

ACTA SCIENTIFIC AGRICULTURE (ISSN: 2581-365X)

Volume 9 Issue 11 November 2025

Review Article

Weather-Responsive Farming: Harnessing Precision Agriculture for Climate Resilience

Harvi G Vora¹, JB Gajera^{2*} and SJ Devra³

¹Ph.D. Student, Department of Genetics and Plant Breeding, College of Agriculture, Junagadh Agricultural University, Junagadh (Gujarat), India

²Research Associate (GKMS), (AMFU-IMD), Agrometeorology Cell, Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh (Gujarat), India

³Ph.D. Scholar, Department of Agricultural Statistics, College of Agriculture, Junagadh Agricultural University, Junagadh (Gujarat), India

*Corresponding Author: JB Gajera, Research Associate (GKMS), (AMFU-IMD), Agrometeorology Cell, Department of Agronomy, College of Agriculture, Junagadh Agricultural University, Junagadh (Gujarat), India.

Received: September 30, 2025

Published: November 13, 2025

© All rights are reserved by

JB Gajera., et al.

Abstract

Climate-responsive farming, or climate-smart agriculture, is a strategy that optimizes agricultural productivity while minimizing the negative impacts of weather variability and climate change. It involves integrating specific weather conditions and forecasts into decision-making processes, such as crop selection, planting schedules, irrigation, and pest control. This approach enhances farmers' resilience to climate-related risks, ensuring sustainable food production in the face of evolving climatic conditions. As climate change threatens agriculture, livelihoods, and global food security, climate-smart agriculture is crucial in addressing these challenges. Climate resilience practices, such as agroforestry, crop diversification, precision farming, and technological advancements, are essential for food security, economic benefits, environmental sustainability, and social equity. Precision agriculture, a key element of weather-responsive farming, uses advanced technologies like sensors, drones, and AI to optimize farming practices based on real-time data. Successful case studies from Australia, Brazil, and the Netherlands demonstrate the potential of precision agriculture in reducing resource use, improving crop quality and mitigating environmental impacts. Future trends involve integrating AI, machine learning, and drone technology into weather-responsive farming systems. The significance of using precision agriculture as a proactive strategy to address the issues brought on by climate change in agricultural systems is emphasized, as is the possibility for weather-responsive farming to improve climate resilience.

Keywords: Climate Resilience; Sustainability; Weather-Responsive Farming; Precision Agriculture; Weather Monitoring

Introduction

Weather-responsive farming, also known as climate-smart agriculture, refers to a set of practices and techniques that aim to optimize agricultural productivity while minimizing the negative impacts of weather variability and climate change. This approach

takes into account the specific weather conditions and forecasts in order to make informed decisions regarding crop selection, planting dates, irrigation and pest control. By adapting farming practices to suit the prevailing weather patterns, farmers can increase their resilience to climate-related risks and ensure sustainable food production in the face of a changing climate.

Climate change is emerging as a major threat to agriculture, livelihoods, and food security of millions of people in many places of the world. At the same time, many current farming practices damage the environment and are a significant source of greenhouse gases (GHGs), namely carbon dioxide (CO₂), methane and nitrous oxide. Annual anthropogenic greenhouse gas (GHG) emissions that are classified in Intergovernmental Panel on Climate Change (IPCC) reports as originating in 'agriculture, forestry and other land use' (AFOLU) are caused mainly by deforestation, rice cultivation practices, livestock production, soil and nutrient management. It has been estimated that AFOLU contributes to 21% of total global emission. By Food and Agricultural Organization (FAO) estimates, emissions from AFOLU stood at 10.6 Gigatonnes (Gt) of carbon dioxide equivalent in the year 2014. Large deforestation and land degradation have also reduced the carbon sequestration capacity from the atmosphere. Forestry, agriculture and land use accounts for 49 and 30% of total emission of carbon dioxide and methane, respectively. The share of nitrous oxide in total AFOLU emissions is small, but accounts for as much as 75% of global anthropogenic emissions of the gas. Forests play important role in climate mitigation by removing a large amount of GHG from the atmosphere. However, the average contribution of forests in carbon sequestration has fallen from 2.8 Gt annually in the 1990s to 2.3 Gt in the 2000s and is estimated at 1.8 Gt in 2014 [1].

