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Abiotic stress factors affect plant growth significantly and 
cause significant decreases in productivity and quality in agricul-
tural produce. Environmental stress factors such as drought, sa-
linity, low and high temperatures are important abiotic stresses 
which limit agricultural production [1]. The most important stress 
factors that cause damage to agricultural production are known as 
drought and salinity in the world [1,2]. 
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We investigated the effects of exogenously applied nitric oxide (NO) on seed germination and seedling properties of purslane 
(Portulaca oleracea L.) under different levels of drought and salinity. The seeds were soaked in different SNP (sodium nitroprusside 
as a NO donor) doses (0, 50, 100, 150 and 200 µM) during 12 h. Drought and salinity stress were generated by additions of PEG 6000 
or sodium chloride to medium. Water potentials were: 0, -0.20, -0.75, and -1.53 MPa for both stresses. The seeds were allowed to 
germinate at 25oC, germination percentage, germination speed, main daily germination, root and shoot length were determined at 
the end of the experiment. Germination and seedling properties were inversely proportional to the concentrations of NaCl and PEG, 
thus purslane showed a reduction in germination and seedling growth with increased NaCl or PEG concentrations, but the reduction 
in PEG treatment were higher than NaCl treatment. However, exogenously NO treatments alleviated the negative impact of stress 
conditions for germination and seedling characteristics. 50, 100 and 200 µM doses of NO were the most efficient treatments on ame-
liorating the deleterious effects of salinity and drought. It can be concluded that NO applications may reduce the negative effects of 
moderate and high salt and drought stress during germination and early growth stage.

Introduction

High salt concentration causes osmotic and ion stress in plants 
and increase the leakage of electrons from the transport of elec-
trons in chloroplasts and mitochondria and causes excessive pro-
duction of reactive oxygen species (ROS) in plants [3-5]. Salinity 
reduces the growth rate resulting in smaller leaves, shorter lengths 
and sometimes fewer leaves [1]. Drought conditions have a nega-
tive effect on photosynthetic activity, cause a change in chlorophyll 

content and components in the cell, decrease plant root and shoot 
growth, inhibit photochemical activities and decrease the activity 
of enzymes in Calvin circle [6-10].

NO, an important signal molecule, is a product of nitrogen me-
tabolism known as a stress regulator in signal transduction path-
ways [11]. NO is stated to have multiple biological roles in develop-
mental processes such as germination, root organogenesis, stoma 
closure, flowering and senescence [12]. In addition, NO was found 
to be involved in environmental responses such as drought, tem-
perature, salinity, heavy metal and UV-B radiation in plants [2,13-
18]. 

NO decreases the oxidative damage caused by salinity in seed-
lings and increases the growth in the seedlings and dry weight un-
der salt and drought stress [2,19,20]. In addition, the researchers 
reported that the pretreatment of NO in plants under stress condi-
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tions increases the total soluble protein, effectively contributing to 
a better balance between carbon and nitrogen metabolism [20,21]. 
NO affects the downstream of ABA in the adaptation reaction to wa-
ter-deficiency stress by inducing stoma closure [22]. NO increases 
the capacity of antioxidants, stability of cellular membranes and 
improves the photosynthetic capacity [23].

Purslane is providing both novel biologically active substances 
and essential compounds for human nutrition [24]. The purslane 
plant was found to be 6.3 dS m-1 (EC) threshold and moderately 
tolerant to salinity [25]. Also, it was determined that purslane is 
a drought-tolerant plant [24]. Purslane outstanding tolerance to 
chloride salinity makes this species a promising halophyte candi-
date for saline agriculture [26]. 

The current scientific literature demonstrates that NO usage 
is one-way to improve the plant’s tolerance on stress conditions. 
However, the effect of NO on seed germination and seedling growth 
of purslane under drought and salinity stress conditions has yet 
not been well studied. Thus, this experiment focuses on the effect 
of the exogenous seed application of NO on seed germination and 
seedling growth properties of purslane under saline and growth 
conditions.

Purslane (Portulaca oleracea L.) was used as a plant material. 
One percent sodium hypochlorite was used for seed disinfection 
about two minutes, and then seeds were washed with distilled 
water immediately. Seeds were soaked in different SNP (sodium 
nitroprusside) solutions (0, 50, 100, 150 and 200 μM) for 12 hours 
in a germinator with a temperature of 23 ± 2°C. Treated seeds 
were dried on the papers under room temperature. Fifty disinfect-
ed seeds treated with NO were germinated in 2 folds of Whatman 
No. 1 filter paper (sterilized) which were placed in Petri dishes (15 
cm diameter). Each dish was moistened with 10 ml solutions con-
taining polyethylene glycol (PEG) 6000 or sodium chloride (NaCl) 
solutions with osmotic potential 0, -0.20, -0.75 and -1.53 MPa. In 
the control group only, distilled water was used. 

Material and Methods

The germination study was carried out with 4 replications and 
50 seeds were used in each replication [27]. Seeds were allowed 
to germinate at 25°C. Germination percentage (%) and germina-
tion speed [28], mean daily germination [29], root length (mm) 
and shoot length (mm) were measured at the end of the study (14 
day). The germination percentage values were transformed to arc 
sin before ANOVA. The data were analyzed by means of Duncan 
multiple comparison test [30].

