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Abstract
In this article, the fractional Bhatti-Polynomial bases are applied to solve one-dimensional nonlinear fractional differential 

equations (NFDEs). We derive a semi-analytical solution from a matrix equation using an operational matrix which is constructed 
from the terms of the NFDE using Caputo’s fractional derivative of fractional B-polynomials (B-polys). The results obtained using 
the prescribed method agree well with the analytical and numerical solutions presented by other authors. The legitimacy of this 
method is demonstrated by using it to calculate the approximate solutions to four NFDEs. The estimated solutions to the differential 
equations have also been compared with other known numerical and exact solutions. It is also noted that for solving the NFDEs, the 
present method provides a higher order of precision compared to the various finite difference methods. The current technique could 
be effortlessly extended to solving complex linear, nonlinear, partial, and fractional differential equations in multivariable problems.

Keywords: Fractional B-Polynomials; Fractional Differential Equations; Nonlinear Partial Fractional Differential Equation; 
FRACTIONAL B-polynomials in Multiple Variables

Introduction

The formulation of fractional calculus was started over 300 
years ago. It can be traced back to Leibniz’s letter to L’Hôpital, 
in which he first discussed the meaning of the one-half order 
derivative [1]. Although fractional calculus is as old as conventional 
calculus, it was not as widely used in engineering and science 
at its conception. Due to rapid advancements in the fields of 
mathematical physics, differential equations, interface chaos, 
and probability [2,3], as well as in other fields of science and 
engineering [4-9], fractional differential equations have become a 
subject of interest and a rapidly growing area of research. It is also 
used to describe a wide range of complex phenomena in different 
fields, such as anomalous diffusion, systems identification, wave 
propagation, continuous-time random walk dynamical systems, 
fractional electrical circuits, control theory, sub-diffusive systems, 
chaos synchronization, signal processing, viscoelasticity, fluid 

flow, and more [10-16]. Seismic analysis, viscoelastic materials, 
and viscous damping have all been successfully modeled in 
recent years using fractional differential equations (FDEs) [6,17-
20]. The nonlinear oscillation of an earthquake can be modeled 
using fractional derivatives, and a fluid-dynamic traffic model 
using fractional derivatives can eliminate the deficiency caused 
by the assumption of continuous traffic flow [2,6,20]; as a result, 
developing robust methods for solving FDEs is essential. Many 
fractional-order differential equations have unknown exact 
solutions; thus, various numerical methods have been employed to 
provide approximate solutions. Unfortunately, each method has its 
own set of limitations, and while no single method can solve every 
problem, most techniques excel at solving specific problems. 

There have been numerous approaches proposed to solve 
fractional differential equations, the widespread ones are the one 
with operational method [21,22], the Fourier transform method 
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[23], the iteration method [1], the iterative Laplace transform 
method (ILTM) [17], the Bernoulli wavelet method [24], the 
Spectral method [25], and the Laplace transform method [6,20]. 
The approaches vary in their strengths and weaknesses, but from 
the variety comes a new factor in solving FDEs, namely computation 
time, with some methods requiring a significant amount of 
computational time to accomplish solutions to fractional-order 
differential equations.

In this article, we present a novel technique known as the 
modified fractional Bhatti Polynomials method. With this method, 
we have successfully solved linear and nonlinear differential 
equations; see references [26-29]. The method is effective, and 
the results obtained thus far are encouraging and reliable. Four 
examples are provided in this article to explain the dependability 
and efficacy of the method. The results of the method are also 
compared with existing techniques, and excellent agreement has 
been found between the results; in all the cases, the present semi-
analytical results are superior in accuracy.

