

## ACTA SCIENTIFIC ANATOMY

Volume 2 Issue 6 September 2023

Editorial

## Plenary and Malevolent-Myoepithelial Carcinoma Salivary Gland

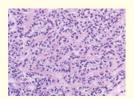
## Anubha Bajaj\*

Consultant, Histopathologist, A.B., Diagnostics, India

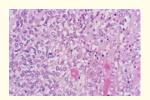
\*Corresponding Author: Anubha Bajaj, Consultant, Histopathologist, A.B.,

Diagnostics, India.

Myoepithelial carcinoma of salivary gland emerges as a malignant neoplasm singularly constituted of myoepithelial cells which demonstrates an infiltrative pattern of tumour evolution. Myoepithelial carcinoma of salivary gland may arise de novo or as myoepithelial carcinoma ex pleomorphic adenoma. PLAG1 genetic fusion is encountered in >50% neoplasms. The alterative terminology of malignant myoepithelioma is not recommended. Currently, an acceptable, well defined tumour grading system is absent. Myoepithelial carcinoma configures around 4% of salivary gland neoplasms. Nevertheless, tumour frequency may be underrated as myoepithelial carcinoma can be underdiagnosed. Myoepithelial carcinoma may incriminate paediatric subjects. Median age of disease representation is 59 years although the neoplasm may emerge between 14 years to 90 years. A specific gender predilection is absent [1,2].


Myoepithelial carcinoma frequently implicates the parotid gland followed in frequency by minor salivary glands, especially palatal glands or submandibular gland. Parotid gland is commonly incriminated in up to three fourths ( $\sim$ 73%) of neoplasms [1,2]. Myoepithelial carcinoma de novo or ex pleomorphic adenoma frequently depicts PLAG1 genetic fusion, as encountered in an estimated 50% of neoplasms. Besides, various genetic fusion partners as FGFR1, TGFBR3 or ND4 may be enunciated. Additionally, clear cell myoepithelial carcinoma may delineate EWSR1 genetic fusion. Fluorescent in situ hybridization (FISH) can be optimally employed to discern EWSR1 genetic rearrangements. Nevertheless, corresponding fusion transcripts remain unidentified and demonstrate an obscure significance. Few neoplasms depict HMGA2 genetic fusion [1,2]. Clinical symptoms are nonspecific. Commonly, tumefaction represents as a painless nodule [2,3].

Received: September 01, 2023


Published: September 15, 2023

© All rights are reserved by Anubha Bajaj.

Cytological examination depicts a hyper-cellular specimen comprehensively comprised of myoepithelial cells. Neoplastic myoepithelial cells represent as an admixture of plasmacytoid, epithelioid or spindle shaped cells and configure miniature cellular groups and aggregates or appear as disseminated singular cells. Intervening stroma is scanty and can be highlighted with metachromatic stains as azure B or methyl violet. Mitotic figures and pleomorphic nuclei may be exemplified [2,3]. Upon gross examination, tumefaction exhibits a nonspecific countenance. Neoplasm commonly represents as an expansible, lobulated or multinodular mass with grey/white to beige hues. Tumour perimeter may be poorly defined or infiltrative [3,4]. Upon microscopy, a characteristic, invasive, expansible, multinodular neoplastic growth is observed. Infrequently, myoepithelial carcinoma may demonstrate infiltration of singular cells or miniature clusters of tumour cells. Desmoplastic reaction within encompassing stroma is exceptionally discerned. Tumour nodules display a hypo-cellular centric zone circumscribed by hypercellular peripheral zone. Encompassing stroma is hyalinised. Foci of bland tumour necrosis appear confined within hyper-cellular centric zone of tumour nodules. Generally, tumour necrosis is contemplated as a feature of high-grade transformation of myoepithelial carcinoma. Tumefaction is composed of myoepithelial cells in entirety. Neoplastic cells depict variable cytological features as clear cell, epithelioid cell, plasmacytoid cell or spindle shaped cells. Myoepithelial carcinoma de novo or myoepithelial carcinoma ex pleomorphic adenoma may variably delineate hyalinised, myxoid or myxochondroid stroma [3,4]. Myoepithelial carcinoma commonly demonstrates architectural patterns as solid, trabeculae, cords and cellular nests or disseminated singular cells. Occurrence of pre-existing or residual component of pleomorphic adenoma may be discerned within myoepithelial carcinoma ex pleomorphic adenoma [3,4].



