 4026 4034 4	034 4037 4033	2124-	2100 2084 2	108 2110 211	13 2088 2103	2122 2122 21	105 2100 2	121
4894-	4025 4024 4005 4012 4	0008 4026 4023 4021 4023 4	002 4008 4016	2125-	2112 2005 2	041 1040 101	15 1084 1044	1022 1020 12	174 1000 4	478
4895-	4036 4041 4044 4042 4	020 4010 4009 4022 4036 4	031 4034 4039	2136-	2040 2080 2	113 2091 203	70 2085 2108	2092 2102 21	124 2113 2	100
4896-	4035 4020 4023 4030 4	012 4021 4029 4026 4033 4	025 4010 4030	2132+	2089 2085 2	112 2138 21	17 2103 2101	2087 2116 21	111 2081 2	098
4897-	4035 4014 4016 4042 4	019 4022 4030 4039 4026 4	027 4040 4040	2130-	2110 2114 2	078 2061 20	66 2083 2094	2076 2056 20	297 2116 2	102
4898-	4027 4019 4016 4011 4	031 4046 4024 4014 4028 4	027 4035 4030	2139-	2095 2080 2	086 2104 211	22 2128 2106	2079 2072 20	075 2090 2	110
4899-	4037 4035 4026 4032 4	023 4020 4018 4038 4030 4	030 4026 4029	2140-	2137 2119 2	063 2050 201	04 2108 2110	2103 2116 21	108 2117 2	130
4900-	4041 4049 4022 4025 4	031 4039 4026 4003 4011 4	031 4053 4062	2141-	2103 2090 2	076 2061 200	05 1938 1910	1084 1000 44	43R 2077 2	099
4901-	4033 4022 4022 4017 4	028 4035 4028 4025 4014 4	030 4011 4023	2142-	2108 2083 2	071 2104 211	10 2095 2092	2098 2110 21	114 2096 2	080
4902-	4055 4081 4077 4052 4	016 4023 4031 4022 4019 4	032 4065 4072							

Figure 4: The data generated by MATLAB programming and transferred to MCNPX code.

Figure 2: (a) The side view of the cylindrical tube path and liver tissue

(b) The schematic view of the equivalent liver phantom.

Citation: Seyed Alireza Mousavi Shirazi. "An Evolution in Medical Physics and Radiotherapy Practice". Acta Scientific Clinical Case Reports 2.2 (2021): 06-08.

Figure 5: (a) The DICOM image of the abdominal region

- (b) The image of the abdominal region converted from DICOM to a new image extracted from MATLAB software
- (c) The abdominal region image converted to a new image extracted from the MCNPX code.

Figure 6: The views of the liver phantom, real liver tissue, and the segmented liver tissue.

- Applicability of the designed liver phantom for dosimetry for the sake of studying photon behavior in materials of liver tissue.
- Feasibility of standardizing the obtained results for similar investigations about liver tissue and determining the required irradiation time to reach the desirable dose for each patient.

uired Irradiation Time	Required Irradiation Time					
rgy (MeV) 2.5	Energy (MeV) 6.7					
ivity (Bq) 5.55e8 (Ci) 1.50E-2	Activity (Bq) 6.4e10 (Ci) 1.73E+0					
uired Dose (Gy) 1.5	Required Dose (Gy) 1.5					
uied Irradiation Time (sec) 1.264E+05	Requied Irradiation Time (sec) 8.381E+02					
Run	Run					

Figure 7: The accurate irradiation time obtained in seconds by the software with respect to the desired treatment dose at different intensities (in Bq) and X-ray photon energies (MeV).

Conclusions

Rec

Ene

Act

Red

Red

• A fairly good agreement between the amounts of absorbed doses obtained from the prepared liver phantom and the real liver tissue.

Assets from publication with us

- Prompt Acknowledgement after receiving the article
- Thorough Double blinded peer review
- Rapid Publication
- Issue of Publication Certificate
- High visibility of your Published work

Website: www.actascientific.com/ Submit Article: www.actascientific.com/submission.php Email us: editor@actascientific.com Contact us: +91 9182824667

Citation: Seyed Alireza Mousavi Shirazi. "An Evolution in Medical Physics and Radiotherapy Practice". Acta Scientific Clinical Case Reports 2.2 (2021): 06-08.