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Plant-associated beneficial microbes are recently attaining 
greater attention as they play an important role in enhancing the 
productivity of the crops and also providing resistance against the 
stress conditions and are known as plant growth promoting mi-
crobes (PGPMs) [7,8]. The PGPMs contribute to mitigate the stress 
conditions by diverse mechanisms [9,10]. The PGPMs directly en-
hancing the uptake of the micronutrients, through phytohormones 
production; fixing of atmospheric nitrogen; P, K, and Zn-solubiliza-
tion or indirectly stimulating the immune system against various 
fungal pathogens by production of various compounds, enzymes, 
siderophores, antibiotics, osmolytes or improving either texture or 
structure of the soil [11].

There are number factors leading to the food crisis all over the 
world such as increasing urbanization and industrialization has 
led to the shrinkage of the land in past few decades. Increasing 
human population has further added to the world’s food security 
concern and these factors are affecting the climate in a severe way. 
Additionally, the use of the chemical fertilizers is also affecting the 
environment. The pressure of population is increasing with such 
an alarming rate that there is a critical need to enhance the agri-
cultural productivity in an eco-friendly manner. Agriculture is one 
of the most exposed sectors to various climatic changes. One of the 
major hurdle to increase the yield and productivity is exposure of 
the crops to the drought conditions in different parts of the world 
[1-5]. The drought is one of the major abiotic stresses acting as the 
limiting factor affecting the agricultural productivity worldwide. It 
has been estimated that there is approximately 9 - 10% reduction 
in the national production of the cereals due to the drought condi-
tions [6].
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Drought is one of the major abiotic stresses accepted as the main constraint for loss of the crop yield worldwide. Further, prob-
lems are created by nutrient limitations and particularly low phosphorus (P) soil status due to which modern agricultural systems 
are highly dependent on chemical fertilizers. The biotechnology offers a number of sustainable solutions to mitigate these prob-
lems by using plant growth promoting (PGP) microbes. These microbes help the crops to tolerate drought conditions by different 
mechanisms including the production of the exopolysaccharides (EPS), phytohormones (Auxin, Gibberrellic acid and Cytokinin), 
1-aminocyclopropane- 1-carboxylate (ACC) deaminase, solubilization of phosphorus, potassium and zinc, biological nitrogen fixation 
and enhancement of nutrient uptake, induction of the accumulation of osmolytes, antioxidants, upregulation or down regulation of 
the stress responsive genes. Inoculating plants with PGP microbes can increase tolerance against abiotic stresses such as drought, 
salinity and metal toxicity. The PGP microbes play important role in plant growth and soil health, which belong to diverse genera 
Arthrobacter, Azospirillum, Azotobacter, Bacillus, Burkholderia, Enterobacter, Klebsiella, Lysinibacillus, Paenibacillus, Pseudomonas, 
Serratia, and Streptomyces.

Phosphorus (P) is the major macronutrient which is required 
by the plants for their various metabolic processes including en-
ergy transfer, signal transduction, macro-molecular biosynthesis, 
photosynthesis and respiration but is simultaneously the major 
limiting mineral nutrient for the growth of the plants due to its 
least availability as well as the least mobility. The replacement of 
soil P reserves through chemical fertilization is common, but long-
term practice. There are many studies which have reported that 
beneficial microbes are efficient in solubilizing nutrients from soil 
[12-19]. The solubilization of inorganic insoluble phosphate salts 
by microbes result in the production or release of organic acid and 
organic acid decreases the pH [20-22]. The major P-solubilizers 
belong to genera Achromobacter, Acinetobacter, Agrobacterium, 
Arthrobacter, Aspergillus, Azospirillum, Azotobacter, Bacillus, En-
terobacter, Erwinia, Flavobacterium, Haloarcula, Halobacterium, 
Halococcus, Micrococcus, Mycobacterium, Penicillium, Pseudomo-
nas, Rhizobium and Serratia [21,23-27,28-31]. Various mecha-
nisms used by P- solubilizers to convert the insoluble forms of the 
phosphorus into the soluble forms consist of acidification, chela-
tion, exchange reactions and production of organic acids [22,32].