Climate-smart agriculture is becoming increasingly important as the effects of climate change continue to be felt worldwide. As extreme weather events become more frequent and unpredictable, farmers need to find ways to adapt and mitigate the risks associated with these changes. By implementing climate-smart practices, farmers can not only reduce their vulnerability to climate-related challenges but also contribute to the overall resilience of agricultural systems. This approach goes beyond traditional agricultural methods and embraces innovative techniques that promote environmental sustainability, economic viability and social equity. For example, in regions experiencing prolonged droughts, farmers can adopt water-efficient irrigation systems and employ drought-resistant crop varieties to ensure continued productivity. Additionally, they can implement soil conservation practices such as cover cropping and conservation tillage to improve soil health and reduce

erosion, ultimately enhancing the resilience of their farms to extreme weather events like heavy rainfall or strong winds.

Importance of climate resilience in agriculture

The importance of climate resilience in agriculture cannot be overstated. As the effects of climate change become more pronounced, farmers face increasing challenges in maintaining productivity and profitability. Climate resilience practices not only help farmers adapt to changing environmental conditions but also contribute to the broader goals of sustainable development, promoting environmental sustainability, economic viability, and social equity. While climate resilience practices may help farmers adapt to changing environmental conditions, they do not guarantee protection against extreme weather events such as heavy rainfall or strong winds, which can still have detrimental effects on farm productivity and profitability.

- The role of climate resilience in ensuring food security:

 Climate resilience in agriculture is crucial for food production and preventing disruptions caused by extreme weather events. It involves sustainable practices like agroforestry, crop diversification and precision farming. Advanced technologies like weather forecasting, soil conservation measures and promoting resilient crop varieties. This not only protects farmers' livelihoods but also ensures a stable food supply [2].
- Economic benefits of climate-resilient farming methods:
 Climate-resilient farming practices offer farmers increased productivity, reduced input costs and improved market access.
 Techniques like crop rotation, agroforestry and drought-resistant varieties help farmers maintain or enhance production despite erratic weather patterns. These practices contribute to environmental conservation and improve the economic viability of farming operations, securing better prices and market opportunities [3].
- Environmental impacts of climate-resilient agriculture:

 Sustainable farming techniques like conservation tillage and cover cropping improve soil health, water conservation and biodiversity preservation. These practices reduce soil disturbance, promote water retention and provide diverse habitats for beneficial organisms. They enhance ecosystem resilience and contribute to the overall health and sustainability of natural resources [4].

- Social equity considerations in promoting climate resilience: Climate-resilient agricultural systems can alleviate social inequities in rural communities by addressing resource access, knowledge transfer and inclusive policies. Financial support empowers small-scale farmers, while targeted training programs ensure equitable knowledge transfer. Inclusive policies guarantee equal opportunities, contributing to environmental sustainability and social equity in rural communities [5].
- Global implications and collaborative efforts towards building climate resilience: International cooperation among governments, NGOs, researchers and stakeholders is crucial for promoting global climate resilience in agriculture. Sharing best practices, technology transfer, capacity-building initiatives and establishing funding mechanisms are essential for empowering communities to implement sustainable practices. This collective response to climate change challenges fosters a shared commitment to sustainability and resilience on a global scale [6].

Overview of precision agriculture and its potential in weatherresponsive farming

Precision agriculture adoption differs between developed and developing countries. In developed nations like the USA and the Netherlands, higher access to capital, digital infrastructure, and government incentives has enabled large-scale deployment. In contrast, developing countries face challenges related to affordability, technical training, and connectivity, but are rapidly advancing through mobile-based platforms and community-driven innovation hubs. The integration of nanotechnology and nano-bio-based materials, such as nano-sensors and nano-enabled fertilizers, is expanding the capacity of precision agriculture to monitor soil and crop health in real-time, enabling efficient nutrient delivery and reducing waste.