Caputo’s Fractional differential operator

The fractional-order derivative of Caputo is explained as follows 
[6],

 

is Caputo’s fractional derivative operator. The Caputo’s fractional 
derivative for any constant, C, is zero such that:            ,and the 
fractional derivative                is given by: 

The fractional order of the function is denoted by α, and the 
fractional order of the derivative is given by . The unknown 
function  is expanded in terms of the generalized fractional-order 
B-polynomials                    , which can be regarded as an approximate 
solution to the one-dimensional NFD equation: 

In variable x,        is ith fractional-order B-poly with α as a 
fractional-order parameter and  is the initial condition imposed on 
the solution. The expansion coefficients represent the expansion 
coefficients that are determined in the Galerkin scheme of 
minimization in Eq. (3). Fractional calculus of differentiation can 
be accomplished using Caputo’s derivative as a linear operator: 

The generalized fractional-order B-poly basis and some of 
its properties that may be useful in determining a solution to 
the nonlinear fractional-order differential equation are briefly 
discussed in the following section. 

Fractional-order B-Poly basis

The generalization of fractional B-polys  in terms of single 
variable x over the interval [0, R] is defined in [27,28],

The fractional-order parameter α represents the fractional 
B-polys and the Eq. (5) provides an (n+1) fractional-order 
B-polynomial basis set. In Eq. (5), the factor  is defined as: 

And the binomial coefficient is defined as:                 . Using 
a simple symbolic code prewritten with any value of n supported 
over an interval [0, R], it is possible to produce a fractional B-poly 
basis set. The boundary conditions are typically associated with 
the first and the last polynomials in the basis set. For example, the 
fractional basis set for n =3  and             and   are given for various 
values of fractional order in table 1. 

Method for approximating solutions of one-dimensional 
NFDEs

Using the Galerkin method [28] and the generalized fractional-
order B-poly basis set, we exploit a method to seek practical 
solutions to nonlinear fractional-order differential equations 
(NFDEs). Using the recently developed method [26-32], we 
transform the fractional-order NFDE into an operational matrix 
with initial and boundary conditions imposed on it. To construct 
the operational matrix, we substitute Eq. (3) into the given NFDE, 
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then Caputo’s derivative operator is applied to the basis set used in 
the expansion in each term of the NFDE, and both sides of the NFDE 
are multiplied by the elements of the fractional B-poly basis set, . 
Finally, the integrations are carried out using the symbolic program 
Mathematica [33,34] over the closed interval [0, R] into interaction 
matrix. For example, the integration matrix over the closed interval 
of the two fractional-order B-polys is given in the closed symbolic 
formula:

The Caputo’s derivative defined in Eq. (2) is applied to the 
fractional B-poly basis set, leading to the following closed results:

And the integrals of some arbitrary function are given by,

With the help of the above analytic formulas, Eqs. (7-9), the 
operational matrix is formulated. The inverse of the operational 
matrix is required to find out the unknown coefficients  of the 
linear combination in Eq. (3). In the next section, we will apply 
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our method and demonstrate how one can obtain a desirable 
solution to the nonlinear fractional-order differential equation. 
The method will be applied to four examples to demonstrate that it 
works appropriately for approximating the solutions with greater 
accuracy. We will also explain how the inverse of the operational 
matrix is calculated using the symbolic program Mathematica 
13.0 [33,34]. Plots of the approximate and exact solutions will 
be presented for the purpose of making comparisons. Also, the 
absolute error analysis of the fourth example will be elaborated 
to show that by including larger basis set of the fractional B-polys 
and increasing the number of iterations used to solve NFDEs, the 
accuracy of the solution is enhanced considerably. In the following 
sections, for the sake of simplicity, we will drop the subscript  from 
the fractional B-poly basis, so that .

Example 1: Consider a one-dimensional nonlinear fractional-
order differential equation,

Where the value of                 with the initial condition                  . 

The exact solution of this equation when            is known to be: 

                       .            Using fractional B-poly basis, a solution may be 
approximated as                                with the initial condition,

.By substituting the approximate solution into the Eq. (10), we 
obtain,

We evaluate Eq. (11) by computing the Caputo fractional 
derivative, multiplying both sides of the equation by the elements 
of the fractional B-polys basis set,         , and carrying out the 
integration over the interval [0, R], 

The above equation may be rewritten in the matrix form, 

Where coefficients of the 4th term, E, exhibit nonlinearity via its 
coefficients. The matrices of Eq. (13) are given below:

For the initial estimates of the coefficients, we ignore nonlinear 
terms in equation (13) to calculate matrix B for unknown 
coefficients b and the equation is solved to obtain initial guess,

The new estimate for the value of matrixcan be calculated 
using equation (13) and using initial estimate from equation (15). 
After a few more iterations, we revise our estimated solution for 
comparison. We also solve the nonlinear fractional differential 
equation for different fractional values of    by repeating the same 
procedure. The graphs are plotted for various values of     alongside 
the exact solution to observe the deviation from the exact solution 
for    = 1 integral value, figure 2.

