
     Volume 2 Issue 2 February 2018

EGFR Mutant Non-Small Cell Lung Cancer: Current Status and Future Perspective

Bakulesh Khamar*

Research and Development Department, Cadila Pharmaceuticals Limited, India 

*Corresponding Author: Bakulesh Khamar, Research and Development Department, Cadila Pharmaceuticals Limited, India.

Mini Review

Received: January 29, 2018; Published: February 12, 2018

Abstract

Keywords: EGFR Mutant NSCLC; EGFR Inhibitors; Immunotherapy 

Epidermal growth factor receptor (EGFR ) mutant Non-small cell lung cancer (NSCLC) carries better prognosis compared to other 
varieties of NSCLC even when treated by chemotherapy. The usage of EGFR inhibitors (EGFRI) is associated with better response 
rate (up to 87.8%) and improved Progression free survival (PFS) compared to chemotherapy. The outcome of therapy depends on 
type of EGFR mutant present as well as the prescribed EGFRI. In general improvement in Overall survival (OS) is not seen with use of 
EGFRI. Commonly expressed EGFR mutants include del790 and L858. They are sensitive to reversible EGFRI gefitinib and erlotinib. 
Progression of disease on EGFRI is associated with several factors. De-novo presence of mutant T790M is seen in 50% of tumors at 
progression. Osimertinib is a third generation irreversible EGFRI which acts on commonly expressed EGFR mutant as well as T790M. 
It provides better outcome as a second line therapy. Recently, it is found to be better than reversible EGFRI in first line therapy also. 
There are also some efforts to improve outcome by focusing on better EGFRI and/or combining EGFRI with other therapies like che-
motherapy, vascular endothelial growth factor (VEGF) inhibitors and immunotherapy. This mini review provides overview of current 
status and potential future therapies.

Acta Scientific Cancer Biology

EGFR mutant NSCLC ranges from 7% to 64 % of NSCLC in vari-
ous parts of the world with the highest (64%) in Vietnam and low-
est (7%) in Austria [1]. It is most common amongst Mongols and 
least amongst Caucasians. Development of epidermal growth fac-
tor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has been 
challenging. Its success shifted focus from histological subtypes to 
molecular subtypes in prognostication as well as management and 
paved way for development of non-cytotoxic small molecules tar-
geting molecular subtypes in NSCLC which are more effective and 
less toxic. 

Introduction 

EGFR mutations are mainly seen in adenocarcinoma subtype of 
NSCLC and occasionally in squamous NSCLC. EGFRI worked best 
in adenocarcinoma subtype compared to squamous NSCLC prior 
to identification of EGFR mutation as a biomarkers for efficacy of 
EGFRI. EGFR mutations seen in NSCLC are mainly of three types: 
(1) in-frame deletions in exon 19; (2) missense mutations in ex-
ons 21, 18 and 20; (3) in-frame duplications/insertions in exon 
20. Exon 19 deletion 729 and exon 21 point mutations L858R, 
are two most common mutations and account for approximately 
80–90% of the EGFR mutations detected in NSCLC. Both are as-
sociated with response to first generation EGFRI- gefitinib and 
erlotinib. Resistance to erlotinib and gefitinib include exon 19 de-
letion D761Y, exon 20 mutation D770, T790M, V769L and N771T. 
Of these, T790M is seen in approximately 1% of newly diagnosed 
NSCLC with EGFR mutations but in 50%-60% of those who prog-
ress on erlotinib and gefitinib following initial response [2]. 

EGFR mutations in NSCLC 

Gefitinib was the first tyrosine kinase inhibitor (TKI) in the 
category. It was originally evaluated for non-selected population 
of NSCLC. This was followed by erlotinib. Evaluation of results of 
large scale clinical evaluation revealed responders as women, nev-
er smokers, and those of Asian ethnicity with adenocarcinoma his-
tology and hardly any effect in squamous NSCLC. Further research 
revealed presence of EGFR-activating gene mutation to be the most 
reliable predictors of identifying a subset with improved efficacy 
[2] as revealed by tumor response up to 80%; progression free sur-
vival compared to cytotoxic chemotherapy with reduced toxicity 
[3,4]. Gefitinib and erlotinib are reversible TKI and are also known 
as first generation EGFR inhibitors (EGFRI). They are followed by 
reversible EGFRI, afatinib. This is followed by approval of third 
generation EGFRI, osimertinib which is also active against T790M, 
the major mutation seen at time of progression following response 
with first and second generation EGFRI.

