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Abstract

Cancer is defined as a collection of related diseases. The common prevailing factor in all different forms of cancer is that the cancer 
cell begins to divide without any control and invades nearby tissues, spreading through the lymph system [1]. Although solutions are 
found for restraining further spread or eliminating diseased cells, most of the methods fail to predict the early signs of such an occur-
rence. A useful catalyst utilized by specialists is using variant forms of differential equations, particularly ordinary differential equa-
tions (ODE's). By using ordinary differential equations, such as the Malthusian model and the Gompertzian model, and state which 
method would be more efficient. Models such as the "Gompertzian growth curve" helps us visualize the growth rate of a cancerous 
cell. The Gompertzian model describes the cancer growth as a curve, which then has an almost exponential growth rate followed by 
a slower growth rate, which reaches a plateau as tumors grow larger [2]. Finally, we will use Matlab to code a graph that describes 
the mathematical growth models. In this paper, we will reveal how we can use ordinary differential equations to solve cancer growth 
spread, while also touching on some other models.
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Introduction
The history of Mathematics is not a boring one but rather inter-

esting. Math has evolved constantly with our curiosities, benefit-
ing and explaining the laws of the universe while also aiding us in 
understanding our bodies. One of the many ways Math helps us 
is explaining tumor growth, specifically cancerous ones, in bio-or-
ganisms such as ourselves and many other species on our planet.

In this paper, we will be discussing tumor growth and how it 
spreads as abnormal cell division of cancer. We will define this 
growth using two specific models, Malthusian and Gompertz. 
Furthermore, we will observe how the Gompertz model is more 
competent in measuring tumor growth for long periods when 
compared with the Malthusian model. We will demonstrate this 

by plotting Tumour growth curves for both models to accurately 
capture the growth rate of the tumor volume.

What is cancer?

Our bodies are composed of countless cells that die and get re-
placed by new ones. These new cells are derived from the existing 
cells within our body, as the previous ones complete their cycle the 
new cells take their place. However, on rare instances, these cells 
divide without any restraint causing an abnormality within our 
bodies which we call “cancer". The National Cancer Institute de-
fines cancer as various and similar diseases that affect the human 
body and different bio-organism [3]. 

To understand cancer, we must grasp an idea of a cell and a 
cell cycle. All cells go through physiological cell cycle: the growth 

Citation: Fuad Mugarab-Samedi., et al. “Mathematical Models and their Application in Cancer Growth". Acta Scientific Cancer Biology 5.7 (2021): 35-41.



Figure 1: A visual representation between Normal Cells and 
Cancer Cells.

and asexual reproduction of a cell (process consists of interphase, 
which is then followed by the division of a cell by prophase, meta-
phase, anaphase, and telophase). Cancer cells also undergo this 
cycle, but their behaviour is unlike that of normal cells; they grow 
and divide in an uncontrolled manner, invading normal tissues, or-
gans, and eventually spreading throughout the body. It is hard to 
pinpoint the etiology of cancer, since it can occur from a wide range 
of variables, from genetic to environmental. The genetic alterations 
that contribute to cancer tend to affect three main types of genes; 
proto-oncogenes, tumor suppressor genes, and DNA repair genes. 
These genes are often called as the “drivers" of cells as they are 
responsible for repairing and maintaining regular cell growth and 
division. But once these genes are corrupt, they become what are 
known as cancer drivers". Once these cells begin to multiply, they 
can either spread throughout the body or stay put in one part.

Cells that form tumors spread around various parts of the body 
are known as malignant tumors [4]. Similarly, cancer cells that do 
not spread are known as benign tumors [5]. Benign tumors usu-
ally do not spread or invade nearby tissue, thus when you remove 
them, they usually do not come back. On the other hand, the malig-
nant tumors will spread and invade nearby tissue.