Figure 1: The approximate solution f(x) and the precise 
solution (sol) are shown in figure 1 for the case γ=1 in 

equation (11), demonstrating that the both solutions overlap. 
In the picture on the right, the absolute error between the exact 
and approximate solutions is displayed. The absolute error is of 

the order of  10^(-9).

 γ

 γ
 γ  
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Figure 2:  Various fractional values of γ=1,4/5,3/4,2/3,1/2 are 
used in equation (11) and the plots of approximate solutions 

are presented in this figure. It is noted that all the graphs 
approximately intersect at one point (x ≅ 1).

Figure 1 shows that when           , the graphs of numerical 
convergent      solution and exact     solution are shown on the left 
side. The order of absolute error between estimated       and accurate

 solutions is given on the right side which is of the order     of. 
Higher accuracy can be accomplished if the number of fractional 
B-poly set is increased. In the references [35,36], the absolute error 
is        using their numerical technique. As a result, our method 
produces a highly accurate solution. 

Example 2: Let us consider the following nonlinear fractional 
differential equation: 

Where the value of                  and the boundary conditions  

              are imposed on Eq. (16). The exact solution of this 
equation when      is known: 

Using the fractional B-poly basis, a solution may be approximated 
as                            , with the initial condition,       . By plugging this 
approximate solution into Eq. (16), we get the following expression:

We evaluate Eq. (17) by applying the Caputo fractional 
derivative on the first term, multiplying both sides of the equation 
by the elements of the fractional B-polys basis set,           , and then 
carrying out the integration over the interval [0, R] on both sides. 
We get, 

The above equation can be represented in the matrix form: 

With the elements of each matrix in Eq. (19) are given,

For the initial guess of the coefficients, we can solve Eq. (21) 
by neglecting the nonlinear term. We calculate matrix elements of 
column matrix  as an initial guess by solving the equation,

We substitute the elements of into nonlinear Eq. (19) to obtain 
the revised estimate of the unknown coefficients. The process 
of iteration is repeated until a convergent solution is found. We 
have used the same procedure to solve the nonlinear fractional 
differential equation for various fractional values of   . The graphs 
of the solutions for several values of  are shown in figure 3. In each, 
the accuracy was desirable as shown in figure 4. 

Figure 3: A 1-D graph of the approximate solution  f(x) and 
exact (sol) solution is displayed on the left side, demonstrating 

how well the two solutions overlap for γ=1. In the picture on the 
right side, the absolute error between the precise and approxi-

mate solutions is displayed. The graph shows that the nonlinear 
solutions is  converged and has high accuracy of the solution in 

the order of 10-10.

 γ
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Higher-order accuracy can be accomplished if the number 
of fractional B-Polys and iterations are increased. In the other 
references [35,36], the absolute error is of the order of                     but 
our method accomplishes higher-order computational accuracy. 
Figure 4 depicts solutions of example 2 with various fractional 
order                            .

Figure 4: Nonlinear Equation (16) is solved using fractional 
B-polys to produce the plots of various approximate solutions 

shown in the figure. To produce these graphs, various 
fractional-order values for γ=1,4/5,3/4,2/3,1/2,3/5 are used.

