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Abstract

The body system is dependent on each other through communication, cancer development can be supported by the new cancer-
induced pathological systemic networks (CISPN), and the entire organism is “cancerized.” The significant anomaly in the transition of 
epithelial cells to mesenchymal cells plays a vital role in neural crest migration. The metastatic program follows a transformed cellu-
lar communication process that, activated once, causes dispersed tumors at a distance from the original site. This review aims to pro-
vide an idea of various systemic and new hallmarks and several altered networking processes that eventually end up causing cancer.
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Introduction 
Cancer is a cluster of cells that divide, capture, and spread any-

where in an indiscriminate manner. There is a crucial need to de-
tect the cellular and local stromal views and expand the standpoint 
by considering the entire organism. Topographically distinguished 
cancer cells can interact by developing a cascade that communi-
cates with the organism through cancer-induced systemic patho-
genic networks. In this paper, the systemic hallmarks of cancer ap-
pear to respond to this communication [1]. 

According to systemic biology, organisms are multiplex, nexus, 
sub-layered communication networks. The networks consist of 

metabolic intermediates, miRNA, and signaling factors, i.e. pro-
teins, lipids, ions, and the networks can also be the interactions be-
tween the different cell types. The network involves different body 
systems interactions like endocrine, nervous, and immune systems. 
These networks are co-dependent and interplay by interacting and 
influencing each other [1,2]. 

Cancer is a multiplex disease with a significantly higher degree 
of communication networks at various levels (i.e. organismic and 
cellular). The active entity of several communicating components 
functions and shows the dependency combined [53]. Macroscopi-
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cally, experimentally derived data assembled over more than a de-
cade encourage the concept of the cancer system developed by the 
geographically differentiated cancer tissues (the primary tumor, 
the local, and the distant metastasis) [1,3]. 

There are several factors listed with their systemic effects gen-
erated by the tumors, i.e., interleukin IL-8, stromal cell-derived 
factor-1(SDF-1), platelet-derived growth factor (PDGF), vascular 
endothelial growth factor (VEGF), fibroblast growth factor, growth-
related oncogene-α (CXCL1), lectin, angiogenin, normal T-cell ex-
pressed (CCL5), sonic hedgehog homolog, and osteopontin. The 
systemic standpoint should be indefinite up to stage IV cancers 
clinically. When the tumors are localized in many cases, and sys-
temic effects appear, a notable proportion of cancers is incurable 
[1,4]. 

Cancer as a developmental disease

Genes of organisms play a critical role in cancer and develop-
mental stages (embryogenesis). It is the point that the embryo 
lacks the functional circulatory system, and therefore, in the meta-
static process, the developmental processes are different. Some 
genes (i.e., Hedgehog, TGF-β, Nuclear hormone receptors, Notch, 
Wnt) are involved in the progression and the maintenance of mul-
ticellularity dysregulated in the stem cells and metastasis [5,7].

Cancer cells regulate and forth between various cascades and 
may show a regulative cellular stage; it will cause the formation of 
a non-neoplastic phenotype [49]. In most cases, the metastatic pro-
cess is due to epithelial to mesenchymal cell transition; it produces 
the factors such as HGF, Wnt, TGF-β, tumor necrosis factor (TNF)-α, 
and PDGF by the activated tumor cells [6]. The surrounding tumor 
stroma central regulators of developmental stages (embryogene-
sis) such as Snail, Zeb1, transcription factor Twist, Zeb2 are consid-
ered the epithelial to mesenchymal transition (ETM) central regu-
lators that drive metastasis. These programs may be propagated by 
miRNAs that controlled various genes simultaneously [1,7].

The division, invasion, and metastasis processes may be sepa-
rate and different in various types of cancer [50,51]. These steps 
may describe the certainty that cancers developing in different 
tissues have different tendencies to increase in size (locally), me-
tastasize, and invade the encircling stroma, indicating that cancer 
stem cells (CSCs) are a minute population of cells in the tumors 

that show the capability of differentiation, tumorigenicity, and self-
renewable when transferred into an animal host [8]. 