Cancer is one of the leading causes of death in all age groups 
among males and females. The Canadian Cancer Statistics released 
a publication in 2017 stating that “During an average Canadian life-

time, nearly 1 in 2 Canadians will be diagnosed with cancer, and 
1 in 4 will die from the disease" [6]. But given how disastrous the 
nature of this disease is, there has been a tremendous amount of 
financial and human resources invested into funding some form of 
a prevention or resolution for it. With a number of breakthroughs 
with the help from various fields in medicine and science, every 
day we get one step closer to our goal.

Malthusian model
Background

During the 18th and 19th century, philosophers considered 
whether the humanities population would never seize to grow. 
Many believed that populations would grow indefinitely. Howev-
er, an economist, Thomas Malthus (1766-1834), created a model, 
which would state otherwise. In 1798, Malthus anonymously pub-
lished his first book titled “An Essay on the Principle of Popula-
tion" [7]. In this book, the data and information that was provided 
received wide notice, as it challenged the way of thinking at that 
time. With this growth model, Malthus proved that the population 
growth will outgrow the rate of production. Thus, the human popu-
lation cannot grow forever if it outgrows the rate of food that would 
have to be produced. Even though this model has been utilized in 
Economics, scientists started to operate Malthus' principles in the 
medical field. The Malthusian growth model comes from the Mal-
thusian growth law. Stephen W. Goode and Scott A. Annin describes 
this as a “Mathematical model of a population growth that is ob-
tained by assuming the rate of increase of the population at any 
time, is proportional to the size of the population at that time" in 
their book Differential Equations and Linear Algebra, a custom edi-
tion for Purdue University [8]. Given the following definitions, we 
can apply it in tumor growth.

Malthusian growth model

The following definitions for generating the growth model are 
directly from the textbook provided by Purdue University. By un-
derstanding the variables and how to solve for the growth model, 
we can then use it to solve for tumor cell growth.

Suppose that P(t) describes some population of a given area at 
time t. Deriving P(t), we get dP/dt = kP where we define k as a 
positive constant. Solving for P(t), we get where P0 is the P(t) = P0ekt 
population at the start (at t = 0).
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The amount of time it could take for a cell to double in size can 
be referred to as the doubling time, we will refer to as td. So looking 
at the Malthusian growth model, we get

P(td) = 2P0 = P0ekt
d--------- (1) 

Rearranging, we acquire ktd = ln(2) which gives the doubling 
time to be 

td =1/k ln(2)

With this knowledge in mind, we can look at how Malthusian is 
used in modeling cancer growth. By setting our P variable to rep-
resent the population of cancer cells, then we can assume that P0 
would be the initial sum of cancer cells at time t = 0, and thus de-
termine the doubling time td of the cancer growth/regression rate 
over time t. This is a very helpful method for specialists who can 
then derive an appropriate time as well as dosage of medication, 
maximizing its effect in reducing further tumor growth.

Example of cell growth using Malthusian

For the next part, we create an example of a cell growth in a 
tumor using the Malthusian model. Suppose that a number of can-
cer cells are developing at the rate that is proportional to the value 
present. In 2 hours, the number of cells has increased from 400 to 
3600.

First we determine the number of cells present 12 hours later.

Secondly, determine the doubling time.

Solution a):

P(t)=PO∙ekt ------- (1)

Where the time t is measured in hours. By setting t = 0, P0 = 400, 
then

P(t) = 400 ∙ ekt---------- (2)

Now, if P(2) = 3600, then by rewriting the equation above, we 
get

3600 = 400 ∙ e2k----(3)

Thus, the solution for k is given as k = 1/2 ln(9) = ln(3). Therefore, 

P(t) = 400 ∙ e t ln(3) -----------(4)

And we can conclude that the number of cells present after 12 
hours is

P(12) = 400e2 4 ln(3) = 212, 576, 400.

Solution b):

Given that doubling time for Malthusian is td = 11/k ln(2), then 
the doubling

time of the tumor to growth is td = 1/ln(3) ln(2) = 0:630929860 
∙60(minutes) =37.86 minutes.

