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Abstract
Fruits are storehouses of phytochemicals and other bioactive substances promoting good health. Numerous environmental and 

genotypic variables may influence the quality of fruits. Ploidy manipulation is one of several methods used to improve the quality 
of fruits, including breeding and other biotechnological methods. Colchicine and oryzalin, antimitotic agents that alter ploidy levels, 
are being utilized widely. Increasing up and down the number of chromosomes in a species within a polyploid sequence constitutes 
ploidy manipulation. There are several ways to manipulate ploidy, including endosperm culture, chromosomal duplication, interploid 
hybridization, sexual polyploidization, and the creation of haploids. Ploidy modification may be a practical approach to improve the 
fruit quality attributes with these cutting-edge methods.
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Introduction

Fruits are a crucial component of our daily diet because they 
are abundant sources of many nutrients that are good for our 
health, including vitamins, minerals, and various polyphenolic 
compounds. The synergy or interactions of bioactive chemicals 
and other nutrients are ascribed to the health benefits derived 
from fruits [31]. To avoid the onset of malnutrition and non-
communicable illnesses, the WHO [81] has advised consuming 
400 g of fruits and vegetables per day. The total fruit production in 
the world touched a milestone of 883 million tonnes in 2019 [13]. 
India, with 107.1 million MT of fruit production [35], is the second 
largest producer of fruits in the world.

Fruit quality is a dynamic synthesis of all its physicochemical 
characteristics that affect how consumers perceive it [28]. 
Numerous environmental factors, as well as genotypic traits, have 
an impact on fruit quality. Ploidy manipulation is one of several 
methods used to improve the quality of fruits, including breeding 
and other biotechnological tools. Polyploidy is one of the elements 
driving plant species evolution [62], which is defined as “the 
development of a greater chromosomal number by the inclusion 
of additional complete chromosome sets existing in one or more 
ancestral organisms” [16].

Polyploidy occurs when an organism has two or more 
chromosomal sets [68]. Ploidy manipulations, commonly referred 
to as analytical breeding, involve shifting the proportion of a 
species’ chromosomes to a higher or lower level within a polyploid 
sequence [7]. This technique may be used to improve fruit quality. 
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Ploidy manipulations are primarily influenced by the type of fruit 
crop concerning its ploidy behaviour, type of propagation, and 
access to a wide range of genetic resources belonging to different 
ploidy levels [48].

Historical background

The first instance of creating an artificial polyploid in a lab was 
the 4x form of the Solanaceae family plant Solanum nigrum [65], 
which was created by the regeneration of the callus tissue [80]. 
Additionally, the use of colchicine for chromosomal doubling in 
several species was shown in the second quartile of the 20th century 
[4]. Soon after this original discovery, many experiments examining 
colchicine for ploidy modification were conducted. In 1941, the 
popular journal ‘American Naturalist’ supported a symposium on 
different aspects associated with agrarian crop plants due to the 
heightened interest generated by this new element of polyploid 
studies [70]. The first detailed dialogue on the benefits of artificial 
ploidy manipulation to improve ornamental crops was provided in 
the same issue of ‘The American Naturalist’ [11]. Due to these early 
experiments, polyploidy has become a crucial component of crop 
improvement for many commercial crops, including fruit crops.

The rapidly developing plant tissue culture industry boosted 
polyploidy investigations in the 1960s. The in vitro cultivation 
method was successfully used to produce 4x plants which provided 
the early indications of using tissue culture techniques for ploidy 
manipulations [40]. Colchicine was also used to develop polyploid 
sugarcane cell cultures [21]. In vitro polyploid induction has been 
more popular during the past two decades. This growth may 
be partly explained by the creation and spread of tissue culture 
methods for various species [73].

Types of polyploids

Autopolyploids and allopolyploids are the two primary 
categories of polyploids that are often taken into account. An 
allopolyploid develops when many sets of chromosomes with 
distinct structural sets are combined, unlike an autopolyploid, 
which multiplies a single set of chromosomes [25,65]. The 
polyploids are divided again into five conventional categories 
[16,65,68].

•	 Strict autopolyploidy (AAAA): These polyploids are formed 
within a species, either from genome doubling in a single 
individual or fusion of unreduced gametes from genetically 
similar individuals. E.g., aonla, bael, litchi, jackfruit, etc.

•	 Interracial autopolyploidy (AAAA): These polyploids evolved 
within a genetically distinct species but have structurally 
similar chromosomes. 

