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Abstract
DNA mismatch repair (MMR) specifically recognizes and removes mismatched base pairs and small insertion-deletion loops 

(IDLs) from the genome thereby maintaining the genomic integrity. Deficiency or complete loss of MMR in human leads to different 
kinds of cancer. The most common cancer associated with MMR deficiency is Hereditary Nonpolyposis Colorectal Cancer (HNPCC) or 
Lynch syndrome. In addition to this, MMR deficiency has been found to be correlated with other types of cancer, as well. Loss of MMR 
functions increases the frameshift mutations in different tumor suppressor genes leading to cancer in a tissue dependent manner. In 
this review, the role of MMR in the development and prognosis of different types of cancer has been discussed. 
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DNA mismatch repair (MMR)

There are several sources of mismatched base pairs in the ge-
nome. For example, during DNA replication DNA polymerase can 
insert a wrong base resulting in the insertion of mismatch in the 
genome. Homologous chromosomes have the same but not iden-
tical sequences. Recombination between such two chromosomes 
can incorporate mismatches in the genome. Moreover, spontane-
ous deamination of 5-methylcytosine can also result in a mismatch 
in the genome. These mismatches, if not corrected can be deleteri-
ous to the cell. So, cells have evolved a mechanism by which it can 
specifically recognize and correct the mismatches in the genome. 
Thus, DNA Mismatch Repair (MMR) is essential to maintain the ge-
nomic integrity of the cell and is highly conserved in all three do-
mains of life. In Escherichia coli MMR decreases the spontaneous 
mutation rate by 50- 1000-fold [1]. Inactivation of the MMR path-
way in humans leads to hereditary nonpolyposis colon cancer [2].

DNA mismatch repair in human
In human, MMR begins with the recognition of mismatch by 

bacterial MutS homologue (MSH); MutSα (MSH2- MSH6) or small 
insertion-deletion loops (IDLs) by MutSβ (MSH2-MSH3) [3]. This 
is followed by the recruitment of bacterial MutL homolog (MLH). 
Humans have three MutL homologs. MutLα (MLH1- PMS2), MutLβ 
(MLH1- MLH2) and MutLγ (MLH1- MLH3). MutLα and MutLβ have 
a latent endonuclease activity residing in their C-terminal domain. 
The N- terminal domain of MLH is responsible for the dimeriza-
tion and regulation of the endonuclease activity [3]. The most 
important step in MMR is to discriminate between parental and 
daughter strands. In humans, a pre-existing nick serves as the dis-
crimination signal [4]. The communication between MSH bound to 
the mismatch (or IDLs) and the discrimination signal may involve 
DNA looping or active transportation of MSH complex from the 

site of mismatch to the discrimination signal site [5]. Once the MSH 
complex encounters the pre-existing nick, the excision step of MMR 
is initiated. Proteins involved in the excision step depend on the 
location of the nick relative to the mismatch [6]. In 5’ nick directed 
excision MutS, ExoI, PCNA, Polδ and Pol€ are involved. ExoI, a 5’ to 
3’ exonuclease cleaves the daughter strand followed by the resyn-
thesis of the strand by Polδ and Pol€ and the ligation by DNA ligase. 
In 3’ nick directed excision in addition to the proteins mentioned 
above, MutLα is also required. MutLα is believed to nick the daugh-
ter strand at the 5’ end of the mismatch which allows ExoI to cleave 
the daughter strand. The geometrical orientation of PCNA is also 
believed to help in strand discrimination [7]. Once, the daughter 
strand is cleaved, high fidelity replicative polymerases resynthesize 
the strand. The resulting nick is then ligated by DNA ligase. Unlike 
prokaryotes, the role of helicases in human MMR is debatable. Hu-
man lacks bacterial UvrD homolog. However, several RecQ family 
of helicases such as WRN, BLM, are speculated to be involved in 
MMR [6].

DNA mismatch repair and cancer
MMR in hereditary nonpolyposis colorectal cancer

Hereditary nonpolyposis colon cancer or Lynch syndrome is 
the most common form of colon cancer affecting people across the 
globe. 3 to 10% of colorectal cancer is caused by Lynch syndrome 
[8]. This disease is inherited in an autosomal dominant pattern 
with 85% penetrance [9]. Patients with Lynch syndrome often are 
pre-disposed to multiple types of cancers such as gastric cancer, 
intestinal cancer, gall bladder cancer, upper urinary tract cancer, 
lung cancer and skin cancer. In women, it increases the frequency 
of ovarian and uterine endometrium cancer [10]. 

Lynch syndrome is characterized by microsatellite instability 
(MSI) resulting from strand slippage during DNA replication [11]. 
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Figure 1: Distribution of germline mutation in MSH2, MLH1  
and MSH6 gene. Adapted from Reference [12].