Drawbacks to malthusian

The Malthusian model does come with its flaws because when 
creating it, Malthus himself knew that it had inefficiencies. As men-
tioned above, cancer cells have a high growth rate, eventually over 
time, the population of those cells begin to regress. This happens 
due to multiple reasons, such as the number of cells in a tumor 
being at its maximum capacity or the initiation of cell spreading 
through the lymph nodes via metastasis. However, the Malthusian 
Model works under the assumption that the rate of increase of a 
population at any time, is proportional to the size of that popula-
tion at that time. Since the Malthusian model is unbounded, it is 
essentially only good for modelling short term projections.

Rushton Parker, a professor of Surgery in Liverpool University 
published a medical journal stating the drawbacks for the Malthu-
sian model [3]. In his research, he affirmed that the model does 
not account for the long term growth such as in malignant tumors, 
since their growth rate regresses over time. Thus the model is only 
useful for benign tumors. But when modeling cancer growth, it is 
critical to account for all variables. Since Malthusian method does 
not account for malignant tumors, we will further investigate some 
other models that exist.

Gompertz model
Background

The Gompertzian model is named after the English mathemati-
cian Benjamin Gompertz. It describes the growth and decay rate 
of bio-organisms such as plants, cells and bacteria, at the begin-
ning and the ending of a time period. This model is very commonly 
used in medicine as stated in a medical journal by Kathleen M. C. 
Tjorve and Even Tjorve “The Gompertz model is well known and 
widely used in many aspects of science. It has been frequently used 
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to describe population growths, such as the number of bacteria and 
cancer cells" [9].

Gompertzian growth model

In order to understand the Gompertz model, we first need to 
understand the Gompertz function. The function is given to us as 

V (t) = ke-ln( k/V0)e -αt--- (1)

Where,

V (t) = Cancer cell population at a given time t,

α = Constant that defines the rapid increase of cancer cells,

k = Carrying capacity.

Unlike Malthusian, the Gompertz model has a natural logarith-
mic function which allows it to be bounded. This allows the model 
to be useful for modelling long term growth rates of a population 
such as cancerous cells. The carrying capacity is the average vol-
ume of cells in a given system, where they can sustain themselves 
given their environmental constraints. These constraints usually 
mean the amount of minerals or nutrients that are available for 
those cells so they may endure.

The Gompertz growth is given by dV/dt = αln(k/V (t) )V (t) where 
dV/dt is the constant rate of change in the population growth over 
time. This change can either be positive or negative, depending on 
whether the growth rate of cells is increasing or decreasing. Due to 
the constant change of the tumor growth rate over time, the Gom-
pertz growth law must be derived.

Now, recall that dV/dt = αln(k/V(t) )∙Vt. By moving dt and ln( k/V 

(t) )V (t) respectively, we get

dV/ln( k/V (t) )V (t)= α dt ----- (2) 

Now, if we take the integral of the right hand side and left hand 
side we see that:

∫ dV/ln( k/V (t) )V (t)= α∫ dt ---(3)

By using u-substitution on the left hand side, and simple differ-
ential methods on see that:

u = ln k/V (t)= ln(k) - ln(V (t))----- (4)

Then, 

du = -1/V (t)dV ----- (5)

Which can be re-written as,

dV = -V (t)du ---------- (6)

Now, by substituting what we got in (6) into our equation (2), 
we see that

∫V (t)du/u ∙V (t)= α∫dt ---(7)

-ln │u │ + C1 = αt + C2; (C1 + C2 = C)----(8)

-ln │ u │ = αt + C ---(9)

 ln │ u │ = -αt – C----------(10)

│ u │=e-αt-C -------- (11)

│ u │=±e-αt-C -------(12)

 u = ±e-C ∙e-αt = D ∙ e-αt ----(13)