Effects of NO treatments on germination speed, germination 
percentage and daily mean germination of purslane seeds under 
drought and salinity conditions are given in table 1. The effect of 
salinity, drought and NO applications on seed germination speed 
was found to be statistically significant (p < 0,001). With increas-
ing salinity and drought severity, the germination speed values 
increased, and germination occurred later in the highest stress 
conditions than the control. According to the averages, the latest 
germination was in the 0 μM NO application, while the earliest 
germination occurred in 200 μM NO application in salinity condi-
tions. On the other hand, in drought conditions the latest germi-
nation was in the 0 μM NO application, while the earliest germi-
nation occurred in 100 μM NO (Table 1). The 50 and 100 μM NO 
applications resulted in faster germination at -0.20 MPa and -0.75 
MPa salt stresses, respectively. In drought conditions, the 150 μM 
NO applications provided the earliest germination at -0,20 MPa 
and -0,75 MPa stress, while 100 μM NO application showed faster 
germination at -1,53 MPa drought stress (Table 1).

Results

The effect of salinity, drought and NO applications on seed ger-
mination percentage was found to be statistically significant (p < 
0,001). With increasing salinity and drought, the germination per-
centage decreased in the highest stress conditions. According to 
the averages, the highest germination percentage was in the 150 
μM NO application, while the lowest germination percentage oc-
curred in 0 μM NO application in salinity stress conditions. On 
the other hand, in drought conditions the highest germination 
percentage was in the 100 μM NO application, while the lowest 
germination occurred in 200 μM NO (Table 1). The highest germi-
nation percentage was obtained from 150 μM NO application at 
-0.20 MPa and -0.75 MPa salt stresses and 50 μM NO application 
at -1,53 MPa salt stress condition. On the other hand, the highest 
germination percentage was obtained from 100 μM NO applica-
tion at -0.20 MPa, 50 μM NO application at -0.75 MPa salt stresses 
and 50 μM NO and 100 μM NO applications at -1,53 MPa drought 
stress condition (Table 1).

The effects of applications on mean daily germination of purs-
lane seed were shown in table 1. Increased levels of salt and 
drought reduced mean daily germination. The highest mean daily 
germination was obtained 150 μM NO application for salinity and 
100 μM NO application for drought conditions (Table 1). In this 
study, the highest mean daily germination occurred in150 μM NO 
application at -0.20 MPa and -0.75 MPa salt stress levels, while the 
highest mean daily germination was obtained from 100 μM NO ap-
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Germination Speed
Stress Doses 0-NO 50-NO 100-NO 150-NO 200-NO Mean

Salt

0 1,37 d 1,31 d 1,29 d 1,18 d 1,32 d 1,29 C
-0,20 MPa 1,35 d 1,15 d 1,30 d 1,19 d 1,17 d 1,23 C
-0,75 MPa 1,86 c 1,78 c 1,69 c 1,84 c 1,74 c 1,78 B
-1,53 MPa 3,81 b 3,86 b 4,29 a 3,89 b 3,82 b 3,93 A

Mean 2,10 ns 2,02 2,14 2,03 2,01
Application x Salt P < 0,001

Drought

0 2,27 d 1,80 def 1,72 def 1,99 def 1,81 def 1,92 C
-0,20 MPa 1,83 def 1,66 ef 1,56 f 1,52 f 1,64 ef 1,64 D
-0,75 MPa 2,26 d 2,17 de 2,26 d 2,05 def 2,17 de 2,18 B
-1,53 MPa 4,83 a 4,68 a 3,25 c 3,94 b 4,00 b 4,14 A

Mean 2,80 A 2,58 AB 2,20 C 2,37 BC 2,41 BC
Application x Drought P < 0,001

Germination Percentage (%)

Salt

0 94,00 bcd 96,00 ab 98,00 a 97,00 ab 95,00 bc 96,00 A
-0,20 MPa 93,50 bcd 93,50 bcd 95,50 abc 96,00 ab 94,50 bc 94,60 B
-0,75 MPa 90,50 e 91,00 de 91,50 cde 94,50 bc 91,00 de 91,70 C
-1,53 MPa 77,00 f 78,00 f 77,00 f 77,00 f 75,00 f 76,80 D

Mean 88,75 C 89,63 BC 90,50 B 91,13 A 88,88 BC
Application x Salt P < 0,05

Drought

0 94,50 cd 96,00 bc 98,50 a 95,00 bc 98,00 ab 96,40A
-0,20 MPa 94,00 cd 95,50 bc 97,50 ab 95,00 bc 94,00 cd 95,20 A
-0,75 MPa 93,00 cd 95,50 bc 92,00 cd 95,00 bc 90,00 d 93,10 B
-1,53 MPa 9,00 ef 12,00 e 12,00 e 8,00 ef 6,00 f 9,40 C