•	 Segmental allopolyploidy (AsAsAtAt): These are the polyploids 
formed within a species but from the parental genomes 
that differ in many genes or chromosomal segments. 
These are unstable polyploids that evolve toward auto- or 
true alloploidy. E.g., Pinoche Creek larkspur (Delphinium 
gypsophilum)

•	 True (genomic) allopolyploidy (AABB): These polyploids are 
derived from the hybridization between distantly related 
species. E.g., mango, European plum, strawberry, etc.

•	 Autoallopolyploidy (AAAABB): These polyploids develop 
from genome doubling followed by an allopolyploid 
formation. E.g., Jerusalem artichoke (Helianthus tuberosus)

Here, subscripts denote unique genomes from the same species, 
whereas A and B represent the different parental genomes.

Agents for ploidy manipulation

To inhibit chromosome pole movement during anaphase, 
ploidy modification requires that the cell cycle be disturbed [73]. 
Chemicals that have been demonstrated to produce polyploidy 
include antimicrotubule herbicides, coffee [71], and nitrous oxide 
[69]. These substances are collectively known as “antimitotic 
agents.” Colchicine, oryzalin, and other antimicrotubule substances 
have been primarily employed for effective in vitro polyploid 
induction. The brief categorization of antimitotic agents is shown 
in figure 1.

Methods of ploidy manipulation

It was previously believed that either sexual (meiotic) 
polyploidization or somatic (mitotic) doubling in sporophyte 
meristem tissue would cause polyploidy in plants [55]. In addition, 
numerous alternative techniques for manipulating ploidy have 
been reported from diverse investigations and are discussed below.

Sexual polyploidization

Unreduced gametes with a complete complement 
of chromosomes are created throughout the process of 
gametogenesis, and abnormalities in typical cell cycle activities 
such as spindle formation and cytokinesis may be responsible [56]. 
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Figure 1: Brief classification of antimitotic agents [derived from 3,23,24,26,29,32,37,38,41,51,73,74,76]

Meiotic restitution occurs when meiotic cell division is changed 
into a mitosis-like non-reductional process and produces dyads 
(and triads) instead of the typical tetrads after meiosis II, it is the 
most common mechanism of unreduced gamete generation [9]. 
Triploid and tetraploid embryos can be created by unionizing 
reduced (n) and unreduced gametes or merging two unreduced 
gametes. It is believed that unreduced gametes (2n pollen or 2n 
eggs) are an effective mechanism of polyploid formation [56]. The 
sexual polyploids differ from somatic polyploids depending on 
the genetic variation present in the progeny resulting in greater 
heterozygosity and further expression of the associated traits [60].

Among fruit crops, the strawberry (Fragaria × ananassa) is a 
prime example of naturally occurring polyploidization. Various 
ploidy levels, including diploid, triploid, tetraploid, pentaploid, 
and octoploid, have been seen in the genus Fragaria [19]. Given 
that unreduced gametes are frequent in Fragaria, numerous 
researchers have hypothesized that 2n gametes’ unification led to 
the development of polyploidy in this species [19]. Additionally, 
tetraploids and diploids can be crossed to generate triploids [56]. 
According to [61], tetraploid-diploid crossings produced 22.4 

percent diploid, 54.0 percent triploid, and 23.4 percent tetraploid. 
In contrast, diploid-tetraploid crosses produced plants that 
were 31.8 percent diploid, 68.0 percent triploid, and 0.1 percent 
tetraploid. The most effective method of making polyploids for 
some crops, such as the triploid banana species, Musa acuminata, 
and M. balbisiana, may be sexual polyploidization. However, the 
limited frequency of creation of unreduced gametes limits the use 
of sexual polyploidization [60].

Production of haploid and doubled haploids

Microspore culture, pollen culture, and anther culture all result 
in the creation of haploid cells; the process that employs female 
gametes is known as gynogenesis, while the process that uses male 
gametes is known as androgenesis. The fundamental concept is to 
induce immature gametic cells to stop developing into gametes 
and instead drive them to grow into haploid plants [8]. Due to 
parthenocarpy, self-incompatibility, high heterozygosity, and 
long generation intervals in fruit trees, the breeding process of 
fruit crops is complex. The availability of haploids has significant 
consequences on the genetic development of fruit trees [54]. Using 
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embryo rescue methods, the haploid embryo must be preserved 
and grown into a haploid, and then chromosomal doubling must be 
carried out to create doubled haploids.