MSI leads to either expansion or contraction of the length of repeti-
tive DNA sequences causing genomic instability. Most of the muta-
tions responsible for the syndrome mapped into six MMR genes; 
hMSH2, hMLH1, hPMS1, hPMS2, hMSH6 and hMLH3. Among them, 
mutations in hMSH2, hMLH1 and hMSH6 account for 38%, 60% 
and 7% respectively [12]. hMLH1- C680G, hMLH1-R659X and 
hMSH2-R171K have been found in patients with early onset of 
cancer indicating the important roles of these amino acid residues 
in MMR [13,14]. In many other cases, deleterious mutations in the 
coding region, splice junction mutations and the overall gross de-
letion of the genes are also observed [15]. Patients with hMSH6 
mutations are often characterized by the late onset of the disease 
and less MSI in the tumors. The exonic distribution of mutations in 
hMLH1, hMSH2, and hMSH6 associated with Lynch syndrome are 
shown in figure 1 [12]. As it is evident, the distribution is mostly 
random with some hotspots around exon 12 and 3 in hMSH2, exon 
16 and 1 in hMLH1 and exon 4 in hMSH6. In addition, some muta-
tions are also identified in the promoter region of MSH2 and MLH1 
responsible for the syndrome. Frameshift mutations, resulting in 
the formation of truncated proteins in hMSH2 and hMLH1 also ac-
count for Lynch syndrome. Most of these mutations result in the 
loss of interaction with other MMR proteins or change the overall 
structure of the proteins leading to an impaired MMR [12]. 

Crosstalk between MMR and other cellular pathways may de-
termine the phenotypic outcome and the treatment of the disease. 
Patients carrying a stabilizing mutation in Cyclin D, in addition to 
a mutation in MMR proteins, may result in a very early onset of 
cancer [15]. Similarly, mutations in the enzymes responsible for 
metabolizing amino compounds also show a cumulative effect in 
HNPCC patients [16]. MMR is also responsible for repairing DNA 
damages resulting from oxidative and alkylating stress. Cyclooxy-
genase 2 activity is mainly responsible for the oxidative stress on 
DNA. Recently, inhibitors of COX2 has been found to be effective 
to reduce polyp formation in HNPCC patients [17]. Many alkylat-
ing agents are used as anti-cancer drugs. Loss of MMR makes cells 
tolerant to alkylating agents in a p53 dependent manner thereby 
diminishing their effect [18]. 5-fluorouracil used as an anti-cancer 
drug for the treatment of advanced colorectal cancers. Studies have 
shown MMR deficient cells become resistant to this drug easily as 
compared to MMR proficient cells [19]. A detailed study of the in-
terplay between MMR and other cellular activities is thereby re-
quired to have a full understanding of Lynch syndrome.

MMR and head, neck and lung cancer
MMR deficiency has also been linked to the development of lung 

cancer. hMSH2 level was found to be comparatively less expressed 
in different types of lung cancer [20]. Inactivation of hMLH1 due to 
the hypermethylation of its promoter has also been found in lung 
cancer patients [21]. It has been shown that MMR deficiency can 
accelerate the tumor formation in mice having the k-Ras mutation 
[22]. Specific nucleotide polymorphism has been found in differ-
ent MMR genes such as hMLH1, hMSH2, hMSH3 and EXOI associ-
ated with head and neck cancer [23] indicating an important role of 
MMR in these types of cancers.

MMR and sporadic tumors with high MSI
Numerous sporadic colon cancers are characterized by a high 

degree of MSI, as well. In the majority of this type of cancers epi-
genetic inactivation of hMLH1 gene has been observed. Hyper-
methylation of the promoter region of hMLH1 plays the most sig-
nificant role in hMLH1 silencing [24]. This epigenetic change has 
been found to be biallelic affecting both the paternal and maternal 
alleles [25]. The pathway responsible for the hypermethylation is 
not clearly understood. The involvement of other MMR genes is 
MSI abundant sporadic tumors are less significant. 

Deficiency in MMR leads to mutations in tumor suppressor 
genes

Loss of MMR functions lead to high degree of frameshift muta-
tions of many tumors suppressor genes containing repetitive DNA 
sequences either in their coding region or in their promoter re-
gion due to increased rate of replication slippage. These important 
genes affected by the loss of MMR are summarized in table 1 [26]. 
Most of the gene products play a significant role in regulating cell 
growth in actively proliferating cells. Mutations in these genes of-
ten lead to different kinds of cancers in a tissue-dependent manner. 
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Bibliography

Gene or locus Chromosomal location
Genes identified and germline  
mutations demonstrated
TGFβRII 3p22
CHD1 (E-cadherin) 16q22
I1307K variant of APC 5q21
E1317Q variant of APC 5q21
Genes mapped but not yet identified
HMPS 6q
CRAC1 15q14-q22

 Table 1: The name and location of tumour suppressor genes af-
fected by MMR deficiency. Adapted from Reference 26.

Conclusion
MMR in humans play a significant role in maintaining genome 

stability. It reduces the frequency of MSI that leads to an increase 
in genomic integrity. A complete understanding of the human 
MMR mechanism will provide us a better understanding of its role 
in different types of cancer and will help us to design new effective 
anti-cancer drugs. 
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