EGFR mutant positive tumors generally carry better prognosis 
compared to wild type tumors even when treated with chemo-
therapy. Of common mutants Leu858 mutant has better prognosis 
with chemotherapy in compared to del19 mutant (26.9 months 
vs 20.7 months). T790 positive tumors has better prognosis com-
pared to T790 negative tumors (ORR 57% vs 29% and PFS 11 
months vs. 7 months). EGFR inhibitors provides better outcome 
in Exon 19 mutations (highest response rate 70%) followed by 
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Subgroup analysis of the previously reported trails showed 
that EGFRI treatment of EGFR mutant NSCLC is associated with 
better outcome- PFS (16.5 months vs 8.6 months; p = 0.001) and 
OS (35.3 months vs 9.8 months; p = 0.04) in PD-L1 expressing tu-
mors compared to those not expressing PD-L1 [6,21]. Outcome is 
also proportional to level of PD-L1 expression [7]. However, no 
relationship was found between PD-1 expression and response to 
EGFR inhibitors [21].

exons 21, 18, and 20 [5]. De l19 mutants have significantly longer 
median survival times (up to 38 months) than those with Leu858R 
mutation (up to 17 months) [6-8]. Patients with EGFR compound 
mutants (exon 19 deletions or L858R plus T790M) reached the 
maximum benefit (PFS and overall survival) from erlotinib treat-
ment compared to those with exon 19 deletions or L858R alone [9].

Currently there are four EGFR inhibitors (EGFRI) approved 
world-wide for treatment of NSCLC and include gefitinib, erlotinib, 
afatinib and osimertinib. Objective responses generated by EGFRI 
are partial in nature and hardly associated with a complete re-
sponse [10]. Progression free survival and overall survival follow-
ing EGFRI is proportional to the amount of tumor shrinkage [11].

EGFR inhibitors

First generation or reversible EGFRI provide better response 
rate and PFS compared to chemotherapy in patients harboring 
commonly expressed EGFR mutants (del19 and L858R) without 
improvement in OS . This may be due to crossover after the pro-
gression in both arm.

Second generation or irreversible EGFR inhibitor Afatinib is 
more effective against del19 and not so much against L858R. It im-
proved survival [Hazard Ratio (HR) 0.59; 95% Confidence Interval 
(CI) 0.45 - 0.77] in del19-positive tumors compared to Leu858Arg-
positive and chemotherapy [12]. It is inferior to chemotherapy (HR 
1.25; 95%CI 0.92 - 1.71) in to leu858Arg-positive tumors [13]. It is 
also effective against exon 18 mutants and other exon 19 mutants. 
It is not effective against T790 mutant responsible for resistance to 
reversible EGFR.

Osimertinib is a third generation EGFRI active against common-
ly expressed EGFR mutant (del19 and L958R) as well as T790M 
which is major cause of acquired resistance following response to 
other EGFRI [14]. Osimertinib is approved for use in patients who 
progress on first line TKI. It is most active against T790M positive 
tumors compared to T790 negative tumors (response rate 61% vs 
21%; Median PFS 9.3 months vs 2.8 months) [15]. It is also superior 
over standard platinum–pemetrexed chemotherapy with respect to 
response rate (71% vs. 31%), progression-free survival (PFS) (10.1 
months vs. 4.4 months) and quality of life [16]. 

As a first line therapy, in EGFR mutation–positive (exon 19 dele-
tion or L858R) advanced NSCLC, it significantly improved the medi-
an progression-free survival (18.9 months vs. 10.2 months; hazard 
ratio for disease progression or death (HR 0.46; 95% CI 0.37 - 0.57; 
p < 0.001) compared to standard EGFR-TKIs. The median duration 
of response was 17.2 months (95% CI 13.8 - 22.0) with osimertinib 
versus 8.5 months (95% CI 7.3 - 9.8) with standard EGFR-TKIs. Ef-
ficacy was superior in both those with CNS disease at enrollment 
and those without brain metastases. Adverse events of grade 3 or 
higher were less frequent (34% vs. 45%) with osimertinib than 
with standard EGFR-TKIs [17].