Haploids that undergo chromosome doubling become doubled 
haploids. The smaller and male-sterile haploid plants cannot 
produce pollen or eggs because their homologous pair is absent 
during meiotic division. Although doubled haploids are derived 
from a single breeding cycle with unquestionably complete 
homozygosity, homozygous lines take 6-7 breeding cycles to be 
created. Fruit breeders are interested in haploids and doubled 
haploids because they may be able to develop homozygous lines 
more quickly than using traditional breeding methods [14]. In 
citrus and related genera, advanced techniques such as anther 
culture and pollen irradiation have been used to produce doubled 
haploid plants [86].

Chromosome doubling

Another technique to change the ploidy level is to use various 
antimitotic agents to double the initial set of chromosomes. The use 
of unreduced pollens [34], temperature shocks [5], inducing injury 
to plant cells [56], radiation treatment of plant parts [59], and 
chemical treatments are just a few examples of methods that can 
cause chromosome doubling [82,84]. Since colchicine only affects 
dividing cells, it should only be taken while tissues actively divide. 
To double the number of chromosomes in a high number of shoot 
apex cells, multiple treatments spaced at close intervals should be 
employed because only a tiny portion of cells would be dividing 
at any given moment [27]. With concentrations of 0.2% colchicine 
more typical, seed treatment may be applied for 1 to 10 days. To 
allow for aeration, seeds are often soaked in a shallow container. 
The shoot buds of woody plants are frequently treated with 1 
percent colchicine. Colchiploidy was used effectively in a variety of 
fruit crops, including banana [18], kiwifruit [84], pineapple [39], 
ber [17], pomegranate, passion fruit, guava, papaya, Annona, and 
grape [27]. Kiwifruit tetraploids treated with colchicine were 50–
60% bigger than their diploid ancestors [82].

Interploid hybridization

Interploid hybridization is the process of breeding two distinct 
individuals with different levels of ploidy, and the offspring 
generated by this process is known as interploid hybrids [77]. 
Interploid hybridizations commonly cause smaller, abnormally 

developed seeds in angiosperms and seed abortion. Whether the 
crosses are diploid, tetraploid, or reciprocal, citrus breeders more 
frequently adopt interploidy crosses to produce seedless hybrids 
[77].  Triploid recovery is mainly prevented by polyembryony 
and early endosperm development. Tetraploid diploid hybrids 
with a more significant proportion of triploids were created using 
monoembryonic seed progenitors [6]. In citrus, adopting the 
embryo rescue approach employed in interploidy hybridization 
permitted the recovery of diverse triploids [77].

Endosperm culture 

Due to double fertilization, which occurs only in higher plants, 
the endosperm of diploid plants is a triploid (i.e., possessing three 
sets of chromosomes) tissue. The process of double fertilization, 
in which one of the two male gametes fertilizes the egg to create 
a zygote. At the same time, the other unites with secondary nuclei 
to form a triploid endosperm and produces the endosperm [66]. 
Chromosome variety and significant polyploidy levels are typically 
seen in the endosperm tissue. Other essential characteristics of 
endosperm tissues include chromosomal bridges, erratic mitosis, 
and laggards. Endosperm cultivation offers a straightforward 
1-step approach for the generation of triploid plants compared to 
conventional methods [72]. The lesser number of seeds or complete 
seedlessness is the trait that is attracting fruit breeders in recent 
times, and triploid induction using ploidy manipulation techniques 
can help produce good quality seedless fruit crops [72]. Triploid 
plants are helpful in plants where the vegetative components are 
valuable since they develop vegetatively more quickly than diploid 
ones. Triploids often grow faster than their respective diploid 
counterparts [72].

Factors affecting ploidy manipulation

Genotype

Plants with lower ploidy levels have a high tendency for 
polyploidy induction even though chromosome doubling is 
genotype-dependent. The effectiveness of antimitotic agents like 
oryzalin and colchicine has been the subject of conflicting reports 
[36], and it was discovered that responses to the induction of 
polyploidy were genotype-dependent [22,58,84].

Type of tissue

The technique of manipulating ploidy is substantially impacted 
by the choice of explant material or tissue. Several researchers have 
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used a variety of plant tissues and materials, including petioles in 
kiwifruit [84], hypocotyl segments and shoot apices in watermelon 
[42,57], hypocotyl segments in passion fruit [58], axillary buds in 
apple [22], and shoots [43]. Although there are few technological 
limitations [72,78], using endosperm as an explant material 
directly generates natural triploid plants in a concise amount of 
time [66].

