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Introduction

Abstract
Estimates of cancer in Brazil and the salty world each year, placing it at the top of the death causes ranking.

The first and last year of 2007 was 7.6 million in 2007, showing a 32% increase in deaths between 2000 and 2007. In 2007, the 
cancer was responsible for 13% of all deaths in the world [1,2].

Like what is in Brazil, what is a more common cause of death, the elimination of accidents and cerebrovascular disease. In 2014, 
395,000 new cases of cancer were found, 205,000 in men and 190,000 in women. The most incident types of cancer are prostate, 
lung, colon and rectum. In women, the most common cancers are breast, colon and rectum, cervix, lung and thyroid, according to 
INCA data. Estimate 2014: Incidence of Cancer in Brazil. 2014; Rio de Janeiro: INCA, 124p.

This is a challenge to prevent the preventive decision of the prevention of the risk of the treatment of treatment and treatment of 
debilitating disease.

Thus, sulforaphane (SFN) is a natural isothiocyanate derived from cruciferous vegetables, such as broccoli, cabbage, watercress, 
arugula, kale, etc.

This phytoactive product (isothiocyanate) acts in cellular destiny through the nutritionist dietitian, although after an observation 
that dietetics are not detected in the urine is an indication that they are not absorbed [3]. In addition, there are sessions available 
so that the apparatus cannot convert glycosinolates to isothiocyanates [4]. However, they include literacy shows that glycosinolates 
dietetic they best converted in isothiocyanates in animals and humans, and that this migration is mediated by the activity of 
myrosinase of the enteric microflora [3,5,6]. Once generated, isothiocyanates are absorbed and metabolized by sequential enzyme 
waves, a first of which is a conjugation with glutathione [7,8].
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Sulforaphane (SFN) is a natural isothiocyanate derived from 
cruciferous vegetables, such as broccoli, cabbage, watercress, 
rocket, kale, etc.

This phytoactive product (isothiocyanate) acts on a cellular 
target through a nutrigenomic mechanism, but after the 
observation that dietary glycosinolates are not detected in the 
urine, it is suggested that they are not absorbed [3]. In addition, 
available evidence suggests that mammalian tissues cannot 
convert glycosinolates to isothiocyanates [4]. However, literary 
evidence shows that dietary glycosinolates are indeed converted 
into isothiocyanates in animals and humans, and that this 
conversion is mediated by the myrosinase activity of the enteric 

microflora [3,5,6]. Once generated, isothiocyanates are absorbed 
and metabolized by sequential enzymatic reactions, the first of 
which is conjugation with glutathione [7,8].

Because of its efficacy and safety, bioactive SFN is recognized 
as a promising chemopreventive agent with antitumor effects 
in cancers, cervical [9], breast [10] and bladder [11]; renal cell 
carcinoma (RCC) [12]; non-small cell lung cancer (NSCLC) [13] and 
cancer of the colon and prostate [14]. SFN was reported in a study 
to increase efficacy at low dose cisplatin (CDDP) [15].

Nutrigenomic mechanisms of anticancer activities of SFN can 
modulate the tumor cell cycle, through genomic signaling they act 
in the process of apoptosis and angiogenesis.
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In the cell cycle SFN disrupts the G2/M phase, consequently in-
hibits the proliferation and growth of the tumor cell. These path-
ways undergo downregulation of the cyclin B1 [9] and cyclin D1 
[16] genes, as well as increased levels of p21WAF1/CIP1 protein 
[16].

SFN also acts in other ways by increasing the expression of the 
proapoptotic Bax protein and decreasing the expression of the Bcl-
x antiapoptotic protein, thereby inducing apoptosis of cancer cells 
[17].

This was a major effort because it was recognized that the 
induction of phase 2 enzymes, such as quinone oxireductase 1 
(NQO1) and glutathione S-transferase (GST), is an important strat-
egy to obtain protection against carcinogenesis [18,19].

One of the first tumor-triggering mechanisms is linked to the 
hypoxia-1α inducing factor (HIF-1α), in studies of the efficacy of 
a drug known as organometallic ruthenium II, shows the benefit 
and importance of blocking this pathway in cancer treatment [20].

In addition to HIF-1α, other pathways of suppression of vascu-
lar endothelial growth factor 2 (VEGF 2) expression and activity 
are also attributed to SFN and this pathway evaluated in the study 
inhibited angiogenesis and metastasis of ovarian cancers and co-
lon [21,22].

Oxidoreduction and epigenetic pathways in cancer
In recent decades, there has been great interest in the role of 

free radicals, more commonly known as reactive oxygen species 
(ROS) and reactive nitrogen species (RNS), not only in experi-
mental medicine but also in clinical practice. ROS and RNS: they 
are generated by several causes, among them, during irradiation 
by UV light, X-rays and gamma rays, in addition they are reaction 
products catalysed by metals and are present as pollutants in the 
atmosphere.

ROS are produced by neutrophils and macrophages during in-
flammation generating byproducts of electron transport reactions 
catalyzed by mitochondria and other mechanisms [23].

Exposures to these exogenous agents provide epigenetic reac-
tions, known by changes in gene expression that do not affect the 
DNA sequence. In mammals, such modifications mainly include 
DNA methylation, histone modifications (acetylation, phosphory-
lation and methylation) and regulation of non-coding RNA. Epi-
genetic changes are reversible and may readily respond to natural 
bioactive dietary compounds [24], such as SFN, since it has shown 
regular activation of the gene or the silencing involved in cancer 
through epigenetic modifications [25].