Tables 2, 3, and 4 show that our method produces excellent 
results when compared with approximate other methods for 
various fractional values [35-37] shown in these tables. The 
accuracy of our method, as pointed out in the earlier works 
[29,31,38], was dependent on the number of basis sets and number 
of iterations to achieve converged solution. We accept convergent 
values after a few iterations are performed. Tables 2, 3 and 4 show 
comparison of present results and other results which are obtained 
from using various finite difference methods. 
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x N = 6 N = 7 N = 8             [35] x N = 6 N = 7 N = 8     [35]
0.0 0 0 0 0 0.0 0 0 0 0
0.1 0.41362 0.41353 0.41311 0.42697 0.1 0.20899 0.20796 0.20788 0.211942
0.2 0.72356 0.72304 0.72221 0.73068 0.2 0.41430 0.41339 0.41323 0.41000
0.3 0.98636 0.98574 0.98557 0.99053 0.3 0.63305 0.63155 0.63136 0.635149
0.4 1.2006 1.20001 1.20004 1.19393 0.4 0.85450 0.85299 0.85286 0.85002
0.5 1.37101 1.37010 1.36995 1.37789 0.5 1.06752 1.06644 1.06633 1.06670
0.6 1.50529 1.50339 1.50342 1.48518 0.6 1.26334 1.26253 1.26239 1.27900
0.7 1.61173 1.60808 1.60886 1.62822 0.7 1.4363 1.43539 1.43525 1.43387
0.8 1.6978 1.69153 1.69314 1.85574 0.8 1.58398 1.58298 1.5829 1.58714
0.9 1.7693 1.75913 1.76125 2.16946 0.9 1.707 1.70639 1.70632 1.70696
1.0 1.8298 1.81342 1.81719 2.73017 1.0 1.80874 1.80814 1.80808 1.80913

Example 3: Consider another nonlinear fractional differential 
equation of the form,

Where the value of                       and the boundary conditions        

               are given. The exact solution of this equation (22) when  
is                                   . An approximate solution may be written 
as                               ,   where initial condition,    Plugging 
in the approximate solution into the Eq. (22), we get,

Evaluating Eq. (23) by computing the Caputo’s fractional 
derivative in the first term, multiplying both sides of the equation 
by the elements of the fractional B- basis set,      , and integrating 
over the interval [0, R] on both sides of the Eq. (23), we obtain,

The following is a representation of the above equation in 
matrix form, 

Where elements of each matrix are given as follows:

By ignoring the nonlinear term, we may solve the equation for 
initial guess such that

The initial guess of Eq. (27) is substituted for the nonlinear 
term to obtain a new guess for matrix B by solving equation (25). 
This process is repeated until convergent values of the coefficients 
of matrix B are obtained. We have solved the nonlinear fractional 
differential equation Eq. (25) for different fractional-order values 
of  using the same procedure. The graphs are also plotted of 
various solutions for values of  in the figure 5 and 6. The order of 
absolute error between estimated      and accurate     solutions on 
the right side is     . Higher accuracy can be accomplished if the 
number of fractional B-Poly basis set and iterations are increased. 
In the reference [35], the absolute error is of the order   for the 
same problem. Our method performs exceptionally well in terms 
of computation accuracy. 

Table 4: For fractional order derivatives                  and  0.8, the comparison of the current fractional B-poly approach to other methods 
[35] is shown, where N denotes the number of B-polys in the basis set. 

yhaar yhaar

γ = .6 γ = .8
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Figure 5: For fractional derivative γ=1 in equation (22), a 1-D 
graphic of our approximate solution, f(x), and the precise solu-
tion, (sol), are displayed on the left side showing that the two 
solutions overlap. The image on the right shows a plot of the 

absolute error between the approximate and precise solutions 
on the order of 10-9.

Figure 6: The fractional differential equation (22), which 
considers various fractional orders γ=1,4/5,3/4,2/3,1/2  , is 

shown in the picture along with a plot of several 
approximations. All the graphs intersect at one point (x≅1).

Tables 5, 6, and 7 show that fractiona B-poly method produces 
excellent results when compared to other numerical methods 
for various fractional-order values [35,37]. The accuracy of our 

method [29,31] was determined by the number of B-polys used in 
the basis set and the number of iterations used. The convergent 
values are obtained after a few iterations.