Precision agriculture, also known as smart farming or digital farming, is an innovative approach that utilizes advanced technologies to optimize agricultural practices and increase productivity

while minimizing environmental impacts. By integrating real-time data, such as weather forecasts, soil conditions and crop health. Precision agriculture enables farmers to make informed decisions and tailor their farming techniques to suit specific weather conditions. This weather-responsive farming approach holds immense potential for building climate resilience in agriculture by allowing farmers to adapt and respond to changing climatic patterns in a timely and efficient manner.

The benefits of precision agriculture in reducing water and fertiliser usage

Precision agriculture uses advanced sensors, GPS technology and data analytics to optimize farming practices, particularly in irrigation and nutrient application. This leads to significant savings in water and fertilizer resources, improved efficiency, sustainable farming and environmental mitigation. This results in increased crop yield and cost savings [7].

Case studies showcasing the success of precision agriculture

- In India, precision farming using remote sensing and Aldriven decision tools has improved yield efficiency in rice and cotton fields by 10–20%. Similarly, in Kenya, smallholder maize farmers using digital weather alerts and soil sensors reported 15% higher productivity and 12% reduced fertilizer use, demonstrating the technology's scalability across tropical regions.
- Australia's farmers are utilizing precision agriculture tools like satellite imagery and drones to manage irrigation efficiently, conserving water resources and ensuring optimal crop growth [8].
- Brazil is implementing precision agriculture in soybean production, utilizing data analytics, GPS-guided tractors and variable rate technology to optimize planting, fertilization, and pest control, thereby increasing yields and reducing environmental impact [9].
- In the Netherlands, farmers use precision agriculture to enhance crop quality and reduce environmental impacts by using soil sensors to monitor nutrient levels [10].

The role of remote sensing technologies in precision agriculture

Remote sensing technologies, including drones, satellite imagery and sensors, are crucial in precision agriculture. Drones capture detailed aerial imagery, NDVI and multispectral imaging, aiding in crop health monitoring and nutrient management. Satellite imagery provides temporal and large-scale monitoring, enabling farmers to track crop development and make timely decisions. Soil sensors measure parameters like moisture content, temperature and nutrient levels, enabling precise irrigation and fertilizer application. Weather sensors help anticipate changes and respond to changes, while IoT sensors provide continuous data on machinery performance and environmental conditions. These technologies contribute to a comprehensive understanding of the agricultural landscape, leading to increased efficiency, reduced input costs and improved yields [11].

Challenges associated with adopting precision agriculture practises

Precision agriculture techniques face several barriers, including cost considerations, technical expertise requirements, training needs, data management and privacy concerns, access to reliable internet connectivity and adoption resistance. Initial investment in GPS-guided equipment, sensors and drones can be prohibitive for small-scale or resource-limited farmers, while ongoing expenses for maintenance, software updates and data storage can add to the financial burden. Technical expertise requirements and training gaps can also hinder adoption. Data security and privacy concerns, as well as concerns about data ownership and control, may deter farmers from fully embracing these technologies. Access to reliable internet connectivity and infrastructure investment may also be challenges. Cultural barriers and risk aversion can also hinder adoption. Addressing these barriers requires collaboration from policymakers, technology providers, and agricultural extension services [12]. Beyond cost and training, additional challenges include weak policy frameworks for digital agriculture, data interoperability across platforms, and the absence of standardized metrics for assessing carbon footprints. Addressing these policy and data governance gaps is vital for large-scale sustainability.

Future prospects for the growth of precision agriculture

Precision agriculture is undergoing significant advancements in technology, enhancing efficiency and sustainability. Key areas of research include Artificial Intelligence (AI) and Machine Learning, which can process vast amounts of data, providing insights into crop health and pest detection. Robotics and automation, such as autonomous vehicles and swarm robotics, can reduce labour requirements and increase operational efficiency. The Internet of Things (IoT) and connectivity, such as sensor networks and edge computing, can provide comprehensive data on soil conditions and crop health. Blockchain technology can enhance transparency and secure data management. Precision livestock farming, including animal wearables and automated feeding systems, can improve efficiency. Climate-smart technologies, such as adaptive crop varieties and predictive modeling, can enhance precision agriculture's adaptability to changing conditions. Sustainable practices, such as carbon sequestration and circular economy approaches, can also contribute to the transformation of global farming practices [13]. One example of a challenge faced by farmers when adopting precision agriculture practices is the high initial cost of implementing the necessary equipment and technology, such as GPS systems and sensors. Moreover, farmers may also struggle with acquiring the technical expertise needed to operate and maintain these advanced systems effectively. Another challenge could be limited access to reliable internet connectivity in rural areas, which is crucial for real-time data transmission and analysis in precision agriculture.