**Figure 1:** Myoepithelial carcinoma demonstrating tubules, cords and trabeculae of neoplastic myoepithelial cells surrounded by desmoplastic stroma. Tumour necrosis is absent. Mitotic figures are minimal [7].



**Figure 2:** Myoepithelial carcinoma delineating cords and nests of malignant appearing myoepithelial cells enmeshed within a desmoplastic stroma. Tumour necrosis is absent. Mitotic figures are minimal [8].

| Tumour subtype                             | Chromosome                                                                                                   | Gene/Mechanism                                                                                |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Pleomorphic adenoma                        | 8q12,12q13-15                                                                                                | PLAG1 or HMGA2 fusion/amplification                                                           |
| Basal cell adenoma                         | 3p22.1,16q12.1,16p13.3, 5q22.2                                                                               | CTNNB1, CYLD, AXIN1, APC mutation                                                             |
| Myoepithelioma-oncocytic                   | 8q12                                                                                                         | PLAG1 fusion                                                                                  |
| Sialadenoma papilliferum                   | 7q34                                                                                                         | BRAFV600E mutation                                                                            |
| Sclerosing polycystic adenoma              | 3q26.32                                                                                                      | PIK3CA mutation high                                                                          |
| Mucoepidermoid carcinoma                   | t (11;19) (q21; p13), t (11;15) (q21; q26),9p21.3                                                            | CRTC1-MAML2 CRTC3-MAML2 CDKN2A<br>deletion                                                    |
| Adenoid cystic carcinoma                   | 6q22.23, 8q13,9q34.3                                                                                         | MYB or MYBL1 fusion/activation/<br>amplification, NOTCH mutation                              |
| Acinic cell carcinoma                      | 9q31, 19q31.1                                                                                                | NR4A3 fusion/activation, MSANTD3 fusion/amplification                                         |
| Secretory carcinoma                        | t (12; 15) (p13; q25), t (12; 10) (p13; q11), t (12;7) (p13; q31), t (12;4) (p13; q31), t (10;10) (p13; q11) | ETV6-NTRK3 or ETV6-RET or ETV6-MET or ETV6-MAML3 or VIM-RET fusion                            |
| Micro-secretory adenocarcinoma             | t (5q14.3) (18q11.2)                                                                                         | MEF2C-SS18 fusion                                                                             |
| Polymorphous adenocarcinoma                |                                                                                                              |                                                                                               |
| Classic subtype                            | 14q12                                                                                                        | PRKD1 mutation                                                                                |
| Cribriform subtype                         | 14q12, 19q13.2, 2p22.2                                                                                       | PRKD1, PRKD2 or PRKD3 fusion                                                                  |
| Hyalinising clear cell carcinoma           | t (12; 22), q (21; 12)                                                                                       | EWSR1-ATF1 or EWSR1-CREM fusion                                                               |
| Basal cell adenocarcinoma                  | 16q12.1                                                                                                      | CYLD mutation                                                                                 |
| Intra-ductal carcinoma                     |                                                                                                              |                                                                                               |
| Intercalated duct subtype                  | 10q11.21                                                                                                     | RET fusion                                                                                    |
| Apocrine subtype                           | 3q26.32, 11p15.5                                                                                             | PIK3CA, HRAS mutation                                                                         |
| Salivary duct carcinoma                    | 17q21.1, 8p11.23, 17p13.1, 3q26.32, 11p15.5, Xq12,<br>10q23.31, 9p21.3                                       | HER2, FGFR1 amplification, TP53, PIK3CA,<br>HRAS mutation, AR copy gain, PTEN, CDKN2A<br>loss |
| Myoepithelial carcinoma                    | 8q12, t (12; 22) (q21; q12)                                                                                  | PLAG1 fusion, EWSR1 rearrangement                                                             |
| Epithelial-myoepithelial carcinoma         | 11p15.5                                                                                                      | HRAS mutation                                                                                 |
| Mucinous adenocarcinoma                    | 14q32.33, 17p13.1                                                                                            | AKT1 E17K or TP53 mutation                                                                    |
| Sclerosing microcystic adenocar-<br>cinoma | 1p36.33                                                                                                      | CDK11B mutation                                                                               |
| Carcinoma ex pleomorphic adenoma           | 8q12,12q13-15, 17p13.1                                                                                       | PLAG1 or HMGA2 fusion/amplification, TP53 mutation                                            |
| Sebaceous adenocarcinoma                   | 2p21                                                                                                         | MSH2 loss                                                                                     |