Another important role of plant growth promoting rhizobacte-
ria is the synthesis of various phytohormones (plant growth regu-
lators). The well-known phytohormones includes auxins most 
common being the indole acetic acid, cytokinins, gibberellins. 
There are diverse bacterial genera such as Acinetobacter, Arthro-
bacter, Bacillus, Corynebacterium, Delftia, Duganella, Exiguobac-
terium, Kocuria, Lysinibacillus, Methylobacterium, Micrococcus, 
Micrococcus, Paenibacillus, Paenibacillus, Pantoea, Pseudomonas, 
Psychrobacter, Serratia and Stenotrophomonas has been reported 
to produced diverse group of phytohormones [33-40]. Iron is one 
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The elucidation of the various mechanisms by which plants 
respond to drought stress is very important that stress tolerant 
plants could be grown. This process is very complex as it involves 
various factors which are affecting and at the same time the fac-
tors which are affected. During drought the availability of the nu-
trients is also affected, and this can be overcome by the use of the 
plant growth promoting microbes [43-45]. Ethylene when present 
at high concentration proves to be inhibitory for the growth of the 
plants. But, PGP microbes possess an enzyme 1-aminocyclopro-
pane-1-carboxylate (ACC) deaminase enzyme which converts ACC, 
the immediate precursor of ethylene to α-ketobutyrate and ammo-
nium thus lowering the concentration of the ethylene during the 
stress conditions and stimulating the growth of the plants. ACC de-
aminase activity has been reported in Achromobacter xylosoxidans, 
Agrobacterium genomovars, Alcaligenes, Azospirillum lipoferum, 
Bacillus licheniformis, Brachybacterium saurashtrense, Brevibac-
terium casei, Brevibacterium iodinum, Burkholderia phytofirmins, 
Cronobacter sakazakii, Enterobacter cloacae, Methylobacterium fu-
jisawaense, Pseudomonas putida, Pyrococcus horikoshii, Ralstonia 
solanacearum, Rhizobium leguminosarum, Rhodococcus, Sinorhizo-
bium meliloti, Variovorax paradoxus and Zhihengliuela alba [46-52]. 
Production of the exopolysaccharides (EPS) by PGP microbes plays 
a vital role in influencing the soil structure. EPS producing microbes 
stimulate the water binding capacity of soil and help in regulation 
of supply of nutrients and water to roots. EPS help in irreversible 
attachment colonization of the microbes to the roots due to net-
work of fibrillar material that permanently connects the microbes 
to the root surfaces. Bashan., et al. [53], demonstrated the role of 
polysaccharides producing Azospirillum in aggregation of the soil. 
The production of the extracellular biofilms by PGP microbes for 
binding and making the water molecules in the rhizospheric region 
available is another strategy for alleviation of the water stress con-
ditions [54]. EPS production has been reported in Pseudomonas ae-
ruginosa, Bacillus subtilis and Streptococcus mutans [55].

Microbe-mediated drought stress
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Another important consequence of the drought is stimulation of 
the production of various reactive oxygen species (ROS) including 
hydrogen peroxide (H2O2), singlet oxygen (1O2), superoxide radical 
(O2_), and the hydroxyl radical (HO-) [56] and these reactive oxygen 
species decreases the normal, metabolic processes of the plants 
by causing a oxidative damage to the lipids, various proteins ulti-
mately leading to the cell death [57,58]. Plants possess certain en-
zymatic and non-enzymatic oxidants which are also referred to as 
the scavenging enzymes which play an efficient and supportive role 
to overcome the negative effects of the drought [56]. Superoxide 
dismutase (SOD), catalase (CAT), peroxidase (POX), glutathione re-
ductase (GR), and ascorbate peroxidase (APX) are among the most 
important enzymatic antioxidants [56-59].

of the most vital elements important for the growth of all living or-
ganisms. It acts as the cofactor for different enzymes, it is involved 
in process of photosynthesis, respiration, nitrogen fixation and its 
deficiency leads to various metabolic alterations [41]. Iron is pres-
ent in abundance in the soil but is not available for the plants as 
well as the microbes present in the soil as the oxidized form of the 
iron which is Fe3+ reacts forming oxides and hydroxides which is 
not accessible to the plants as well as the microbes. Under such iron 
limiting conditions PGPR have the capacity to produce low molecu-
lar weight iron chelating compounds called as the siderophores for 
the acquisition of the ferric ions [42].

Conclusion and Future Scope 

The improvement of the stress tolerance and productivity 
of the crops is the major goal of agriculture. PGP microbes is an 
emerging field of science which is proving its potential helping 
the plants to combat with the abiotic stresses by different mecha-
nisms including production of the phytohormones, solubilization 
of phosphorus, production of ACC deaminase, production of sider-
ophores. Plant growth-promoting microbe can affect plant growth 
directly or indirectly. The direct promotion of plant growth by 
PGP microbes, for the most part, entails providing the plant with 
a compound that is synthesized by the bacterium or facilitating 
the uptake of certain nutrients from the environment. The indirect 
promotion of plant growth occurs when PGP microbes decrease 
or prevent the deleterious effects of one or more phytopathogenic 
organisms. Future research in microbes will rely on the develop-
ment of molecular and biotechnological approaches to increase 
our knowledge of microbes and to achieve an integrated manage-
ment of microbial populations of microbial community.
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