Benefits of weather-responsive farming

One of the significant benefits of weather-responsive farming is the ability to optimise crop production based on weather conditions. By using real-time weather data and forecasts, farmers can make informed decisions about when to plant, irrigate, fertilise, or harvest their crops. This allows for more precise timing, leading to improved yields and reduced resource waste. Additionally, weather-responsive farming can help mitigate the impact of extreme events, such as droughts or heavy rainfall, by providing farmers with early warnings and allowing them to take preventive measures. This not only protects the crops but also minimises financial losses.

Increased crop yields and productivity

Weather-responsive farming is the use of real-time weather data to determine the optimal time to plant crops. Farmers can analyse the forecasted rainfall patterns and soil moisture levels to ensure that they plant their crops during a period of optimal conditions for growth. This can result in increased crop yields and productivity as the plants are able to establish strong roots and grow in favourable weather conditions.

Reduced resource consumption and environmental impact

These are additional benefits of weather-responsive farming techniques. By accurately monitoring soil moisture levels and weather conditions, farmers can avoid excessive water usage, saving water resources and reducing the strain on local water supplies. Moreover, by preventing over-watering, these techniques minimize the leaching of nutrients and chemicals into the soil and surrounding water bodies, thus reducing the environmental impact of farming practices. Overall, weather-responsive farming contributes to sustainable agriculture and helps mitigate the negative effects of climate change. For example, in regions with unpredictable rainfall patterns, farmers can use weather-responsive techniques such as drip irrigation systems that deliver water directly to the roots of plants based on real-time soil moisture data. This prevents water wastage and ensures efficient water usage, resulting in higher crop yields. Additionally, by adjusting fertilization schedules based on weather forecasts, farmers can optimize nutrient uptake by crops and reduce the runoff of harmful chemicals into rivers and lakes, preserving aquatic ecosystems and safeguarding water quality.

Enhanced ability to adapt to changing weather patterns also allows farmers to diversify their crops and implement crop rotation strategies. By planting a variety of crops that are adapted to different weather conditions, farmers can mitigate the risks associated with unpredictable weather events such as droughts or heavy rainfall. This not only helps to ensure a more stable income for farmers but also promotes biodiversity and soil health. Overall, the ability to adapt to changing weather patterns is essential for sustainable agriculture and the preservation of our natural resources.

The importance of crop diversification in mitigating the impact of unpredictable weather events.

- How farmers can choose crops that are well-suited to different weather conditions.
- The benefits of implementing crop rotation strategies for soil health and fertility.
- How adapting to changing weather patterns can contribute to sustainable agriculture practices.
- The role of biodiversity in promoting resilience against climate change impacts on agricultural systems.

Key technologies and practices in precision agriculture Sensor-based systems for real-time weather data collection

Crop diversification in mitigating the impact of unpredictable weather events is when a farmer in a region prone to droughts decides to plant a mix of drought-tolerant crops such as sorghum, millets and legumes. This ensures that even if there is a lack of rainfall, some crops will still survive and provide a harvest. Additionally, farmers can use precision agriculture technologies to gather real-time weather data and choose crops that are well-suited to different weather conditions [14].

Use of satellite imagery and drones for crop monitoring:

The Farmer can use satellite imagery and drones to monitor the health and growth of their crops. By analysing the images and data collected, they can identify any signs of stress or disease in specific areas of the field. This allows them to take immediate action, such as applying targeted irrigation or pesticide treatments, to prevent further damage and optimize crop yield. Additionally, by regularly monitoring their crops using these technologies, farmers can make informed decisions about when to harvest or adjust their planting strategies based on real-time [15].