Type of antimitotic agents, dosage, and exposure period

Various factors, such as the capacity to generate polyploidy, 
lethality, solubility, heat stability, etc., influence the choice of an 
antimitotic agent. Dinitroanilines, an antimitotic agent from the 
herbicides group (Figure 1), have been demonstrated to have a 
high affinity for plant tubulins and are used to induce polyploidy 
in vitro. Despite this, in most fruit plant species, colchicine 
was the preferred antimitotic agent since it is the most effective 
[22,43,58,84]. Antimitotic chemical concentration and exposure 
time are variables that are frequently examined. The interplay 
between exposure duration and concentration is not entirely 
understood, even though low exposure levels are ineffective and 
high exposure levels are fatal [73].

Regrowth media

A proper growth medium is necessary for polyploids to recover 
well after antimitotic treatments. In vitro growth media are 
frequently supplemented with antimitotic agents, and it’s plausible 
that media elements might interact with antimitotic agents to 
affect chromosomal doubling [73]. For instance, pH and sucrose 
significantly impact how well dinitroanilines bind to -tubulin 
[23,37]. Vitamins, amino acids, plant growth regulators, and other 
regrowth medium elements significantly impact the survival of 
experimentally produced polyploids [1,12].

Assessment of ploidy level

Recent years have seen other approaches for determining 
the ploidy level in plant tissues, mainly flow cytometry, which 
has revolutionized this task [47]. The techniques, such as the 
determination of the size and density of leaf stomata [10,75], length 
of pollen grains [87], and cell size [20], have generally proved to 
be not sufficiently reliable [45,46]. Conversely, the nuclear DNA 
content was directly correlated with the ploidy level [63], and 
flow cytometry has arisen as a far more reliable methodology for 

the determination of the ploidy level [47]. The technique of flow 
cytometry is being effectively utilized to determine the ploidy level 
in fruit crops such as kiwi [50], plum [15], persimmon [53], and 
many other fruit crops.

Impact of ploidy manipulation on fruit quality

Polyploidy is a widespread phenomenon among various plant 
species, and among the cultivated species, approximately 40% 
are polyploids [64]. The development of artificial polyploids can 
be an efficient technique to facilitate fruit breeding and improve 
fruit quality. Some significant advantages of polyploids are the 
‘Gigas effect’ (enhancement in plant vigor), buffering of deleterious 
mutations, increased heterozygosity, creation of a novel genetic 
resource, and restoring fertility and heterosis [60]. Polyploids 
often possess novel biochemical, physiological, morphological, and 
ecological traits. Presumably, the more significant environmental 
adaptability of the polyploids has allowed them to establish and 
sustain the severity of environmental change over the evolutionary 
time scale [30]. It has been demonstrated that polyploids show, 
although not consistently, increased yield and biomass, fruit and 
flower size, color intensity, flowering time, secondary metabolite 
production as well as primary metabolism [30,67,82,84]. These 
features of ploidy attracted several researchers to develop artificial 
polyploids and evaluate their effect on fruit quality, summarized 
in table 1.

Fruit 
Crops

Ploidy 
Level

Fruit Quality Traits 
Improved Reference

Grape Triploid Seed lessness [49]
Tetraploid Muscat flavour [33]

Passion 
fruit Tetraploid

Higher fruit weight, 
juice per fruit, soluble 
solids, juice/seed, and 

low seed count

[58]

Kiwi Fruit
Tetraploid

Fruit size (50-60% 
larger than diploid) [83]

Apple
Tetraploid

Larger size of flowers, 
fruits, and seeds than 

the diploid cultivar
[85]

Triploid
Regular fruit-bearing, 
more marketable fruit 

of the larger size
[61]

Citrus
(Fortunella 
sp.)

Tetraploid Thicker pericarp and 
high TSS [44]
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Ber

Tetraploid

Higher fruit weight, 
ascorbic acid content, 
titratable acidity, and 

soluble sugars

[79]

Bilberry Tetraploid Large flower and late 
blooming [52]

Banana Tetraploid High lutein content [2]

Table 1: Influence of ploidy manipulation on fruit quality traits.

Conclusion

Several tools and techniques are in practice to achieve the 
target of better fruit quality. Indeed, a particular method has a 
few advantages over another and vice versa. Nevertheless, ploidy 
manipulation opens up a new horizon regarding fruit quality 
enhancement. The techniques of ploidy manipulation are more 
efficient and provide economy in space and time since they can be 
performed ex vitro and in vitro. The experimental findings suggest 
that ploidy manipulations improved fruit quality parameters in a 
few fruit crops and enhanced their tolerance to various abiotic and 
biotic stresses. Further, ploidy manipulations may be utilized to 
develop varieties with improved fruit quality traits. Since no direct 
manipulation is involved, the varieties grown will be accepted and 
welcomed by the masses.
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