The primary tumor-metastasis network

Clinically has been observed, the distal metastases and the pri-
mary tumor are co-dependent and interlinked. For example, in 
some renal cell cancer instances, exterminating the primary tumor 
has reverted to distal metastasis [9]. The niche’s six pre-metastatic 
characteristics, namely vascular permeability, inflammation, or-
ganotropism, immunosuppression, angiogenesis, reprogramming, 
and lymphangiogenesis, promote the niche to support metastasis 
and tumor cell colonization. The soluble molecules secreted by the 
tumors responsible for developing and forming a niche are placen-
tal growth factor, granulocyte colony-stimulating factor (G-CSF), 
and vascular endothelial growth factor receptor-α (VEGF-α) [10]. 

Exosomes are responsible for the composition of the pre-
metastatic niche and the interaction between bone marrow, dis-
tal metastasis site, and the tumor. With the aid of the exosomes, 
DNA, miRNAs, mRNAs, and proteins are transported functionally 
between various types of cells, promoting the activities (biologi-
cal) of non-tumor and tumor cells and promoting tumor growth, 
metastasis, drug resistance, invasion, and angiogenesis [11].

The network of systemic inflammation 
The well-known connection between cancer development, local 

stromal inflammation, and the molecular cascades in charge of this 
connection has been recognized. As any physician would certify, in-
flammation is an essential criterion in the characteristic of cancer 
development, including the tumor cell’s capability to metastasize 
[1]. Grivennikov., et al. explained that various types of inflamma-
tion induce progression and development of cancer, distinguished 
by intensity, mechanism, result, and causes. Chronic inflammation 
is broadly connected with autoimmune diseases or other infec-
tions; prolonged exposure to obesity and environmental irritants 
causes inflammation [12]. 

Transcription of inflammation-related genes is stimulated by 
DNA methylation, involving chemokine receptor 4 (CXCR4) and se-
rum amyloid A (SAA) in modified clear cell carcinoma. This event 
is followed by tumor-producing cancer cell-intrinsic inflammation 
through epigenetic remodeling. This innovative concept shows an 
epigenetic foundation for the identified hallmarks of cancer gives 
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compelling proof of the essential nature of epigenetic dysfunction 
[13].

The global metabolism/cachexia network 

Cancer cells have higher metabolic maintenance rates; needed 
a massive count of energy to help their metabolism. The complete 
metabolic separation of cancer tissues demonstrates high aerobic 
glycolysis, increased glutaminolysis flux, elevated lipid, and amino 
acid metabolism. There is a reverse conversion of lactate to glucose 
in the liver cells (Oncogenic Cori Cycle); instead of glucose and lac-
tate, there is also a need for other nutrients such as glutamine, gly-
cine, and aspartate synthesize purines and pyrimidine [14,15]. Ser-
ine is needed to synthesize membrane lipid components, branched 
amino acids, lipids, and acetate. Stromal mitophagy, catabolism, 
and autophagy occur to fuel tumor anabolic growth, inducing me-
tastasis and progression [1].

The multiple organ syndrome cachexias cause alterations in or-
gans or tissues besides the tumor itself and the other organs, in-
cluding the muscle cells, adipose tissue, pancreas, and liver cells 
(hepatocytes). It causes up-regulation of impaired anabolism, 
tumor-forming inflammatory cytokines secretion, and neuroen-
docrine anomalies. Cachexia is very high among cancer functions, 
mainly in gastric and pancreatic cancer [16].

Insulin and glucagon are secreted by the pancreas and play a 
crucial role in cachexia. The increase in the level of insulin resis-
tance can cause cancer growth and is involved in cancer progres-
sion. During cancer development, a higher secretion of glucagon in 
alpha islet cells of the pancreas may also stimulate liver gluconeo-
genesis. Insulin, catecholamines, and atrial natriuretic peptides can 
cause the degradation of lipid [17,18].

Similarly, structural and functional heart changes that cause 
cardiac failure are also involved in cachexia syndrome. In cardiac 
cachexia (in terms of cancer), there is skeletal muscle and function 
loss. Some patients with cachexia also suffer from remodeling, dys-
function, and cardiac atrophy [1,15].