Automated irrigation and fertilization systems for precise resource management

A farmer using automated irrigation and fertilization systems can optimize resource management for their crops. The system collects data on soil moisture levels, nutrient content and weather conditions. Based on this information, it automatically adjusts ir-

rigation and fertilization schedules to ensure the crops receive the right amount of water and nutrients at the right time. This precise resource management helps prevent over-watering or under-fertilizing, leading to healthier and more productive crops [16].

Case studies of weather-responsive farming success Case study 1

Implementation of precision agriculture techniques in a vineyard resulting in improved grape quality and reduced water usage.

The vineyard utilized weather-responsive farming methods, such as soil sensors and weather stations, to monitor and analyse data on moisture levels and weather conditions. By accurately adjusting irrigation schedules based on real-time information, the vineyard was able to optimize water usage, resulting in healthier grapevines and improved grape quality. Additionally, the implementation of precision agriculture techniques led to a significant reduction in water usage, promoting sustainable farming practices [17].

Case study 2

Adoption of sensor-based weather data collection and automated irrigation in a wheat farm leading to increased yields and reduced fertilizer runoff.

This technological advancement allowed the wheat farm to closely monitor weather patterns and soil moisture levels, enabling them to make informed decisions about irrigation schedules. As a result, the farm experienced higher crop yields and a decrease in fertilizer runoff, minimizing the impact on the environment. The adoption of these precision agriculture techniques not only improved the farm's efficiency but also promoted sustainable farming practices in the industry [18].

Case study 3

Utilization of satellite imagery and drones to monitor crop health and optimize pesticide application in a vegetable farm, resulting in enhanced pest management and reduced chemical usage.

This innovative use of technology allowed the farmers to detect early signs of pest infestation and apply targeted pesticide

treatments, reducing the need for widespread chemical spraying. By minimizing chemical usage, the farm was able to decrease its environmental footprint and protect the surrounding ecosystem. Additionally, the improved pest management practices resulted in healthier and more productive crops, leading to increased profitability for the farm [19].

Challenges and considerations in weather-responsive farming

One of the challenges in weather-responsive farming is the accuracy of weather forecasting. While technology has advanced significantly in recent years, there can still be instances where the weather predictions are not entirely accurate. This can pose a risk to farmers who heavily rely on these forecasts to make decisions about irrigation, planting and harvesting. Another consideration is the cost of implementing weather-responsive farming systems. While the benefits are clear, the initial investment in technology and equipment can be substantial. This remains a barrier for some farmers. However, with potential government subsidies and the long-term cost savings from reduced chemical usage and improved crop yields, the return on investment can be significant.

Additionally, the implementation of weather-responsive farming systems requires a certain level of technological literacy among farmers. Many older farmers may not be familiar with the latest advancements in agricultural technology, making it challenging for them to adopt these systems. Furthermore, the complexity of these technologies may require additional training and support, which can be time-consuming and costly. However, with proper education and support, farmers can overcome these barriers and harness the full potential of weather-responsive farming systems.

Initial investment costs and accessibility to technology can also pose challenges for farmers, especially those in developing countries or remote areas. For example, purchasing advanced weather monitoring equipment or precision irrigation systems may be financially burdensome for small-scale farmers. Additionally, limited access to reliable internet connectivity can hinder their ability to utilize weather data and communicate with agricultural experts. However, initiatives such as government subsidies or partnerships with organizations can help reduce costs and improve accessibility, enabling more farmers to benefit from weather-responsive farming systems.

Need for training and expertise in precision agriculture practices for example, small-scale farmers may require training and expertise in precision agriculture practices to effectively utilize advanced equipment and systems. This training can help them optimize irrigation schedules, monitor crop health, and make informed decisions based on weather data, ultimately increasing their productivity and profitability.

Data privacy and security concerns for instance, in precision agriculture, farmers often rely on collecting and analysing large amounts of data from sensors and drones. However, this raises concerns about data privacy and security. Farmers need to ensure that their sensitive information, such as field locations and crop yields, is protected from unauthorized access or use by third parties. Implementing robust cybersecurity measures and data encryption can address these concerns, allowing farmers to fully leverage the benefits of weather-responsive farming systems without compromising their privacy.