Mean 72,63 C 74,75 AB 75,00 A 73,25 BC 72,00 C
Application x Drought P < 0,05

Mean Daily Germination

Salt

0 6,71 a-d 6,86 ab 6,86 ab 6,93 a 6,79 ab 6,83 A
-0,20 MPa 6,68 b-e 6,64 b-e 6,82 ab 6,86 ab 6,75 abc 6,75 A
-0,75 MPa 6,46 ef 6,50 def 6,54 c-f 6,68 b-e 6,43 f 6,52 B
-1,53 MPa 5,50 g 5,43 g 5,50 g 5,50 g 5,36 g 5,46 C

Mean 6,34 B 6,36 B 6,43 AB 6,49 A 6,33 B
Application x Salt P < 0,05

Drought

0 6,64 cd 6,82 abc 7,04 a 6,79 abc 6,43 d 6,74 A
-0,20 MPa 6,71 bc 6,82 abc 6,96 ab 6,78 abc 6,71 bc 6,80 A
-0,75 MPa 6,64 cd 6,82 abc 6,57 cd 6,78 abc 7,00 a 6,76 A
-1,53 MPa 0,61 ef 0,86 e 0,86 e 0,61 ef 0,43 f 0,67 B

Mean 5,15 B 5,33 A 5,36 A 5,24 AB 5,14 C
Application x Drought P < 0,001

Table 1: The effects of NO applications on germination properties of purslane under salinity and drought conditions.

ns: non-significant, different lower case letters indicate differences related to NO and stress applications, and different capital letters 
indicate differences related to means. 
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plication at -0.20 MPa, with 200 μM NO application at -0.75 MPa 
drought stress levels (Table 1).

The effects of applications on seedling root and shoot length 
under stress conditions were given in table 2. The severe drought 

and salt stress have caused a decrease in seedling root and shoot 
length. The root and shoot lengths could not measure at the high-
est level of drought stress factor (-1.53 MPa level). The effect was 
found statistically important (p < 0,001) for both stress factors. 

Root Length (mm)
Stress Doses 0-NO 50-NO 100-NO 150-NO 200-NO Mean

Salt

0 2,95 b 3,14 a 2,95 b 3,03 ab 2,70 c 2,95 A
-0,20 MPa 2,36 de 2,67 c 2,24 e 2,50 d 1,93 f 2,34 B
-0,75 MPa 1,24 h 1,91 f 1,30 h 1,60 g 1,57 g 1,52 C
-1,53 MPa 0,22 ı 0,28 ı 0,14 ı 0,13 ı 0,18 ı 0,19 D

Mean 1,69 C 2,00 A 1,66 CD 1,81 B 1,59 D
Application x Salt P < 0,001

Drought

0 3,68 abc 3,96 ab 3,48 bcd 3,42 cd 4,10 a 3,73 A
-0,20 MPa 3,63 abc 3,94 ab 3,27 cd 3,21 cd 4,01 a 3,61 A
-0,75 MPa 2,22 g 2,71 ef 2,34 fg 2,51 fg 3,08 de 2,57 B
-1,53 MPa - - - - - -

Mean 3,18 B 3,53 A 3,03 B 3,05 B 3,73 A
Application x Drought P < 0,05

Shoot Length (mm)

Salt

0 2,64 ab 2,72 a 2,71 ab 2,68 ab 2,55 bc 2,66 A
-0,20 MPa 2,61 ab 2,65 ab 2,45 c 2,56 abc 2,44 c 2,54 B
-0,75 MPa 2,00 de 1,92 e 1,86 e 1,99 e 2,15 d 1,98 C
-1,53 MPa 0,69 f 0,78 f 0,62 f 0,68 f 0,64 f 0,68 D

Mean 1,99 AB 2,02 A 1,91 AB 1,97 AB 1,94 AB
Application x Salt P < 0,01

Drought

0 2,26 b 2,42 ab 2,55 a 2,64 a 2,42 ab 2,46 A
-0,20 MPa 2,03 c 1,67 ef 1,90 cd 1,99 c 1,85 cde 1,89 B
-0,75 MPa 1,23 h 1,63 efg 1,41 gh 1,56 fg 1,70 def 1,51 C
-1,53 MPa - - - - -

Mean 1,84 C 1,91 BC 1,95 ABC 2,06 A 1,99 AB
Application x Drought P < 0,001

Table 2. The effects of NO applications on root and shoot length of purslane on salinity and drought conditions.

Different lower case letters indicate differences related to NO and stress applications and different capital letters indicate differences 
related to means.

NO applications had important impact on seedling root and 
shoot length. For salinity condition, the highest root length was ob-
tained from 50 μM NO application for all stress levels. On the other 
hand, for drought condition the highest root length was occurred in 
200 μM NO for -0.20 MPa and -0,75 MPa levels. 50 μM NO applica-
tion showed the highest shoot length at -0.20 MPa and -1.53 MPa 
salinity levels, while 200 μM NO application gave the highest shoot 
length at -0,75 MPa drought levels.

Salinity and drought stress conditions hindered the investi-
gated parameters in this experiment. Germination properties of 
purslane seeds were adversely affected by salinity and drought 
stress. Salinity and drought stresses are physiologically related, 
because both induce osmotic stress and most of the metabolic 
responses of the affected plants are similar to some extent. Both 

Discussion 
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