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Abstract
   Viewing an extensive data set, you wonder whether to trust it. A simple method for checking a theory's or experiment's results as a 
first step in its evaluation is usually less costly than attempting replication.

Keywords: Benford’s Law;  Zipf’s Law

After scanning the data set for obvious problems, try using 
Benford’s Law [1] of First Digits, discussed below, as an additional 
check: comparison of the individual first digit frequencies against 
Benford’s Law. 

If we write the data in the format d.ef x 10^n, using scientific 
notation, the “significand”= d.ef in the data in many situations will 
follow “Benford’s Law.” The first digit, d, can be expected to follow 
not a uniform probability distribution, having f(d) = 1/9, but the 
Benford (1938) [1] distribution,
f(d) = log[(d+1)/d] -------- [1]

This has a cumulative distribution for the first digit: 
F(0<d<s) = log s --------- [2]

The logarithm is to the base 10. For example, the probability of 
d=1 for the first digit is f(1)=log(2) = 0.301, rather than f = 1/9 = 
0.111 one would expect if the first digit was equally probable for 
d=1 to d=9. The largest first digit is much less probable than the 
first, f(9) = log(10/9) = 0.046 per Benford’s Law. The relationship 
has been widely used (Miller, 2015) [2] in forensic accounting for 
situations where the data cover orders of magnitude. For example, 
it arises naturally in cases of geometric (compound) growth or de-
cay and in some power law relationships (e.g., Zipf’s Law).

Compound growth, a constant rate of fractional change per 
time, is quite familiar in economics, where Benford’s Law has seen 
the most application. General Electric applied physicist Frank Ben-
ford (1938) [1] presented a detailed exposition and multiple dem-
onstrations, following a pattern first described by the astronomer 
Simon Newcomb (1881) [4].

Compound growth or decay
In the physical sciences, situations of compound growth or de-

cay are modeled with the relationships
dy/dt = k y ------- [3]
y = a exp(k t) ------ [4]

The derivative dy/dt resembles a velocity, indicating the rate at 
which y goes through the significand’s digits for a particular order 
of magnitude. 

For a constant k, log y is equally probable in equal time inter-
vals, dt. A graph of y versus t on semi-log coordinates is a straight 
line. Population growth, radioactive decay, Fibonacci numbers, and 
some chemical reaction kinetics show such behavior over orders of 
magnitude. Doyle’s article in Miller (2015) [2] gives many physical 
science examples.
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Linear growth
Contrast compound growth with linear, additive growth, 
y = b + ct ----------- [5] 
dy/dt = c ----------- [6]

Changes in y are equally probable in each time interval, dt. A 
graph of y versus t on linear coordinates is a straight line, with y 
spending the same residence duration in each time interval. We 
expect the first digits, d, from 1 to 9 to be equally probable, f = 1/9. 

The difference in linear versus compound growth is analogous 
to the difference in the random additive changes that give rise to 
Gaussian (normal) distributions versus the random multiplicative 
changes that produce lognormal distributions. Miller (2015) [2] 
notes that data from lognormal distributions with large standard 
deviations follow Benford closely and that we should expect this 
behavior more in broad distributions rather than narrow ones. 

Power-law behavior
For the general power-law relationship
y = m t^n ------- [7]
log y = log m + n log t ----------- [8]
dy/dt = (m n) t^(n-1) -------- [9]

The variable y will spend less, the same, or more time in in-
terval dt for the values of the exponent, n>1, n=1, n<1. Thus, the 
probability of being measured with such values will follow a simi-
lar pattern.

Products of Benford random variables (with some restrictions) 
are themselves Benford, but sums of Benford variables are not 
(Miller, 2015) [2].

Benford’s law in the natural sciences
The article with this title, by David Hoyle in Miller (2015) [2], is 

particularly relevant for scientists and engineers.

Power-law probabilities are “scale-invariant,” with the general 
form for the probability density of x indicating p(x) is proportional 
to x^-a. This includes the familiar Zipf’s Law, with a =1, which gives 
rise to the Benford distribution.

Miller (2015) [2] discusses the conditions for the solutions of 
the partial differential equation for heat transfer to be Benford or 
not. This reference has an extensive bibliography.

Is this data set Benford?
Benford’s Law uses the frequency distribution of the first digits 

and compares it to what is expected from the Benford distribution, 
perhaps graphically or using a chi-square distribution. 

Miller (2015) [2] notes that the sums of the significands of each 
of the leading digits approach being equal: the sum of the 1.xx val-
ues will approximate the sum of the 2.xx values, etc., a “sum-invari-
ance” behavior whose discovery he credits to Nigrini (1992). This 
may turn out to be better in some situations.

The article by Nigrini in Miller (2015) [2] presents three ele-
ments that data must have to be possibly Benford: 

•	 Real things counted or measured. 
•	 No built-in maximum or minimum value (except for zero). 
•	 The number should not represent names or labels rather than 

magnitudes.

In Conclusion
Doyle in Miller (2015) [2] wrote the following concerning Ben-

ford’s Law [1] distribution and scientific studies:

•	 Benford’s Law gives the natural FSD distribution for many sci-
entific data sets.

•	 Benford’s Law can be used to assess data quality and consis-
tency.

•	 Benford’s Law can be used to check for fraudulent scientific 
data.

•	 Benford’s Law can be used to create appropriate simulated 
data sets.

Benford’s Law is receiving increased attention as a method for 
prescreening data for possible errors or falsification (Murtaugh, 
2023) [3]. 
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