Our Results
x N = 6 N = 7 N = 8 N = 9    [37]
0.0 0 0 0 0 0
0.1 0.190088 0.190101 0.190101 0.190097 0.184795

Table 6: For fractional order                      , the comparison of the fractional B-poly method to other numerical methods [37] is 
presented, where N denotes the number of B-polys in the basis set. 

yhpm

γ = 0.5

29

A Method to Solve One-dimensional Nonlinear Fractional Differential Equation Using B-Polynomials

Citation: Muhammad I Bhatti., et al. “A Method to Solve One-dimensional Nonlinear Fractional Differential Equation Using B-Polynomials". Acta Scientific 
Applied Physics 2.11 (2022): 22-35.



0.2 0.309960 0.309973 0.309976 0.309960 0.313795
0.3 0.404581 0.404612 0.404614 0.404612 0.414562
0.4 0.481611 0.481632 0.481632 0.481630 0.492889
0.5 0.545088 0.545090 0.545090 0.545081 0.462117
0.6 0.597783 0.597781 0.597783 0.597777 0.597393
0.7 0.641807 0.641819 0.641820 0.641821 0.631772
0.8 0.678832 0.678850 0.678850 0.678847 0.660412
0.9 0.710173 0.710175 0.710175 0.710170 0.687960
1.0 0.736827 0.736837 0.736837 0.736834 0.718260

Our Results
x N = 6 N = 7 N = 8 N = 9 [35] [37]
0.0 0 0 0 0 0 0
0.1 0.330098 0.330097 0.330107 0.330096 0.324691 0.273875
0.2 0.436815 0.436838 0.43684 0.436846 0.432214 0.454125
0.3 0.504894 0.504896 0.504889 0.504888 0.504115 0.573932
0.4 0.553794 0.553780 0.553781 0.553775 0.553825 0.644422
0.5 0.591194 0.591187 0.591194 0.591194 0.590729 0.674137
0.6 0.621003 0.621012 0.621015 0.621019 0.622213 0.671987
0.7 0.645476 0.645491 0.645487 0.645487 0.643153 0.648003
0.8 0.666022 0.666024 0.666021 0.666016 0.667030 0.613306
0.9 0.683566 0.683553 0.683558 0.683560 0.680422 0.579641
1.0 0.698737 0.698755 0.698748 0.698743 0.695251 0.558557

Example 4: Consider a final example of the nonlinear fractional 
differential equation,

Where the value of 0 ≤γ≤1 and the boundary conditions are 
specified as y(0)  = y(R)  = 0. The exact solution of the fractional 
differential equation for integral order γ = 2 is yexact (x)  = 1+cos(x). 
To determine approximate solution, we consider 

yapp (x)  = ∑i
nbi Bi (α,x)+y0 , with initial conditions, y0  = 2 & y0' = 0. 

Putting the approximate solution into Eq. (28), we get

Evaluating Eq. (29) by applying the Caputo fractional derivative 
on the first term, multiplying both sides of the equation by 

the elements of the fractional B-polys basis set,         , and then 
integrating both sides of the equation over the interval [0, R]. The 
expression in Eq. (29) is transformed into,

Table 7: For fractional order              , the comparison of the fractional B-poly method to other numerical methods [35,37] is presented, 
where N denotes the number of B-polys in the basis set.

yhpm
yhaar
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The following is a nonlinear matrix representation of the above 
equation,

Where elements of each matrix in Eq. (31) are given as follows:

To obtain an initial guess for the nonlinear terms, we ignore 
nonlinear matrices F and G and solve the following linear matrix 
equation,

Using the initial guess from Eq. (33) and substituting it 
into Eq. (31), we get a new approximation for the unknown 
coefficients, which are utilized in the linear combination to 
construct approximate solution. This process is repeated to obtain 
a converged solution to the fractional differential equation (28). 
To solve nonlinear fractional differential equation for different 
fractional values of   , an iterative scheme has been used. The 
convergent solutions are plotted for various fractional order of    . 

Figure 7 shows the absolute error between estimated f(x) and 
exact (sol) solutions is of the order of 10-14. This is the highest 
accuracy achieved after choosing a set of 8 fractional polynomials. 
Further accuracy is attainable by increasing the set of fractional 
polys, but it requires a larger number of iterations to obtain 
convergent solutions. In the references [35,39], the absolute error 
is of the order 10-3. As a result, our technique performs better 
in terms of computational accuracy. Figure 8 depicts graphs of 
various fractional orders γ = 2,1.5,1.7,1.9 of nonlinear differential 
equations. The plots of various approximate solutions to various 
nonlinear fractional-order differential equations are presented to 
show the smoothness of the curves in the graphs. 