Epigenetic reactions occur through environmental factors, food, 
water and air. To reduce the burden of these exposures you need 
to eliminate them. However, in many cases, exposures are unavoid-
able, such as exposures to aflatoxins and other mycotoxins in food. 
With this, it is necessary to have substantial behavioral changes in 
our living habits or economic investments in the prevention of ex-

posures that are extremely difficult to implement in individuals or 
populations. In such cases, effective, tolerable, low-cost approaches 
and practices for chemoprevention with glycosinolates-rich foods 
as precursors of isothiocyanates, glucoraphanin and its isothiocy-
anic sulforaphane found in broccoli may be especially desirable as 
anticarcinogenic agents [26].

In the long run, excessive exposure to oxidative stress is one of 
the main factors promoting carcinogenesis through DNA damage, 
providing nucleotide pleomorphisms, mutations and chronic cel-
lular inflammation [27].

The activation of Nrf2 by SFN induced the expression of several 
cytoprotective genes with anticarcinogenic activities [28,29]. Its 
potential as a strong activator of factor 2 related to erythroid nucle-
ar factor-2 (NF-E2-) 2 (Nrf2) is well known, since Nrf2 is a critical 
transcription factor in response to oxidative stress [30].

NRf2-mediated genes with cytoprotective activities include anti-
oxidant genes and phase II enzymes, such as nicotinamide adenine 
dinucleotide (NAD (P) H): quinone oxidoreductase 1 (NQO1), heme 
oxygenase 1 (HO-1), catalase, glutamate-cysteine   ligase (GCL), glu-
tathione S transferase (GST), UDP-glucuronosyltransferases (UGT) 
[31], epoxide hydrolase [32,33], ferritin [33] and superoxide dis-
mutase (SOD). Several studies have shown that the effects of SFN 
on Nrf2 and its downstream cytoprotective genes are through the 
modification of the cysteine   residues Keap1 [34]. Intracellular ROS 
generation, dose-dependent and time-dependent Bax/Bcl2 change 
and the high expression proteins of cytochrome C, Casp-3, Casp-8 
and PARP-1 demonstrated the apoptotic pathway induced by SFN, 
as well as induction of apoptosis by phosphorylation of mitogen-
activated protein kinases (MAPKs) such as JNK and P-38 [35], phos-
phatidylinositol 3-kinase (PI3K) and proteinase kinase C (PKC); 
and epigenetic modifications, which resulted in phosphorylation, 
nuclear accumulation and increased transcription and stability of 
Nrf2 [36-39].

Our future prospects through clinical studies in humans have 
evidences on the chemopreventive effects of SFN on carcinogen-
esis.

It is noteworthy that several clinical trials evaluated the safety 
and tolerance of SFN at the doses used. Two phase I clinical trials 
showed that extracts of broccoli sprouts containing SFN were well 
tolerated and did not cause significant adverse effects when given 
orally by healthy volunteers at 25 μmol for 7 days or women with 
breast cancer receiving 200 μmol of mean dose 50 min before sur-
gery [40,41].

A recent Phase II clinical study in men with recurrent prostate 
cancer also confirms the safety of NSF [42].

In another study evaluating the clinical efficacy of SFN in pa-
tients with advanced pancreatic ductal adenocarcinoma, data in-
dicated that 90 mg/day of active SFN effectively inhibited tumor 
growth and increased the sensitivity of cancer cells to chemother-
apy [43].
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In humans, the consumption of SFN-rich broccoli shoots 
showed a chemopreventive mechanism by inhibiting histone 
deacetylases (HDACs) in peripheral blood mononuclear cells, 
which in turn causes an increase in histone acetylation in the 
promoters of silenced tumor suppressor genes by the epigenetic 
effect, reactivating the tumor suppressor gene and inducing cell 
cycle arrest and/or apoptosis [44,45]. These clinical studies sug-
gest that SFN is a promising anticancer agent through its potential 
epigenetic mechanisms.

Conclusion
Based on the studies described above, it is evident that dietary 

compound SFN has little or no adverse side effects, in addition to 
exerting anticarcinogenic activities through multiple mechanisms, 
including epigenetic regulation. Thus, daily consumption of CFN-
rich cruciferous vegetables is not only a healthy diet choice, but 
also an important effective chemopreventive strategy. SFN, as an 
inducer of Nrf2, shows the ability to re-activate the expression of 
Nrf2 and its cytoprotective genes as a target in the prevention of 
carcinogenesis by epigenetic mechanisms.

However, these studies have led us to propose the epigenetic 
restoration of Nrf2 by SFN as an important strategy against dis-
eases related to oxidative damage, including cancer, in addition to 
providing new directions of research and preventive approaches 
to diseases related to oxidative damage.

Therefore, SFN significantly increases cytoprotection through 
genes involved in various cellular defense mechanisms against cel-
lular toxicities and carcinogenic inductions.

In this review, we present the anticancer activities of SFN and 
its epigenetic mechanisms, including the epigenetic reactivation of 
Nrf2. This information will help facilitate the discovery and devel-
opment of new antineoplastic drugs.
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