EGFR mutant NSCLC is associated with increased Programmed 
death ligand 1 (PD-L1) expression by tumor tissue [18-20] which is 
seen in more than 50% of the cases Programmed cell death-protein 
1 (PD-1 and Fox-P3 expressing lymphocytes are seen in tissue of 
EGFR mutant NSCLC [22] of around 1/3 of tumors [21]. 

EGFR mutation and Immune Checkpoint proteins 

EGFR inhibitors and immune checkpoint proteins:

Treatment with EGFR inhibitors convert PD-L1 positive tu-
mors to PD-L1 negative tumors. On discontinuing EGFR inhibitors, 
tumor again becomes PD-L1 positive [23]. This is reverse of T790 
mutation behavior i.e. Tumor becomes T790 positive while receiv-
ing EGFR inhibitor and negative once EGFR inhibitor is discontin-
ued. Interestingly, PD-L1 expression goes down with development 
of resistance [24].

Skin rashes are common side effect of EGFR inhibitors and are 
associated with improved outcome [25]. Skin rash is independent 
prognostic parameter for better PFS (HR 0.34; 95% CI 0.18 - 0.63; 
p = 0.001) and OS (HR 0.30; 95% CI 0.20 - 0.48; p = 0.004) [26]. 
Skin rash comprise of Lymphocytic infiltration which has abun-
dance of T cells (predominantly CD4-positive T cells) and CD1a-
positive Langerhans cells throughout the dermis and epidermis. 
Mononuclear myeloid cells like macrophages and activated den-
dritic cells dominate in dermis. This is accompanied by increased 
expression of CCL-2, and CXCL-10 in lesional epidermis and may 
explain immune infiltration [27]. Rashes are effectively treated 
with minocycline which is known to induce cell mediated immune 
suppression Th2 type of response [28]. 

Rash following EGFR inhibitors

Current EGFRI provide highest response rate amongst all ap-
proved therapy in management of NSCLC. However objective re-
sponses generated by EGFRI are partial in nature [10] hardly any 
complete response and the improvement in PFS is modest. The 
progression (acquired resistance) is associated with 

Improving the outcome of EGFR mutant harboring NSCLC

1. Finding of other mutations (T790M in 50%, D761Y, 
L747S, T845A)

2. Tumor induced angiogenesis

3. Alternate tyrosine kinase activation

4. Loss of target

5. Activation of downstream intracellular target [29]

Effort to improve outcome are directed to improve response 
rate, extent of response and duration of response leading to im-
proved OS. Based on success of second and third generation EGFRI 
efforts are made to have better EGFRI which will have a possible 
better activity against commonly expressed mutant. Efforts are 
also made to combine various agents to improve outcome.

Multiple irreversible EGFRI are evaluated in preclinical set-
tings. They do not seem to provide advantage over osimertinib 
and so further development of the majority was discontinued. 
There are attempts to have therapies targeting Mesenchymal-epi-
thelial transition factor (MET) which is another major mechanism 
of resistance [30]. 

Better EGFR inhibitors
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In effort to improve outcome, EGFRI and checkpoint inhibi-
tors have been evaluated and are being evaluated as a combina-
tion therapy PD-L1 inhibitor, durvalumab with osimertinib [45]/
gefitinib [46] was unable to provide any significant benefit. How-
ever, a significant increase in AEs was seen, 55% grade 3/4 AEs. 
Durvalumab combination with osimertinib has found to increase 
incidence of interstitial lung disease [45]. Nivolumab/Atezolizum-
ab + erlotinib and Trametinib + gefitinib has been administered 
with acceptable toxicity in small patient population [47]. However, 
based on available information it is expected that non-specific im-
mune stimulation in form of checkpoint inhibitor may not be the 
answer at least for del19, L858R and T790M positive tumors. 