**Table 1:** Genetic alterations in salivary gland tumours [3].

Myoepithelial carcinoma appears immune reactive to cytokeratin, AE1/AE3 or CAM 5.2. Immune reactivity to myoepithelial markers as S100 protein, calponin, smooth muscle actin (SMA) or glial fibrillary acidic protein (GFAP) may be observed. Besides, immune reactivity to p63, p40, SOX10 or PLAG1 may be discerned. Tumour cells are immune non-reactive to melanocytic markers as human melanoma black 45 (HMB45) or melan A [5,6]. Myoepithelial carcinoma of salivary gland requires segregation from neoplasms such as myoepithelioma, pleomorphic adenoma, polymorphous adenocarcinoma or myoepithelial tumour of soft tissues [5,6].

Radiological concurrence is paramount in order to determine site of tumour emergence. Definitive diagnosis of myoepithelial carcinoma may be achieved with cogent examination of surgical resection specimen which may indicate tumour infiltration or tumefaction entirely comprised of 'pure' myoepithelial cell component. Computerized tomography (CT) exemplifies a solitary, lobulated or multinodular tumour mass with heterogeneous image enhancement and a partial, poorly defined neoplastic perimeter. Myoepithelial carcinoma of salivary gland may be optimally managed with surgical eradication of the neoplasm with achievement of tumour free surgical margins [5,6]. Myoepithelial carcinoma of salivary gland is a clinically aggressive neoplasm. Localized reoccurrence occurs in >33% tumefaction and up to 27% neoplasms develop distant metastasis. Nevertheless, in contrast to regional metastasis, distant metastasis is commonly encountered [5,6]. Factors contributing to adverse prognostic outcomes are designated as ~occurrence of tumour necrosis ~mitotic index >4 per 10 high power fields ~tumour cells confined to surgical perimeter ~emergence of myoepithelial carcinoma ex pleomorphic adenoma [5,6].

## **Bibliography**

- Argyris PP and Wakely PE Jr. "Cytopathology of salivary gland myoepithelial carcinoma: A study of 13 cases and review of the literature". *Journal of the American Society of Cytopathol*ogy (2023): S2213-2945.
- Syrnioti G., et al. "Myoepithelial Carcinoma Ex Pleomorphic Adenoma of the Submandibular Gland: A Case Report". Cureus 15.3 (2023): e35722.
- Skálová A., et al. "Update from the 5th Edition of the World Health Organization Classification of Head and Neck Tumors: Salivary Glands". Head and Neck Pathology 16.1 (2022): 40-53.

- 4. Gontarz M., et al. "Myoepithelial Carcinoma Arising in a Salivary Duct Cyst of the Parotid Gland: Case Presentation". Medicina (Kaunas) 59.2 (2023): 184.
- Luo Y. "Myoepithelial carcinoma of major salivary glands: Analysis of population-based clinicopathologic and prognostic features". Translational Oncology 20 (2022): 101410.
- Lavareze L., et al. "Clinicopathological and survival profile of patients with salivary gland myoepithelial carcinoma: A systematic review". Journal of Oral Pathology and Medicine 52.2 (2023): 101-108.
- 7. Image 1 Courtesy: Springer link.
- 8. Image 2 Courtesy: Medscape reference.