Where D = ±e-C. Replacing our u substitution we have,

ln k/V (t)= D e-αt ------- (14)

Setting t = 0, we get V (0) = V0, as well as e0 = 1. Thus,

=> D = ln k/V0 -------- (15)

Which can be inferred as,

 ln k/V (t)= ln k/V0∙ e –αt ---- (16)

Simplifying the equation results into

 V (t) = ke-ln( k/V0)e-αt ------(17)

Differences between Malthusian and Gompertz

One of the prevailing factors that makes Gompertz better, is 
the inclusion of ln k/V0. The following natural logarithmic func-
tion modifies the growth rate, making it a better tool for observing 
the growth rate of tumors. It does so by making the model more 
bounded, unlike the Malthusian model.

The Gompertz model, for example, shows that a tumor's rate of 
growth is greatest at the beginning stages, and then begins to re-
gress substantially [10]. This is due to a high volume of competition 
for nutrients from cancer cells. Since the population increases, the 
amount of available nutrients decrease, which in turn causes the 
growth rate to slow down.
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Graphing each model

One way to get a better comprehension of the differences be-
tween the two models, is by graphing them. Using the data from 
the textbook “Advanced Statistics with Applications in R by Eu-
gene Demidenko", we can create a graph that models the rate of 
growth for various tumors. When sampling these tumors, Eugene 
Demidenko did not enter the name for each different variant of 
a tumor. The reason this is essential, is because different tumors 
grow at different rates. For example; a tumor in the brain will grow 
at a much faster rate than a tumor in the lungs.

A researcher, Daniela Mejia has coded a similar growth model 
using the data provided by Eugene Demidenko [11]. In her code, 
she visually compares the Malthusian and Gompertz Models. From 
Eugene Demidenko's book, Daniela first creates a simple graph that 
defines the growth curve for some tumor. From there, she gener-
ates both of the models, and by comparison, confirms the Gompertz 
accuracy. The graphs provided by Ms. Mejia will help in viewing the 
application of each model. 

Figure 2 represents a growth curve of a single tumor cell where 
each plot point represents the Spheroid of the tumor cell calculated 
on a given day. 

Figure 2: Growth curve of a single tumor cell.

Now, by inputting the Malthusian model in the following graph, 
we get figure 3. 

It is clear that most of the points do not fall on the line itself 
meaning it doesn't accurately capture the growth rate of the tumor 

Figure 3 

volume. Now, fitting the Gompertz model into figure 2, we see that 
it is sigmoidal in shape and fits the tumor cell growth much more 
accurately (Figure 4).

Figure 4

Thus, the Gompertz model is accurate for both long and short 
tumor growths whereas the Malthusian model is only accurate for 
short term tumor growth as the Malthusian model is unbounded.

Other mathematical models

Another useful method for solving the tumor growth is by us-
ing partial differential equations. But first, we must grasp a deeper 
understanding on how cancer functions.

As mentioned earlier, when cancer cells grow and divide, they 
will spread to the host's normal tissues, organs, and eventually 
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spreading throughout the body. When primary tumors invade local 
tissues, they spread (metastasize) to other parts in the body to cre-
ate secondary tumors. These metastatic masses that are the main 
cause of death in cancer patients, not the total number of cancer 
cells within a patient. Although ordinary differential equation mod-
els do not consider spatial aspects, we can utilize partial differen-
tial equations (PDE) for modelling tumor growths that have spread 
across the body as it accounts for space.

We take a look at the key factors for spatial processes for tumor 
growth, which are cancer invasion and metastatic spread. Suppose 
x is the number of cell in a population at spatial positions (p); (p; 
q); (p; q; r) in the first, second, or third dimensional space. Then in 
this model, we can describe our population x as density, which im-
plies that we can scale our population between 0 and 1. Since our 
population x can be described in terms of time t and dimensional 
space, then our population x is no longer dependent on time only. 
Therefore in order to solve for x, we will have to take partial deriva-
tives of its independent variables.