Response to immunotherapy (ORR and duration of PFS) is 
associated with increase in intratumoral CD8+T cells [39] and 
increase in ratio of CD8+T cells (at peak) to tumor burden [40]. 
Objective responses generated by EGFR inhibitors though large in 
number are partial in nature [24] hardly any complete response 
and not durable as seen with checkpoint inhibitors [41] though 
EGFRI are associated with immune activation [42]. Anti-PD1/PD-
L1 therapy is associated with poor response in EGFR mutant tu-
mors compared to EGFR wild type NSCLC [43]. It is hypothesized 
that effective combination of EGFR inhibitors with immunothera-
py will be synergistic [44] and result in durable response in larger 
number of patients with EGFR mutant NSCLC. 

Active immunotherapy can activate innate (non-specific) and/ 
or adaptive (specific) cell mediated immune response. For killing 
of tumor cell, ratio of immune cells and tumor cells is important. 
With innate immune response this ratio is difficult to achieve in 
patients with large tumor burden. The ratio can be achieved by 
directing immune cells to tumor cells. This is possible with adap-
tive immune response, provided immune response is generated 
against tumor associated antigen. Desmocollin-3(DSC3) is one 
such antigen which is absent in adenocarcinoma of lung including 
EGFR mutant NSCLC [48], but is expressed in tumor cells follow-
ing exposure to effective chemotherapy as well as EGFR inhibitors 
[49,50]. Induction of DSC3 happen at sub-therapeutic dose also. 

To improve outcome EGFRI are combined with chemotherapy, 
VEGF inhibitors and immunotherapy.

Combination therapy

Chemotherapy 
As a first line

Synchronous Combination of Chemotherapy and EGFR TKIs

The synchronous combination of chemotherapy and TKIs is 
not superior to chemotherapy or EGFR TKIs alone for the first-line 
treatment of NSCLC [29,31,32]. Combination of gefitinib with car-
boplatin+ pemetrexed seems promising with significant increase in 
mPFS (18.3 vs 15.3 mos), mOS (41.9 vs 30.7), and reversible hema-
tological grade 3 or higher AEs [33].

Intercalated therapy

Compared to EGFR TKIs monotherapy, the intercalated combi-
nation of chemotherapy and EGFR TKIs seemed superior to EGFR 
TKIs alone in terms of PFS, objective response rate (ORR) and dis-
ease control rate (DCR) (PFS: HR 0.75; 95% CI 0.62-0.91, P = 0.004; 
ORR: RR 1.49, 95% CI 1.12-2.00, P = 0.007 and DCR: RR 1.33, 95%CI 
1.15 - 1.54 , P < 0.001) in advanced NSCLC therapy [34,35]. 

Addition of chemotherapy following progression on TKI

Addition of chemotherapy to reversible EGFRI [36] following 
progression does not provide any benefit for ORR (RR 0.95, 95%CI 
0.68 - 1.33; p = 0.75) and PFS (HR 0.89; 95% CI 0.69 - 1.15; p = 
0.38). OS was even shorter (HR 1.52; 95% CI 1.05 - 2.21, p = 0.03).

Addition of chemotherapy to irreversible EGFRI [8]

Addition of paclitaxel to afatinib in those who progressed on afa-
tinib as a second line following clinical benefit resulted in improved 
PFS (median 5.6 versus 2.8 months; HR 0.60; p = 0.003) and ORR 
(32.1% versus 13.2%, p = 0.005) compared to single agent chemo-
therapy. There was no difference in OS. 

VEGF Inhibitors 

Erlotinib + Bevacizumab: In a phase II trial, addition of Bevaci-
zumab to erlotinib improved median progression-free survival in 
EGFR mutant NSCLC i.e. 16.0 months (95% CI 13.9 - 18.1) vs 9.7 
months (95% CI 5.7 - 11.1); (HR 0.54; 95% CI 0.36 - 0.79; log-rank 
test p = 0.0015) without significant additional toxicity [37]. It seems 
better results are seen in T790M-positive group [38].

Immunotherapy

Checkpoint inhibitors 

Active immunotherapy
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