The thrombosis network

The various blood components and the lymphatic system in 
metastasis have gained popularity in cancer-targeted therapies for 
blood components and other lymphatic factors to treat cancer. Can-
cer and thrombosis exhibit reverse communication between them; 

on the other side, cancer cells causing the formation of clots, and 
the synthesis of clotting proteins initiate the growth of cancer and 
circulation [19]. Hypercoagulability is a cancer condition that re-
moves procoagulant factors, such as tissue factor (TF). Crucial TFs 
carry out Cancer-associated coagulopathy and thromboembolic 
disorders. Cancer cell’s communications with the neutrophils and 
platelets donate to extravasation, cancer adhesion, and the initia-
tion of metastasis lesions [20].

The neuro-endocrine network

In some circumstances, the peripheral system secret the signals 
against systemic inflammation, and the hypothalamus combine 
those signals and then translates them into neuroendocrine per-
turbations, global metabolic derangements, and changed neuronal 
signaling [21]. The cytokines, IL-1β and TNF-α, are secreted in the 
periphery during cancer development, and their modification oc-
curs in the hypothalamus [21,22].

The different barriers display challenges to preventing exces-
sive cell proliferation and cancer development, causing the intimi-
dating companion of cancer. Tumor cells only modify the existing 
cellular and molecular mechanisms but avoid the pathways that 
do not allow tumor formation [23]. Tumor-producing cells that 
develop through differentiation have also been identified in intes-
tinal tumors. Increased NF-κB signaling causes the stabilization 
of β-catenin to activate β-catenin/TCF transcription, with tumor-
forming stem-like properties developing dedifferentiation of non-
stem intestinal epithelial cells to intestinal epithelial cells [24,25]. 

Dedifferentiation and transdifferentiation

In the genome of a differentiated adult cell, there is informa-
tion to transform into any cell type. Cancer cells have the poten-
tial to dedifferentiate by abducting four Yamanaka factors: c-MYC, 
Kruppel-like factor 4 (KLF4), Sex-determining region Y-box 2 
(Sox2), and Octamer-binding transcription factor 3/4 (Oct-3/4). 
The cancer is immortalized, recurring, and resistant to therapy 
when non-CSC cells are dedifferentiated into CSCs [26]. Yamanaka 
factors’ capacity to dedifferentiate plays a vital role in a variety of 
malignancies. Oct4 suppresses progenitor cell development and in-
creases the number of undifferentiated cells, which is observed in 
seminomas. Ewing’s sarcoma, breast cancer, and brain cancer have 
Sox2, whereas colon cancer has KLF4. Misrepresentation of MYC 
has been linked to several cancers. Yamanaka factors contributed 
to the development of targeted therapy [31].
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Cancer stimulates the Waddington landscape allowing cells to 
select their destination, and they can become fundamental through 
dedifferentiation even at their final state of differentiation. Fol-
lowing the loss of APC in acute promyelocytic leukemia (APML), 
oncogenic KRAS mutations develop, resulting in tumorigenesis [1]. 
PML-RAR fusion gene expression prevents granulocyte differentia-
tion and remains cancer cells in the promyelocytic precursor, while 
all-trans-retinoic can stimulate progenitor cells to differentiate 
into granulocytes [32].

The cell fate in pancreatic cancer 

In pancreatic adenocarcinoma, petite GTPase KRAS-activating 
mutants have been found in 90 percent of pancreatic cancers. KRAS 
and MYC cause cancer malignancy by transforming different cells 
into stem cells. MYC promotes metastatic cell regeneration and 
cancer potentiation. The initiating mechanism is a synergistic in-
teraction of active SOX9 and KRAS factors that lead to pancreatic 
acinar dedifferentiation in the form of the phenotype of the duct 
and intraepithelial neoplasia [1,27].

Therapy resistance via lineage plasticity through dedifferen-
tiation

Dedifferentiation is a hallmark of immune system evasion and 
has been related to treatment-resistant melanoma. Decreased mi-
crophthalmia-associated transcription factor (MITF) leads to resis-
tance to BRAF inhibition, which leads to an increase in the tyrosine 
kinase AXL receptor, PDGFR, and EGFR [28].