 γ
 γ

Figure 7: For integral order γ=2 in nonlinear differential 
equation (28), a 1-D graph of approximation f(x), and the 

precise solution (sol) is displayed on the left side. It shows that 
the two solutions essentially overlap each other. The plot on the 

right shows the absolute error between the precise and 
approximate results. The accuracy of the results is much higher 

as compared to other results in the literature. 

Figure 8: This graph displays the plots of several 
approximate solutions for various values of the fractional order 
γ=2,1.9,1.7,1.5 used in Equation (28). All the results converged 

after 10 number of iterations. 

Tables 8, 9, and 10 show that our method predicts excellent 
solutions when compared to other existing approximate solutions 
for various fractional order values [35,39]. The accuracy of 
our method depends on the number of fractional B-polys and 
iterations used. We receive convergent values after a few iterations 
and only converged solutions are reported. Comparisons between 
the available results are given these tables. In some case present 
results are superior in accuracy as well as less computational time 
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is involved. The error analysis is also carried out using N = 6, 7 and 
8 number of fractional B-polys basis set. The error in the solution 
sets decreases as we increase number of fractional B-polys for 

solving fractional order differential equations. The results of this 
observation are shown the Tables presented in this paper. 
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Conclusion 

The one-dimensional (1-D) fractional-order nonlinear 
differential equations are solved in this study utilizing the 
fractional Bhatti polynomial bases set. It is shown that this method 
of fractional B-polys works well to solve such type of equations and 
the accuracy of the results can be adjusted by increasing the size of 
the basis set. The method is applied to four 1-D nonlinear fractional 
differential equations (NFDEs) with the imposition of initial and 
boundary conditions. The method can predict highly accurate 
solutions. In addition to its efficacy, the predicted results are 
compared to other methods [35,37,39]. The method’s versatility is 
shown to solve various types of differential equations with various 
values of the fractional order. The solution of the fractional-order 
differential equation is expanded in terms of linear combination 
of coefficients which are determined using the Galerkin scheme 
[40]. In all the 4 examples considered, the linear matrix equation 
is attained by setting the nonlinear terms of the equation equal to 
zero. We solve the linear part of the differential equation to obtain 
initial guess for the unknown coefficients  of column matrix B. For 
example, see Eq. (33), the nonlinear matrix equation is inverted to 
obtain a new guess in the iteration process, Eq. (31). The iteration 
procedure is continued until convergent values of the expansion 
coefficients are obtained. Final expansion coefficients are used 
to approximate the solution (Eq. 3) of the 1-D fractional-order 
nonlinear differential equations. 

Figures 1 through 8 show the graphs of the convergent solutions 
of the NFDEs. The error analysis is also carried out for both integral 
and fractional order differential equations and is presented in the 
Tables with basis sets. It is clear as the number of iterations is 
increased the results converge quickly after about 10 iterations 
and by increasing the fractional B-poly basis set, the accuracy 
increases rapidly. We compare our solutions to the exact solutions 
for nonfractional cases and found that the agreement is excellent 
between fractional order cases, too. Our absolute errors between 
approximate and exact solutions range between  and  in all the 
examples. The results for fractional-order cases are significantly 
better as compared to other references [35-37,39]. We revealed 
that our state-of-the-art method could solve variety of examples 
with greater precision as reported in Tables 2-10 and Figures 1-8. 
In this article, we provide the graphs for different fractional orders 
in Figures 2, 4, 6, and 8. All calculations including integrations, 
fractional differentiations, iterations of results, and matrix 
inversions are carried out using Wolfram Mathematica symbolic 
program version-13 [34].

Our method revealed a strong potential for solving nonlinear 
fractional-order differential equations with a higher degree of 
precision, easy to use and easy to implement. The computing time 
for solving examples of integral-order differential equations is less 
than a minute. For fractional orders examples, the computing time 
is about 10-30 minutes for accomplishing converged results. 
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