Future trends and opportunities in weather-responsive farming

As weather-responsive farming continues to evolve, there are several future trends and opportunities that hold great potential for the agricultural industry. One of these trends is the integration of artificial intelligence (AI) and machine learning algorithms into weather-responsive farming systems. By analysing vast amounts of historical and real-time data, AI can provide farmers with more accurate and precise predictions about weather patterns, crop growth and disease outbreaks. This can help farmers make more informed decisions regarding planting schedules, irrigation and pest control, ultimately leading to higher yields and reduced costs.

Additionally, advancements in drone technology are opening up new possibilities for weather-responsive farming. Drones equipped with sensors and cameras can gather detailed data about soil moisture, nutrient levels, and crop health, providing farmers with valuable insights for optimising their farming practices. Furthermore, the use of drones for aerial spraying can help reduce the amount of pesticides and fertilisers needed, minimising environmental impact and increasing sustainability. Overall, the future of weather-responsive farming holds immense potential for increasing productivity, reducing resource waste, and mitigating the impact of climate change on agricultural systems.

Integration of artificial intelligence and machine learning algorithms for more accurate weather predictions and decision-making can further enhance the effectiveness of weather-responsive farming. By analysing vast amounts of data, AI algorithms can identify patterns and trends in weather conditions, enabling farmers to make more informed decisions about when to plant, irrigate, or harvest their crops. Additionally, machine learning algorithms can continuously learn and adapt to changing weather patterns, providing real-time recommendations for adjusting farming practices. This integration of AI and machine learning not only improves the accuracy of weather predictions but also helps farmers optimise their resources and maximise crop yield [20].

Collaboration between farmers, researchers, and technology providers for continuous innovation is crucial to further advancing the capabilities of AI in agriculture. By working together, these stakeholders can identify the specific needs and challenges faced by farmers and develop tailored solutions that address these issues. This collaborative approach also allows for the sharing of knowledge and expertise, fostering a culture of innovation and continuous improvement in the agricultural sector. Furthermore, the integration of AI in agriculture opens up new opportunities for sustainable farming practices, as it enables the efficient use of resources such as water, fertilisers, and pesticides. By optimising these inputs, farmers can minimise their environmental impact while still achieving high yields. Overall, the collaboration between farmers, researchers, and technology providers is essential for harnessing the full potential of AI in agriculture and ensuring a more sustainable and productive future for the industry.

Policy support and incentives to encourage adoption of weather-responsive farming practices can lead to a reduction in water and energy usage, as well as lower greenhouse gas emissions. For example, farmers can use AI-powered weather prediction models to determine the optimal time to irrigate their crops, reducing water waste and conserving resources. Additionally, government subsidies for the adoption of precision agriculture technologies can incentivize farmers to invest in AI-driven solutions that improve productivity while minimizing environmental impact.

Furthermore, the integration of AI technology into farming practices can also enhance crop yield and quality. By analysing vast

amounts of data, AI algorithms can provide farmers with valuable insights on soil conditions, pest infestations, and nutrient deficiencies. This enables farmers to make informed decisions regarding fertilisation, pest control, and crop rotation, ultimately leading to higher yields and healthier crops. Additionally, AI-powered robots and drones can be employed for precision planting, harvesting, and monitoring, reducing labour costs and increasing efficiency.

Conclusion

The coming decade will likely see a deeper fusion of AI, IoT, robotics, and nanotechnology into precision farming systems, creating hyper-adaptive, weather-resilient agricultural networks. Policymakers should promote public-private partnerships to ensure equitable access to these tools, emphasizing climate adaptation, carbon neutrality, and data security as pillars of future agricultural policy.

Recap of the importance of weather-responsive farming for climate resilience Weather-responsive farming plays a crucial role in building climate resilience in the agricultural sector. With the help of AI technology, farmers can adapt to changing weather patterns and minimize impact of extreme events on their crops. By utilizing real-time weather data and predictive analytics, farmers can optimize irrigation schedules, adjust planting dates, and implement protective measures against frost and heat waves. This proactive approach to farming not only ensures the sustainability of agricultural practices but also contributes to food security in the face of climate change.