Dedifferentiation can also be an essential therapy objective, 
such as ferroptosis, iron-dependent cell death in melanoma that 
produces synthetic lethality when coupled with other immuno-
therapeutic medicines. Dedifferentiation-related changes have 
been found in melanoma patients as early as the first week of 
therapy; prostate and breast cell cancers benefit from it. Loss of 
p53 and Rb reductants causes reversal of prostate cancer by re-reg-
ulation of the Sox2 transcription factor, resulting in cells convert-
ing to the endocrine neurotype phenotype [29]. The Wnt/-catenin 
signal triggered by physical stress and tissue pressure produced 
by adenocarcinoma also degrades fat into myofibroblasts in breast 
cancer [30].

Dedifferentiation is a telltale symptom of cancer. During dedif-
ferentiation, cancer cells can be targeted by combining treatments 

to prevent early resistance to therapeutics due to lineage plasticity 
conferred [1,33], developing the state of permanent differentiation 
to combat dedifferentiation [1,33], and differentiation of undiffer-
entiated cells into a safe cell line, for example, differentiated breast 
tumors to fatten [1,33].

Epigenetic dysregulation

In melanoma formation, differentiation into progenitor cells is 
speed-limited but is supported by epigenetic machinery. Due to the 
state of chromatin and its modifying enzymes, Epigenetics regu-
lates the clock’s return to a pluripotent state and increases DNA 
demethylation by using vitamin-C [34]. Loss of DNA methylation 
was detected in a large portion of tumor cells by Vogelstein and 
Feinberg. According to them, the activation of cancer could lead to 
hypomethylation of CpG islets. According to the Holliday definition, 
epigenetics is a change in phenotype without a change in genotype 
due to a change in gene expression without a change in DNA [36].

Sustained proliferative signaling

Mutations in isocitrate dehydrogenase (IDH) function are seen 
in many tumors. It shifts DNA binding protein affinity to CTCF 
(CCCTC binding agent), which is far more sensitive than methyla-
tion conditions. A dominant oncogene among gliomas is platelet-
derived growth factor receptor-A (PDGFR-A), which reduces 
epigenetic regulation disorder in CTCF insulation. In addition to 
glioma, this mechanism is also seen in the endometrium, esopha-
gus, gastric, and large intestine tumors [1,37].

Evading growth suppressors

Following the coding of p16INK4a, the retinoblastoma (Rb) 
protein is kept hypophosphorylated, resulting in the development 
of the Rb/E2F suppressor complex, which inhibits the growth and 
G1 phase of the cell division cycle. Tumor suppressors, such as 
p16INK4a, are epigenetically silenced and impair growth through 
promoter hypermethylation. Increasing the Zeste homolog 2 
(EZH2) regenerator escapes excess growth pressure by suppress-
ing CDKN2A [38].

Metastasis

Epigenetic suppression of CDH1, which encodes E-cadherin, is 
accomplished by employing the snail transcription factor EMT to 
the CDH1 promoter and suppressing H3K27me3 [1,39].
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Replicative immortality

A pathway based on telomerase-independent homologous re-
combination is alternative telomere lengthening (ALT). Tumor 
cells use ALT to maintain telomere length and overcome the hay-
flick limit. Interference between epigenetics and genetic mutations 
causes the histone H3.3 variant in the telomerase and heterochro-
matic state to be disrupted, and ALT facilitated [40].

Angiogenesis induction

Epigenetics plays a crucial role in angiogenesis by increas-
ing hypoxia-1 induction and vascular endothelial growth factors 
(VEGF), decreasing von Hippel – Lindau (VHL), and reducing the ef-
fectivity of p53. Choriocarcinoma is a trophoblast-derived vascular 
tumor that induces the epigenetic silence of FLT1 through hyper-
methylation, thus inhibiting the soluble Fms-like tyrosine kinase-1 
(sFLT1), which is anti-angiogenic [41].