Before we go into the mathematics, we need to understand 
some facts about how cancer cells invade tissues as invading local-
ized tissue is crucial for growth or spread of cancer. The process of 
invasion consists largely of three components:

•	 The cancer cells secrete various matrix degrading enzymes 
(MDEs),

•	 The MDEs destroy the surrounding tissue or extracellular 
matrix (ECM),

•	 The cancer cells actively spread into the surrounding tissue 
through proliferation and migration [12].

Suppose we discard the considered spatial domains above. Then 
the partial derivative can be written as dx/dt where the population 
x is derived with respect to time t.

The following model we will be analyzing is the first spatial 
model of cancer invasion which was constructed by Gatenby and 
Gawlinski [13]. Let us consider the effect of excess H+ (hydrogen) 
ions in degrading the local tissue.

This allows cancer cells to diffuse and proliferate into the space 
created. We want to solve for the rate of diffusion by finding the 
density of a normal tissue. We do this by using PDEs. The PDEs that 
Gatenby and Gawlinski used to model the spatio-temporal evolu-

tion of cancer cells (or neoplastic tissue), c, H+ ions, m, and extracel-
lular matrix (or normal host tissue), v, are as follows:

dc/dt = ∇(Dc(1 -v) ∇c) + pc(1 - c) (1)

dm/dt= ∇2m + δ (c -m) (2)

dv/dt= v(1 - v) - γmv (3)

Where,

∇(Dc(1 -v) ∇c) = Nonlinear diffusion,

pc(1 - c) = Logistic growth,

∇2m = Diffusion,

δ (c -m) = Production and decay,

v(1 - v) = Logistic growth,

γmv = Degradation,

c = Number of cancer cells,

v = The volume of the tumors,

Dc = Diffusion coefficient,

p = The constant proliferation rate of a cancer cell,

δ = The constant rate of production of H+ ions (which is also 
equivalent to the decay rate),

γ = The constant degradation rate of the extracellular matrix,

m = Number of free H+ ions.

As we can be seen from equation (2), the cancer cells proliferate 
and undergo nonlinear diffusion and secrete H+ ions, which diffuse 
and degrade the normal tissue. This implies that if spatio-temporal 
evolution of cancer cells (neoplastic tissue) undergo a nonlinear 
diffusion, then the cancer cells are dependent on the density of a 
normal tissue. If a normal tissue has high density, then it will have 
lower diffusion. Conversely, if a normal tissue has low density, then 
it will have higher diffusion. By using travelling wave theory with 
partial differential equations, Gatenby and Gawlinski predicted the 
existence of a hypo-cellular gap at the interface between the nor-
mal and cancerous tissue [13]. By finding the hypocellular gap, we 
can create a graph that shows in hematoxylin-eosin (H&E) stained 
micro-graphs of invading cancers.

Conclusion
By catching the cancer early, you can apply chemo or immuno-

therapy at the appropriate time and this prevents further spread of 
the cancerous cells. This alone can increase the survival chances.
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The possibilities of mathematical methods in cancerology 
(study of cancer) are not limited to the malignancy progression or 
tumor growth. They could be used for the measurement of therapy 
effectiveness, studying chemotherapy resistance, for predicting 
possible failure of therapeutic approaches, or assessing the out-
come and prognosis after different types of therapy. Cancers cells 
are always present in living organisms, but the biological control-
ling mechanism prevents them from progressing to a dangerous 
level (can be compared with overpopulation vs natural resources). 
So, the opportunity to quantitatively assess the process of progres-
sion of the cancer cells (cytokinetic) is the best way to determine 
effective time to interfere with the tumor.

Although there is no cure to cancer at the moment, if detected 
early, doctors have a higher chance of slowing down the cancer and 
leading it into remission (reduce signs of the cancer).
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