Call to action for farmers to embrace precision agriculture and contribute to sustainable and resilient food production systems by adopting precision agriculture techniques, farmers can actively contribute to the development of sustainable and resilient food production systems. Through the use of advanced technologies such as drones, sensors, and GPS mapping, farmers can precisely monitor and manage their fields, reducing the use of water, fertilizers and pesticides. Embracing precision agriculture not only benefits individual farmers by increasing their yields and profitability but also helps address the global challenge of feeding a growing population while coping with the impacts of climate change. Therefore, it is crucial for farmers to embrace these innovative practices and work towards a more sustainable and resilient future for agriculture.

Bibliography

- Mekouar M. "United Nations Food and Agriculture Organization (FAO)". Yearbook of International Environmental Law 27 (2016): 488-506.
- 2. Balasundram SK., *et al.* "The Role of Digital Agriculture in Mitigating Climate Change and Ensuring Food Security: An Overview". *Sustainability* 15.6 (2023): 5325.
- 3. Shilpa and Bijalwan P. "Climate Resilient Vegetable Farming: A Review". *Journal of Experimental Agriculture International* (2021): 55-69.
- 4. Asseng S. "Uncertainties of Climate Change Impacts in Agriculture". *Procedia Environmental Sciences* 29 (2015): 304.
- Harris E., et al. "Promoting Social Equity and Building Resilience through Value-Inclusive Design". Buildings 13.8 (2023): 2081.
- Frimpong CA. "Promoting Climate Resilience in Building Construction Industry in Ghana". *International Journal of Global* Sustainability 7.1 (2023): 65.
- 7. Paul W. "Prospects for controlled application of water and fertiliser, based on sensing permittivity of soil". *Computers and Electronics in Agriculture* 36.2-3 (2002): 151-163.
- Kwon S H and Lee S. "Deep Learning to Recognize Water Level for Agriculture Reservoir Using CCTV Imagery". Water Resources Management (2023).
- Manandhar A., et al. "Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers'. Precision Agriculture 21.5 (2020): 1156-1171.
- 10. Yadav A., et al. "Emerging Frontiers in Nanotechnology for Precision Agriculture: Advancements, Hurdles and Prospects". Agrochemicals 2.2 (2023): 220-256.
- 11. Sishodia R P., et al. "Applications of Remote Sensing in Precision Agriculture: A Review". Remote Sensing 12.19 (2020): 31-36.

- 12. Wang T., et al. "Factors affecting farmer perceived challenges towards precision agriculture". *Precision Agriculture* 24.6 (2023): 2456-2478.
- 13. McBratney A., *et al.* "Future Directions of Precision Agriculture". *Precision Agriculture* 6.1 (2005): 7-23.
- 14. Holtorf L., *et al.* "UAV-Based Wireless Data Collection from Underground Sensor Nodes for Precision Agriculture". *AgriEngineering* 5.1 (2023): 338-354.
- 15. Zualkernan I., *et al.* "Machine Learning for Precision Agriculture Using Imagery from Unmanned Aerial Vehicles (UAVs): A Survey. *Drones* 7.6 (2023): 382.
- 16. Bhatti S., *et al.* "Toward automated irrigation management with integrated crop water stress index and spatial soil water balance". *Precision Agriculture* 24.6 (2023): 2223-2247.
- 17. Bramley R., *et al.* "Vineyard variability in Marlborough, New Zealand: characterising variation in vineyard performance and options for the implementation of Precision Viticulture". *Australian Journal of Grape and Wine Research* 17.1 (2011): 72-78.
- 18. Thakare A. "Intelligent Automated Irrigation System Based on Soil Sensors and Weather Forecast Data". *International Journal of Next-Generation Computing* (2021).
- 19. Nkuh A., et al. "Pesticide Usage in Pest Management by Vegetable Producers in the Foumbot Production Basin of the Western Highlands (Cameroon)". *American Journal of Agriculture* 5.2 (2023): 36-52.
- 20. Rethnaraj J. "Future of Smart Farming Techniques: Significance of Urban Vertical Farming Systems Integrated with IoT and Machine Learning". *Open Access Journal of Agricultural Research* 8.3 (2023): 1-11.