Bypassing cell death

Glioblastoma multiforme is invasive cancer with a poor prog-
nosis. Binding the apoptosis-inducing ligand TRAIL to the human 
death receptor 4 (DR4) is one suggested therapy. Epigenetic si-
lence reduces promoter TRAIL/DR4-mediated apoptosis through 
promoter methylation. CXCL14 is an apoptotic chemokine that is 
an option for recurrent epigenetic silencing lung adenocarcinomas 
[42]. 

Immune evasion

Epigenetics is essential for immune system function by deliver-
ing MHC class-1 antigen to T + CD8 cells. The transactivator NLRC5 
controls MHC class-I transcription, but the promoter in the NLRC5 
area is methylated during cancer, and eventually the expression of 
MHC class-I is reduced [43].

Deregulating cellular energetics

Cancer cells can employ glycolysis for glucose metabolism un-
der aerobic circumstances instead of oxidative phosphorylation, 
including the PI3K/AKT/mTOR pathway and MYC and HIF-1 sig-
naling [44]. PTEN, VHL, LKB1, and prolyl hydroxylases are tumor 
suppressors in this pathway extinguished by promoter hypermeth-
ylation [1].

Genomic instability and mutation

Transposable elements (TE) are several duplicate genomes that 
tend to impair the genome stability of adjacent genes. These genes 

are typically silenced, but during cancer, their extinction regulation 
is lost [36].

Altered microbiome

Helicobacter pylori cause 90 percent of stomach malignancies. 
The cytotoxin genes vacA and CagA are linked with the presence 
of H. pylori. CagA disrupts the mitotic spindle checkpoint, resulting 
in chromosomal instability [1,46,52]. MLH1 is an essential DNA re-
pair gene. The hypermethylation of MLH1 is caused by an increase 
in DNA methyltransferases (DNMTs). Mutations in Colibactin can 
cause tumors to develop. Paget’s seed (cancer cells) and soil (tu-
mor microenvironment) hypotheses are related to microbiota car-
cinogenesis [46].

Altered neuronal signalling
β-blockers for inhibiting tumor progression

Chronic stress is a risk factor for cancer. Noradrenaline secreted 
by the sympathetic nerves increases its circulation during chronic 
stress, and β-adrenergic receptors mediate its pro-tumorigenic ef-
fects. For example, angiogenesis following the release of noradren-
aline and its effect on β-adrenergic receptors in prostate cancer in 
mice [47].

Nerves and the tumor microenvironment

The 2-adrenergic receptor can allow tumors to escape the im-
mune system by decreasing lymphocyte outflow and lowering T 
cell absorption [30,47]. During the studies, breast cancer progres-
sion increased rapidly by manipulating the autonomic nerves, 
but local sympathetic denervation slowed tumor growth and de-
creased checkpoint markers (e.g., FOXP3, PD-L1, and PD-1) that 
drive immune suppression. It is characterized by nerve tumors and 
signals that interact with their tiny surroundings, leading to cancer 
development and metastasis [48].

Conclusion
Dedifferentiation/transdifferentiation and epigenetic dysregu-

lation are the significant factors behind cancer hallmarks, while 
altered microbiome and changed neuronal signaling are the two 
activating factors [1,46]. Disruption of epigenetics provides an op-
portunity for cancer to develop. The microbiome should be used to 
increase the outcome of treatment. Altering neural signals causes 
angiogenesis to proliferate and metastasize [12,22,23]. Stimulating 
oncogene in cancer cells results in pro-inflammatory transcription 
factors appearing within tumor cells, i.e., signal transducer, the ac-
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tivators of transcription (STAT3 or HIF-1α), and nuclear factor-kap-
pa B (NF-κB) [24]. The initial systemic hallmarks include the can-
cer system that links the bone marrow, the distal metastasis, and 
global inflammation. Immunity inhibition, global inflammation, the 
metabolic changes causing cachexia, the tendency to thrombosis, 
and neuroendocrine changes comprise the major systemic hall-
marks of cancer [1]. More research is required to understand every 
systemic hallmark effectively so that innovative ways can be devel-
oped to target various processes and effectively control cancer.
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